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Abstract: Subspace methods have emerged as useful tools forthe identification of linear
time invariant discrete time systems. Most of the methods have been developed for the
open loop case to avoid difficulties with data correlations due to the feedback. This paper
extends some recent ideas for developing subspace methods that can perform well on data
collected both in open and closed loop conditions. Here, a method that aims at minimizing
the prediction errors in several approximate steps is proposed. The steps involve using
constrained least squares estimation on models with different degrees of structure such as
block-toeplitz, and reduced rank matrices. The statistical estimation performance of the
method is shown to be competitive to existing subspace methods in a simulation example.
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1. INTRODUCTION

The subspace methods for system identification es-
timate linear state-space models directly from time-
discrete observations. They have become part of the
standard tools for the analysis of data from dynamical
systems, especially for systems with multiple inputs
and multiple outputs. Many of the ideas behind these
methods come from classical state-space realization
theory. The main observation used in the more recent
algorithms (Van Overschee and De Moor, 1996; Ver-
haegen, 1994; Larimore, 1983; Peternellet al., 1996)
is that, under the assumption that there exists a true
underlying finite order linear time invariant system,
an estimate of the observability matrix or the state-
trajectory can be obtained from the singular value de-
composition of a certain data cross correlation matrix.
Many of the subspace methods are also computation-
ally attractive since only standard matrix operations
are utilized to calculate the estimates and they do not
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use iterative optimization techniques as, in general, are
needed for the maximum likelihood or the prediction
error methods (PEM) (Ljung, 1987).

The “standard” subspace methods referred to above
have problems when data are collected in closed loop.
The estimates will then in general be biased since the
feedback introduces a correlation between the input
and the noise. It is well known that PEM can pro-
vide consistent estimates even on closed loop data
(Ljung, 1987; Forssell and Ljung, 1999). (Ljung and
McKelvey, 1996) used this fact and proposed to utilize
a high order ARX model to circumvent the problem
of subspace methods for closed loop data. They used
the ARX model to build a bank of predictors from
which the state sequence can be estimated similarly
to the standard subspace methods. Many other sub-
space methods for closed loop data have also appeared
in the literature (see, e.g., (Verhaegen, 1993; Van
Overschee and De Moor, 1997; Chou and Verhae-
gen, 1999; Gustafsson, 2001; Qin and Ljung, 2003)).
However, no method seems to perform satisfactorily in
all cases or they utilize additional information about
the feedback. Similar to PEM it would be desirable
with a subspace method that works satisfactorily re-



gardless of whether the data are collected in open or
closed loop.

The method of this paper is influenced by the ideas
in (Jansson, 2003; Ljung and McKelvey, 1996) and
is related to the canonical correlation analysis (CCA)
method (Peternellet al., 1996; Larimore, 1983). A
similar perspective is also given in (Chiuso, 2004;
Chiuso and Picci, 2004) in which the methods of (Qin
and Ljung, 2003) and (Jansson, 2003) are analyzed.

2. PROBLEM FORMULATION

Consider a time-discrete linear time-invariant dy-
namic system described by the state-space model in
innovations form{

x(t +1) = Ax(t)+Bu(t)+Ke(t)
y(t) = Cx(t)+Du(t)+ e(t)

(1)

whereu(t) ∈ R
nu andy(t) ∈ R

ny denote the observed
input and output signals, respectively.x(t) ∈ R

n is the
state-vector andn is the system order. We assume that
the system is minimal in the sense that the system
cannot be described by a state-space model of order
less thann. e(t) ∈ R

ny denotes the zero mean white
innovation process.

In the model (1), the matricesA ∈ R
n×n, B ∈ R

n×nu,
C ∈R

ny×n, D ∈R
ny×nu, K ∈R

n×ny and the covariance
matrix of the innovations are unknown and need to
be estimated from observations ofu(t) and y(t) for
t = 1,2, . . . ,N. Typically, also the model ordern is
unknown and needs to be estimated. However, this
topic will not be covered herein (see, e.g., (Bauer,
2001) for such discussions).

If the observed data used for the estimation are col-
lected in closed loop, it is assumed that the feedback
loop contains a delay. In case the controller does not
contain a delay we need to assume that the system has
a delay and, hence, thatD ≡ 0.

3. ESTIMATION METHOD

In the following we will present the ideas behind
the new method for estimating{A,B,C,D,K} of this
paper.

Let us first introduce some preliminary notation. De-
fine the vectors of stacked inputs, outputs and innova-
tions as

y f (t) =
[
yT(t) yT(t +1) . . . yT(t + f −1)

]T

u f (t) =
[
uT(t) uT(t +1) . . . uT(t + f −1)

]T

e f (t) =
[
eT(t) eT(t +1) . . . eT(t + f −1)

]T

where f > n is an integer chosen by the user. In
addition, define

Ã = A−KC

B̃ = B−KD.

It is well known that we can rewrite (1) as follows
{

x(t +1) = Ãx(t)+ B̃u(t)+Ky(t)

y(t) = Cx(t)+Du(t)+ e(t)
(2)

Let us now turn to the idea of the method of this paper.
First we will use (2) to form the subspace data model:

y f (t) = Γ̃x(t)+ Φ̃u f (t)+ Ψ̃y f (t)+ e f (t) (3)

where

Γ̃ =




C
CÃ

...
CÃ f−1


 (4)

Φ̃ =




D 0 . . . 0
CB̃ D

CÃB̃ CB̃
. . .

...
...

. . . 0
CÃ f−2B̃ CB̃ D




(5)

Ψ̃ =




0 0 . . . 0
CK 0

CÃK CK
. . .

...
...

. . . 0
CÃ f−2K CK 0




. (6)

From (2) it is also clear that

x(t) =
p−1

∑
k=0

Ãk[Ky(t −k−1) B̃u(t −k−1)]

+ Ãpx(t − p)

AssumingÃ is stable, this implies that the state can
be written as a linear combination of past inputs and
outputs. Furthermore, the state can be estimated ar-
bitrarily well by a finite linear combination of past
inputs and outputs by choosingp large enough. Let
us replace the state in (3) by the estimate

x̂(t) = K p(t), (7)

whereK is a matrix of unknown coefficients andp(t)
a vector containing delayed inputs and outputsp steps
back:

p(t) =
[
yT(t −1) yT(t −2) . . . yT(t − p)

uT(t −1) uT(t −2) . . . uT(t − p)
]T

.

Hence, consider the following approximate data model

y f (t) ≈ ΓK p(t)+ Φ̃u f (t)+ Ψ̃y f (t)+ e f (t) (8)

where the approximation is due to the fact that the true
state has been replaced by the truncated state estimator
(7). This is a non-linear regression problem. In the
following, we will attempt to solve it by relaxation
using linear and reduced-rank regression techniques.

The first step of the proposed method views (8) as a
linear regression whereΓK is considered to be a full
rank matrix of unknown parameters whereasΦ̃ and



Ψ̃ are constrained to be lower triangular block toeplitz
matrices of unknown parameters (cf. (5) and (6)). Note
thatΨ̃ contains zeros on the block diagonal while the
block diagonal ofΦ̃ may contain theD matrix if it is
to be estimated.

The block toeplitz constraints are linear and can easily
be imposed (cf. (Peternellet al., 1996)). Let Γ̂K ,
Φ̂ and Ψ̂ denote the solutions to the above linear
regression problem.

The next step is to utilizêΦ and Ψ̂ in an attempt
to remove the effects of the future inputs and “pre-
whiten” the future outputs by forming

z(t) , y f (t)−Φ̂u f −Ψ̂y f (t)≈ ΓK p(t)+e f (t). (9)

This equation can be viewed as a reduced rank linear
regression problem inΓK . Estimates ofΓ and K

can be obtained by performing a canonical correlation
analysis onz(t) andp(t) as follows: Let

M = (R̂zz)
−1/2(R̂zp)(R̂pp)

−1/2

where we have defined the sample correlation matrix
between two signalsz(t) andp(t) as

R̂zp =
1
N

N

∑
t=1

z(t)pT(t).

Next, compute the singular value decomposition

USVT = M

whereU andV are orthonormal matrices of left and
right singular vectors, respectively, andS is a diagonal
matrix containing the singular values in nonincreasing
order along the diagonal. LetUnSnVT

n denote the
partitioning of the SVD matrices corresponding to the
n largest singular values. The estimates ofΓ andK

are then given by

Γ̂ = (R̂zz)
1/2UnSn (10)

ˆK = VT
n (R̂pp)

−1/2 (11)

This ends the second step of the proposed method. The
idea of this step was to get initial estimates ofΓ and
K . This is also a step where the system order can be
estimated if it is not known a priori.

In the third step, we return to the regression in (8).
Now (8) is considered to be a reduced-rank regression
problem with additional block toeplitz terms. To solve
this we will use the idea of the “one step correc-
tion” method of (Werner and Jansson, 2004). In this
approach, one linearizes around the initial estimate
of ΓK and minimizes with respect to the first order
correction terms of̂Γ and ˆK along with the block
toeplitz parameters. This can be shown to be identical
to taking a newton step from the initial estimates ofΓ̂
and ˆK (Werner and Jansson, 2004).

From the solution of the third step we get an updated

estimate ofK which is denoted ˆ̂
K . The correspond-

ing estimated state sequence is

x̂(t) = ˆ̂
K p(t). (12)

The system matrices can now be estimated by linear
regression in the state space model equations (1) by
replacing the true state with the estimate (12). Esti-
mates ofC andD are obtained by regressingy(t) on
x̂(t) andu(t). An estimate of the innovation sequence
is then obtained as the residual of that regression.
Finally, the matricesA,B and K are estimated by
regressingx̂(t + 1) on x̂(t), u(t), and the estimated
innovation sequence (cf. the CCA method (Peternell
et al., 1996; Larimore, 1983)).

We finally note that in the multiple output case, it
may be useful to include a weighting in the regression
problems above to pre-whiten the prediction errors in
e f (t).

4. SIMULATION EXAMPLE

To study the performance of the suggested approach,
a simulation is performed using a similar example
as was used in (Ljung and McKelvey, 1996). This
example considers the identification of the following
system based on data collected both in open and
closed loop:

y(t) =
0.21q−1 +0.07q−2

1−0.6q−1 +0.8q−2 u(t)+
1

1−0.98q−1 e(t).

Here, e(t) is zero mean white Gaussian noise with
variance 4. In the open loop simulation, the inputu(t)
is zero mean Gaussian white noise with unit variance.
In the closed loop case, the input is given by

u(t) = r(t)−y(t)

where the external inputr(t) is white Gaussian noise
with unit variance.

In both the open and closed loop simulations, 50
independent Monte Carlo experiments are used. In
each simulation run, third order state space models are
estimated by different identification methods based
on N = 3000 samples ofu(t) and y(t). In addition
to the proposed method of this paper (marked as
NEW in the plots), the studied identification methods
include CCA (Larimore, 1983; Peternellet al., 1996),
Parsim_e (Qin and Ljung, 2003), SSARX (Jansson,
2003), SSNEW (Ljung and McKelvey, 1996), and the
prediction error method (Ljung, 1987). TheD matrix
is constrained to be zero in all methods and the indices
f = p = 10 for all subspace methods. The Figures 1
and 2 show the average and the root mean square
errors (RMSEs) of the estimated magnitude of the
transfer function fromu(t) to y(t) for the open and
closed loop simulation, respectively.

For the open loop simulation it can be seen in Fig-
ure 1 that CCA, SSARX and the new method per-
form equally well. Parsim estimates the resonance
peak better than the mentioned methods but has a
slightly higher estimation error variance in this exam-
ple. Clearly, SSNEW performs the worst but it can
be noted that its performance is comparable to that
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Fig. 1. Open loop simulation: The top graph shows the averageof the 50 estimated magnitudes of the transfer
function from u(t) to y(t). The bottom graph shows the corresponding RMS errors of the estimated
magnitudes. The user defined indices aref = p = 10 for all subspace methods.
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Fig. 2. Closed loop simulation: The top graph shows the average of the 50 estimated magnitudes of the transfer
function from u(t) to y(t). The bottom graph shows the corresponding RMS errors of the estimated
magnitudes. The user defined indices aref = p = 10 for all subspace methods.



of MOESP (Verhaegen, 1994) and N4SID (Van Over-
schee and De Moor, 1996) (the simulation results of
MOESP and N4SID are not included in order not to
clutter the figure).

In the closed loop simulation (see Figure 2), the per-
formance of CCA degrades as expected (although it
performs reasonably well in this example whenr(t)
is white). SSARX and the new method still perform
almost identical while Parsim and SSNEW have a
larger bias and variance.

5. CONCLUSIONS

In this paper we have presented a new subspace identi-
fication method which is able to handle data collected
both in open and closed loop. The method relies on a
slightly reformulated subspace data model compared
to previous similar models in the literature. The new
model highlights more clearly the connection to pre-
diction error minimization. Based on this formulation,
the state space model parameters are estimated by the
solution of a sequence of regression problems with
linear and rank constraints.
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