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Abstract: Subspace methods have emerged as useful todlefatentification of linear
time invariant discrete time systems. Most of the method® teeen developed for the
open loop case to avoid difficulties with data correlations tb the feedback. This paper
extends some recent ideas for developing subspace mettaidsh perform well on data
collected both in open and closed loop conditions. Here,thoakthat aims at minimizing
the prediction errors in several approximate steps is @epoThe steps involve using
constrained least squares estimation on models with diftategrees of structure such as
block-toeplitz, and reduced rank matrices. The statisdstimation performance of the
method is shown to be competitive to existing subspace rdstimoa simulation example.
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1. INTRODUCTION use iterative optimization techniques as, in general, are

needed for the maximum likelihood or the prediction
The subspace methods for system identification es-error methods (PEM) (Ljung, 1987).

timate linear state-space models directly from time- The “standard” sub hods referred b
discrete observations. They have become part of the e “standard” subspace methods referred to above

standard tools for the analysis of data from dynamical _T_ﬁve p;(_)bletms W_n?r? da_ta are colllet(): tegl_ n c:jos_ed Iotohp.
systems, especially for systems with multiple inputs € estimates will then In general be biased since the
and multiple outputs. Many of the ideas behind these feedback m_troduc_es a correlation between the input
methods come from classical state-space realization"".nd the NOISE. It IS well known that PEM can pro-

theory. The main observation used in the more recentVIde consistent estimates even on closed loop data

algorithms (Van Overschee and De Moor, 1996; Ver- (Lijung, 1987; Forssell and Ljung, 1999). (Ljung and
haegen, 1994; Larimore, 1983; PeterrmIa,I. 199’6) McKelvey, 1996) used this fact and proposed to utilize

is that, under the assumption that there exists a true? high order ARX model to circumvent the problem

underlying finite order linear time invariant system, Orf sibsgace (T?thois .flgr clzsetlj( Io]?p dzt.a. Thefy used
an estimate of the observability matrix or the state- t ﬁ, h th m(t) te to build a anbo p;e |cttc:jrs ,rq:“ |
trajectory can be obtained from the singular value de- Which the stale sequence can be estimaled simiarly

composition of a certain data cross correlation matrix. to the standard subspace methods. Many other sub-

Many of the subspace methods are also computation—fSloace methods for closed loop data have also appeared

ally attractive since only standard matrix operations in the literature (see, e.g., (Verhaegen, 1993; Van

- . Overschee and De Moor, 1997; Chou and Verhae-
are utilized to calculate the estimates and they do not ' !
y gen, 1999; Gustafsson, 2001; Qin and Ljung, 2003)).

However, no method seems to perform satisfactorily in
! Corresponding author: Magnus Jansson, Dept. of Signals, all cases or they utilize additional information about
Sensors and Systems, Signal Processing, Royal Inst. of Tech-the feedback. Similar to PEM it would be desirable

nology (KTH), SE-100 44 Stockholm, Sweden. Email: mag- : : : _
s jansson@s3 kth.se, fax +46 8 7907260, with a subspace method that works satisfactorily re




gardless of whether the data are collected in open orlt is well known that we can rewrite (1) as follows

closed loop. {x(t+1) = Ax(t) 4+ Bu(t) + Ky(t)
y

(t) = Cx(t) +Du(t) +e(t) )

The method of this paper is influenced by the ideas
in (Jansson, 2003; Ljung and McKelvey, 1996) and

is related to the canonical correlation analysis (CCA) | et us now turn to the idea of the method of this paper.

method (Peternelet al, 1996; Larimore, 1983). A Ejrst we will use (2) to form the subspace data model:
similar perspective is also given in (Chiuso, 2004;

Chiuso and Picci, 2004) in which the methods of (Qin yi(t) =x(t)+dur (t) + Pys () +er(t)  (3)
and Ljung, 2003) and (Jansson, 2003) are analyzed. \yhere

C
2. PROBLEM FORMULATION F_ CA @)
Consider a time-discrete linear time-invariant dy- CA.f—l
namic system described by the state-space model in -
innovations form D, 0. 0
CB D
X(t+1) = Ax(t) + Bu(t) + Ke(t) ) . . .
y(t) = Cx(t) + Du(t) + e(t) ®=| CAB CB (5)
whereu(t) € R™ andy(t) € R denote the observed I -0
: : : ni CA'™2B CB D
input and output signals, respectivetyt) € R" is the L
state-vector and is the system order. We assume that [0 0o ... 0
the system is minimal in the sense that the system CK 0
cannot be described by a state-space model of order T ~ . :
less tham. e(t) € R"™ denotes the zero mean white W= CAK CK e ©)
innovation process. : 0
A f-2
In the model (1), the matrices € R™", B € R™ ", [CATK CK O

C e RY*" D c RN K ¢ R™M and the covariance
matrix of the innovations are unknown and need to
be estimated from observations wft) andy(t) for it ~

t =1,2,...,N. Typically, also the model orden is = > Af[Ky(t—k—1)Bu(t —k—1)]
unknown and needs to be estimated. However, this 7~p
topic will not be covered herein (see, e.g., (Bauer, +AX(t-p)

2001) for such discussions). AssumingA is stable, this implies that the state can

If the observed data used for the estimation are col- P& Written as a linear combination of past inputs and
lected in closed loop, it is assumed that the feedbackCUtPuts. Furthermore, the state can be estimated ar-
loop contains a delay. In case the controller does notPitrarily well by a finite linear combination of past
contain a delay we need to assume that the system halPUts and outputs by choosinglarge enough. Let

From (2) it is also clear that

a delay and, hence, thBt= 0. us replace the state in (3) by the estimate
X(t) = Ap(t), @)
3. ESTIMATION METHOD where. %" is a matrix of unknown coefficients apdt)

a vector containing delayed inputs and outpusteps
In the following we will present the ideas behind back:

the new method for estimating®,B,C,D, K} of this p(t) = [yT (t—1) yT (t-2) ... yT (t—p)
paper.

o L _ uTt-)uTt-2) ... uTt—p)".
Let us first introduce some preliminary notation. De-
fine the vectors of stacked inputs, outputs and innova-Hence, consider the following approximate data model

tions as
7[yT(t Ly T(t+f_1)]T y(t) = T2 p(t)+dus(t) + Pyr(t) +er(t)  (8)
- i T where the approximation is due to the fact that the true
= [U (t Tt+1) ... uT(t+f - )] state has been replaced by the truncated state estimator
er(t) = [ (t) +1) ... e (t+f _1)]T (7). This is a non-linear regression problem. In the
h f i h by th | following, we will attempt to solve it by relaxation
\;Vd;;ﬁ)n 3 ? is an integer chosen by the user. In using linear and reduced-rank regression techniques.
A—A_KC The first step of the proposed method views (8) as a
5_B_KD linear regression wherie#" is considered to be a full

rank matrix of unknown parameters wherehsand



P are constrained to be lower triangular block toeplitz The system matrices can now be estimated by linear
matrices of unknown parameters (cf. (5) and (6)). Note regression in the state space model equations (1) by
that® contains zeros on the block diagonal while the replacing the true state with the estimate (12). Esti-

block diagonal ofb may contain théd matrix if itis ~ mates ofC andD are obtained by regressinygt) on
to be estimated. X(t) andu(t). An estimate of the innovation sequence

. . . . is then obtained as the residual of that regression.
The block toeplitz constraints are linear and can easily Finally, the matricesA,B and K are estimated by

be imposed (cf. (Peterned; al, 1996)). LetFJif, regressingk(t + 1) on X(t), u(t), and the estimated
® and ¥ denote the solutions to the above linear jnnovation sequence (cf. the CCA method (Peternell
regression problem. etal, 1996; Larimore, 1983)).

The next step is to utilizeb and W in an attempt e finally note that in the multiple output case, it
to remove the effects of the future inputs and “pre- may be useful to include a weighting in the regression
whiten” the future outputs by forming problems above to pre-whiten the prediction errors in

2(t) Ly (t) —Dus — Py (1) ~ T p(t) +er(t). (9)  er(b).
This equation can be viewed as a reduced rank linear

regression problem iz I_Estimates o_ﬂ' and ¢ . 4. SIMULATION EXAMPLE

can be obtained by performing a canonical correlation

analysis ore(t) andp(t) as follows: Let To study the performance of the suggested approach,
M = (Rzz) Y2(Ryp) (Rpp) 2 a simulation is performed using a similar example

i ) ~as was used in (Ljung and McKelvey, 1996). This
where we have defined the sample correlation matrix example considers the identification of the following

between two signalz(t) andp(t) as system based on data collected both in open and

- 1 N T closed loop:
Rp=—) z(t t).
» =N 2,20 O Jo) - O2lat oo L
Next, compute the singular value decomposition 1-0.6q-1+0.8q2 1-0.98q1
usv™ =M Here, e(t) is zero mean white Gaussian noise with

_ variance 4. In the open loop simulation, the inp(tt)
whereU andV are orthonormal matrices of left and  is zero mean Gaussian white noise with unit variance.

right singular vectors, respectively, aBds a diagonal  |n the closed loop case, the input is given by

matrix containing the singular values in nonincreasing

order along the diagonal. Ldt,S,V/] denote the u(t) =r(t) —yt)

partitioning of the SVD matrices corresponding to the where the external input(t) is white Gaussian noise
n largest singular values. The estimated adnd .7 with unit variance.

are then given by In both the open and closed loop simulations, 50

[ = (Rz)Y2UnS, (10)  independent Monte Carlo experiments are used. In
= V! (ﬁgpp)*l/Z (11) each simulation run, third order state space models are
. estimated by different identification methods based
ThIS ends_the second step of_the_ prop(_)sed method. The, \ — 3000 samples ofi(t) and y(t). In addition
|9ea of. thls step was to get initial estimatesioand to the proposed method of this paper (marked as
. This is also a step where the system order can beygyy in the plots), the studied identification methods
estimated if it is not known a priori. include CCA (Larimore, 1983; Peternel al, 1996),
In the third step, we return to the regression in (8). Parsim_e (Qin and Ljung, 2003), SSARX (Jansson,
Now (8) is considered to be a reduced-rank regression2003), SSNEW (Ljung and McKelvey, 1996), and the
problem with additional block toeplitz terms. To solve prediction error method (Ljung, 1987). Tiematrix
this we will use the idea of the “one step correc- is constrained to be zero in all methods and the indices
tion” method of (Werner and Jansson, 2004). In this f = p = 10 for all subspace methods. The Figures 1
approach, one linearizes around the initial estimateand 2 show the average and the root mean square
of F.#" and minimizes with respect to the first order errors (RMSEs) of the estimated magnitude of the
correction terms of and.# along with the block  transfer function fromu(t) to y(t) for the open and
toeplitz parameters. This can be shown to be identicalclosed loop simulation, respectively.

to taking a newton step from the initial estimated of For the open loop simulation it can be seen in Fig-
and.#” (Werner and Jansson, 2004). ure 1 that CCA, SSARX and the new method per-
From the solution of the third step we get an updated form equally well. Parsim estimates the resonance

estimate of# which is denoted? . The correspond- peak better than the mentioned methods but has a
ing estimated state sequence is slightly higher estimation error variance in this exam-
ple. Clearly, SSNEW performs the worst but it can

X(t) = jp(t). (12) be noted that its performance is comparable to that
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Fig. 1. Open loop simulation: The top graph shows the aveofdgkee 50 estimated magnitudes of the transfer
function from u(t) to y(t). The bottom graph shows the corresponding RMS errors of ttienated
magnitudes. The user defined indices fire p = 10 for all subspace methods.
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Fig. 2. Closed loop simulation: The top graph shows the ayedd the 50 estimated magnitudes of the transfer
function from u(t) to y(t). The bottom graph shows the corresponding RMS errors of ttienated
magnitudes. The user defined indices fire p = 10 for all subspace methods.
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schee and De Moor, 1996) (the simulation results of tistical analysis of novel subspace identification

MOESP and N4SID are not included in order not to methodsSignal Processing2(2), 161-177.

clutter the figure). Qin, S. J. and Lennart Ljung (2003). Closed-loop sub-
sapce identification with innovation estimation.
In: Proc. 13th IFAC Symposium on System lden-
tification. Rotterdam, The Netherlands. pp. 887—
892.

Van Overschee, P. and B. De Moor (199&ub-
space ldentification for Linear Systems: Theory—
Implementation—Application&luwer Academic

In the closed loop simulation (see Figure 2), the per-
formance of CCA degrades as expected (although it
performs reasonably well in this example wheh)

is white). SSARX and the new method still perform
almost identical while Parsim and SSNEW have a
larger bias and variance.
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