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Abstract: When predicting the spread of a disease such as smallpox, knowledge
of the transmission parameter, R0, is important. Previous studies have estimated
R0 from outbreaks of the disease, but these estimates are prone to uncertainties
because of the small population sizes and the short data runs. This study uses data
from smallpox deaths in London over the period 1708 to 1748. Although smallpox
was endemic in the population at this time, by using an estimator based upon a
second order Gaussian filter to fit a nonlinear model to the dynamics of the disease,
the disease parameters are obtained, leading to an estimate of R0. The model also
reveals the importance of temperature and rainfall on the transmissibility of the
disease. Copyright c©2005 IFAC

Keywords: Biomedical Systems, Identification, Modelling

1. INTRODUCTION

Smallpox has been present in the world for over
3,000 years and is known to be one of the most
infectious human diseases (Fenner et al. 1988). In
the 1630’s, there are accounts that a particularly
virulent strain began to emerge, with a gradual
but significant rise in the fatality rate (Corfield
1987). The disease was greatly feared in Europe
up until the end of the nineteenth century when
it ceased to be endemic after the introduction of
variolation, inoculation and vaccination. However,
it was still prevalent in some parts of the world,
for example India, until well into the twentieth
century and it was not until 1980 that the World
Health Organization declared that the disease
had finally been eradicated (Fenner et al. 1988).

1 Part of this work was carried out at the Hamilton Insti-
tute, National University of Ireland. The author gratefully
acknowledges the financial support of the Science Founda-
tion Ireland under grant 03/PRI/1383.

Following eradication, small stocks of the virus
were kept in order to prepare vaccines in the event
of the re-emergence of the disease and in recent
times, concern has focussed on these stocks being
used in bio-terrorism (Dove 2002).

In order to respond to an outbreak of smallpox, for
example following a bio-terrorist attack, a knowl-
edge of the transmissibility of the disease is funda-
mental. The transmissibility is usually expressed
as the basic reproductive rate, R0, which is defined
as the mean number of secondary infections pro-
duced when one infected individual is introduced
into a host population, where everyone is suscep-
tible (Diekmann and Heesterbeek 2000, Anderson
and May 1992). Few people under the age of 25
today have been vaccinated against smallpox and
the protective effects of vaccination would have
lapsed for most of the older members of the popu-
lation and it is reasonable to assume that almost
all of the present day population is susceptible to
the disease. If a single infective individual enters a



population consisting solely of susceptibles, he will
infect R0 other individuals. After a latent period,
D′, where the disease is dormant within the host,
these R0 individuals will become infectious and
will each infect a further R0 susceptibles during
their infectious period, D. The serial generation
time for the disease is defined as (D′ + D/2) and
if the disease is allowed to spread unchecked, there
will be will be Rn

0 infectives after n generations.

Previous studies have estimated R0 from the in-
crease in the number of infectives during the early
stages of an epidemic, but because smallpox has
been eradicated, researchers have relied upon his-
torical data and there have been a number of
estimates of R0, which have varied from 1.5 to
20 (Gani and Leach 2001). The difficulty with
deriving R0 from the start of an epidemic is that
a significant (but unknown) proportion of the
population would have previously been exposed
to the disease and hence would be immune, which
will distort the estimate of R0. Consequently, esti-
mates of R0 have been attempted from the rising
phase of epidemics in more modern times (Gani
and Leach 2001), when only a small proportion
of the population would be immune, leading to
estimates for R0 between 3.5 and 6. However,
these studies involved relatively small numbers
of people (so that the analysis is sensitive to
statistical fluctuations) and there were significant
medical interventions and isolation of infectives,
which reduced the spread of the disease.

The approach described in this paper uses histor-
ical data from London over the first half of the
18th century when smallpox was endemic within
the population. The data comes from the Bills of
Mortality, which recorded weekly burials result-
ing from smallpox deaths for each parish within
London over a 250 year period (Creighton 1894).
Figure 1 shows the weekly burials over the period
1708 to 1748, which is used here, primarily be-
cause both the total size of the population and
the mean number of weekly smallpox burials re-
main constant over this period (Landers 1986). It
is clear from this plot that there are significant
dynamics within the data series. Although the
disease is endemic over this period, so that a
large proportion of the population is immune, it is
still possible to estimate R0, the transmissibility
of the disease in a population where no one is
immune. This is done by fitting a Gaussian sec-
ond order filter to a non-linear dynamic model of
the variations and using this to identify the key
disease parameters. The intention was to use the
estimated model to provide prior distributions for
a particle filter, but the second order filter gave
good results, primarily because the underlying
model of the disease dynamics is bilinear and
because the noises entering the system were found
to be Gaussian.

1710 1715 1720 1725 1730 1735 1740 1745
0

20

40

60

80

100

120

140

Year

W
ee

kl
y 

sm
al

lp
ox

 b
ur

ia
ls

Fig. 1. Weekly burials due to smallpox over period
1708 to 1748. Dashed line shows linear fit to
data

2. THE SEIR MODEL OF DISEASE
DYNAMICS

A population of size N(t) can be separated into
four classes

N(t) = X(t) + H(t) + Y (t) + Z(t) (1)

where X(t) is the number of susceptibles within
the population, H(t) is the number of latents
(those who have been infected with the disease,
but are not yet infectious), Y (t) is the number of
infectives and Z(t) is the number of people who
have recovered after being infected. The standard
SEIR model for the aggregated population (ignor-
ing the age structure of the population), is given
by a set of coupled ordinary differential equations
(Anderson and May 1992)

Ẋ(t) = γN(t)− µX(t)− β(t)X(t)Y (t) (2)

Ḣ(t) = β(t)X(t)Y (t)− µH(t)− σH(t) (3)

Ẏ (t) = σH(t)− µY (t)− νY (t) (4)

Ż(t) = (1− α)νY (t)− µZ(t) (5)

where γ is the birth rate, µ is the death rate
due to causes other than the disease and α is the
fraction of the infectives who die from the disease.
The rate at which latents move to infectives is
denoted by σ and ν is the rate at which infectives
either recover or die from the disease. Usually, σ
and ν are taken as the reciprocal of the latent
period, D′, and infectious period, D, respectively,
so that σ = 1/D′ and ν = 1/D. The term, β(t),
is the transmission parameter associated with the
disease and describes the probability that the dis-
ease will be transmitted when a susceptible comes
into contact with an infective. The probability
of transmission is a parameter associated with
disease, but it does depend on external factors,
such as temperature and humidity, so β(t) can
vary over time (Anderson and May 1992).



Summing the differential equations in the SEIR
model and using (1) leads to

Ṅ(t) = (γ − µ)N(t)− ανY (t) (6)

It is more convenient to use this equation in place
of the expression for Ż(t) in (5).

3. STEADY STATE ANALYSIS

From the plot of smallpox burials from 1708 to
1748 in Figure 1, the mean annual number of
deaths due to smallpox, B̄, for this period is 2,028.
If ν, the rate at which infectives either recover or
die from the disease, is expressed in units of year−1

(which can be obtained by setting ν = 1/D, where
the infectious period, D, is measured as a fraction
of a year), then

B̄ = ανȲ (7)

The mean values of susceptibles, latents, infec-
tives and the total population size, X̄, H̄, Ȳ
and N̄ , satisfy steady state versions of the the
SEIR equations, (2) to (4) and (6). Using the
values of N̄ = 660, 000 and µ = 1/30 years−1

from historical records (Landers 1986), the steady
state equations represent five equations in eight
unknowns (X̄, H̄, Ȳ , γ, β, α, σ and ν). However,
if three of the parameters are known, for example,
α, σ and ν, then the other five values can be
calculated. Once X̄ is known, the value of R0 is
obtained from R0 = N̄/X̄. The procedure also
produces an estimate of the average transmission
parameter, β̄.

The difficulty is that in order to estimate X̄ and
hence R0, it is necessary to have values for three
unknown parameters. In principle, estimates of
α, σ and ν are available. For example, Anderson
and May (Anderson and May 1992) state that the
latent period for smallpox lasts between 8 and
11 days, while the infectious period is between 2
and 3 days, although other authors extend the
latent period to 13 days and the infectious period
to 6 days (Gani and Leach 2001). From records
obtained primarily from studies of smallpox out-
breaks in 20th Century India, between 15% and
20% of infectives died from the disease. Although
these values can be used to estimate R0, the es-
timate of X̄ is very sensitive to uncertainties in
α and ν. It is also possible that the values of the
parameters α, σ and ν obtained from relatively
recent data records may not be applicable to the
disease in the early 18th Century. For this reason,
the approach adopted in this study is to use the
dynamics of the smallpox outbreaks evident in the
London data over this period, to estimate α, σ
and ν. It is then possible to calculate the corre-
sponding value of X̄, leading to an estimate of R0.

However, the estimation procedure also provides
an estimate of X(t) on a weekly basis and X̄ can
be obtained directly by taking the mean of these
estimates.

4. NONLINEAR DYNAMIC MODEL

Previous work (Duncan et al. 1996) has shown
that the oscillations in the number of smallpox
deaths are driven by variations in the trans-
mission parameter, β(t). By examining monthly
records for temperature (Manley 1974) and rain-
fall (Wales-Smith 1971) over the same period,
it can be shown that there is a strong positive
correlation between smallpox deaths and temper-
ature and a negative correlation between smallpox
deaths and rainfall. These correlations reflect the
fact that because infection occurs via the airborne
transmission of the virus, the disease tends to
thrive in warm, dry conditions. As a result, vari-
ations in the transmission parameter are taken to
have the form

β(t) = β̄ + βTT (t) + βRR(t) + w(t) (8)

where T (t) and R(t) denote the temperature and
the rainfall respectively. In principle, the param-
eter β̄ could be estimated from the steady state
analysis of the previous section, but the param-
eters, βT and βR are unknown. The historical
records only provide the monthly averages for
temperature and rainfall, so interpolation is used
to find the values of T (t) and R(t) at any given
time, t. The w(t) term represents a stochastic
variation in the transmission parameter, which is
taken to be a zero-mean, Gaussian, white noise
signal, whose variance is unknown. It is convenient
to combine the deterministic part of β(t) into a
single variable by defining

βd(t) = β̄ + βTT (t) + βRR(t) (9)

so that β(t) = βd(t) + w(t).

Since the total size of the population, N(t), is
constant over the period being considered, the
system can be described by X(t), H(t) and Y (t).
If q(t) is defined as

q(t) =




X(t)
H(t)
Y (t)


 (10)

then the nonlinear model in (2), (3) and (4) can
be written as

q̇(t) = f (q(t), βd(t), θ) + g (q(t)) w(t) (11)

where



f (q(t), βd(t), θ) =




γN̄ − µq1(t)− βd(t)q1(t)q3(t)
βd(t)q1(t)q3(t)− (µ + σ)q2(t)

σq2(t)− (µ + ν)q3(t)




(12)

g (q(t)) =



−q1(t)q3(t)
q1(t)q3(t)

0


 (13)

with θT = [σ, ν, α, βT, βR] representing the
unknown model parameters. Other parameters in
the model, namely N̄ and µ, are obtained from
historical data (Landers 1986) and given values of
σ and ν, β̄ can be obtained from the steady state
analysis. The model is completed by the discrete
time, linear measurement equation relating Bk,
the number of burials over the period kTs ≤ t <
(k + 1)Ts, to the state

Bk = cTqk + ek (14)

where cT = [0, 0, ανTs], qk = q(kTs) and ek

represents the measurement noise.

For a given set of parameters, θ, using the number
of burials at each time step, the underlying state
q(t) can be estimated using a continuous-discrete
nonlinear filter (Jazwinski 1970). Since the system
contains bi-linear terms in both f(q(t), βd(t), θ)
and g(q(t)), a second order filter, which includes
terms involving up to the second derivatives of
f(q(t), βd(t), θ) and g(q(t)) with respect to q(t),
is appropriate, since the higher order derivatives
vanish. If it is assumed that both the underlying
state noise, w(t), and the measurement noise, ek,
are Gaussian, then a suitable estimator is the
Gaussian second order filter (Jazwinski 1970). The
state update part of the filter is given by

˙̂q(t) = f (q̂(t), βd(t), θ) +
1
2
∂2 (f ,P(t)) (15)

where P(t) is the covariance matrix and ∂2 (f ,P(t))
is a vector whose ith element is (Gelb 1974)

∂2
i (f ,P(t)) = trace

{
∂2fi

∂qm∂qn

∣∣∣∣
q̂m,q̂n

P(t)

}
(16)

From (12), the only nonlinear terms in the state
evolution equation are q1(t)q3(t), so ∂2

1 (f ,P(t))
and ∂2

2 (f ,P(t)) depend only on βd(t), while
∂2
3 (f ,P(t)) is the zero matrix. The initial condi-

tions for the state estimate evolution in (15) are
taken to be q̂(0) = E[q̂(t)] = [X̄, H̄, Ȳ ]T.

The evolution of the covariance matrix between
samples is given by (Jazwinski 1970)

Ṗ(t) = F(t)P(t) + P(t)FT (t) + ̂GQGT (17)

where Q = E[w(t)w(t)T ] is the covariance of the
state noise and

F(q̂) =
∂fi

∂qj

∣∣∣∣
q̂

(18)

=



−µ− βd(t)q̂3 0 −βd(t)q̂1

βd(t)q̂3 −(µ + σ) βd(t)q̂1

0 σ −(µ + ν)




(19)

For the case of a Gaussian second order filter

̂GQGT = g(q̂)Qg(q̂)T + G(q̂)P(t)G(q̂)TQ

+ g(q̂)Q∂2 (P(t),g)

+
3
4
Q∂2 (P(t),g) ∂2 (g,P(t))T (20)

where

G(q̂) =
∂gi

∂qj

∣∣∣∣
q̂

=



−q̂3 0 −q̂1

q̂3 0 q̂1

0 0 0


 (21)

The term ∂2(P(t),g) takes the same form as in
(16).

Since the measurement equation in (14) is linear,
the update to the state and covariance matrix at
each sample interval is (Jazwinski 1970)

q̂k(+) = q̂k(−) + kk[Bk − cTq̂k(−)] (22)

kk = Pk(−)cT
[
cPk(−)cT + r

]−1
(23)

Pk(−) =
[
I− kkcT

]
Pk(−) (24)

where r = E[e2
k].

Estimates of the unknown parameters θ are ob-
tained by finding

arg min
θ

N∑

k=1

[
Bk − cTq̂k(+)

]2
(25)

where N is the number of data points. In practice,
this is done by fixing θ, running the second order
Gaussian filter to calculate the sum of the squared
residuals and then using the simplex method to
update θ. This process is repeated until a local
minimum is found. The optimization procedure
is started using estimates of θ obtained from
the steady-state analysis and a linearized version
of the model. In theory, the estimates could be
improved by using a non-linear smoother in place
of the second order filter, but in practice, it was
found that it was difficult to maintain the stability
of the smoother when passing backwards through
the data.

5. RESULTS

The parameter estimates were obtained by apply-
ing the optimization procedure to the first half
of the data record over the period from 1708 to



1729.5 years, which corresponds to 1,121 data
points, and Figure 2 shows the fit to a portion of
this data (only part of the data has been shown
in order to improve the clarity of the plot). The
values of the parameters used to obtain this fit are
given in Table 1, which also includes the values
used in the algorithm for q, the state noise vari-
ance, and r, the measurement noise variance. The
residuals, Bk − cTq̂k(+), were found to include
a low frequency variation with a wavelength of
around 20 years. This long-term variation has not
been included in the SEIR model and was removed
by subtracting a cubic polynomial from the resid-
uals. Figure 3(a) plots a histogram of the modified
residuals, which indicates that the residuals are
normally distributed and applying a Lilliefors test
(Conover 1971) shows that the hypothesis that
the residuals are drawn from a normal distribu-
tion can be accepted at the 95% confidence level.
Figure 3(b) gives the autocorrelation plot of the
residuals along with the 95% confidence inter-
vals (dashed lines), indicating that the residuals
can be taken as white at this confidence level.
Figures 3(c) and (d) shows the cross-correlation
between the residuals and the temperature and
rainfall respectively. Although the plots indicate
that there is no correlation between the residuals
and the variations in rainfall, some correlation
between the residuals and temperature is evident.
However, this is almost within the 95% confidence
interval (shown by the dashed line).

Parameter Estimated Value

σ 28.3 year−1

ν 125.9 year−1

α 0.094

βT 9.5× 10−6

βR −2.0× 10−5

q 1.0× 10−9

r 81.0

Table 1. Parameter estimates identified
from model
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Fig. 2. Fit (dashed line) of non-linear model to
part of test data

Using the parameters that were estimated from
the first half of the data, corresponding to the
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Fig. 3. (a) Histogram of residuals from test data.
(b) Autocorrelation of residuals. (c) Cross-
correlation between residuals and tempera-
ture. (d) Cross-correlation between residuals
and rainfall

period 1708 to 1729, the Gaussian second order
filter was then applied to the smallpox burials
for 1729.5 to 1748 (1,123 data points) in order
to validate the model. A portion of the fitted
model is shown in Figure 4, while the statistics
of the residuals are given in Figure 5. Although
the fit to the validation data is good, Figure 5(b)
shows that compared with the test data, there was
a higher level of autocorrelation in the residuals
from the validation data and that there is corre-
lation between the residuals and the temperature
data. Also, the Lilliefors test indicates that the
hypothesis that residuals are normally distributed
cannot be accepted at the 95% confidence level, al-
though when an outlier data point is removed, this
hypothesis can be accepted. This suggests that the
influence of the exogenous variables, in particular
the temperature, on the spread of the disease may
have changed over the period being considered, so
that βT was not constant. Despite this, the quality
of the fit is good, with the standard deviation of
the residuals being 8.31 burials per week, which is
considerably less than the standard deviation of
the full burials records, which is 20.4 burials per
week.
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Fig. 4. Fit (dashed line) of non-linear model to
part of validation data
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Fig. 5. (a) Histogram of residuals from valida-
tion data. (b) Autocorrelation of residuals.
(c) Cross-correlation between residuals and
temperature. (d) Cross-correlation between
residuals and rainfall

The estimated parameters given in Table 1 are
reasonable. The values of σ and ν correspond to
latent and infectious periods of 12.9 days and
2.9 days respectively. The value of q used for
the variance of the state noise shows that the
random component of β(t) is smaller than the de-
terministic, exogenous portion, since the variance
of βTT (t) + βRR(t) is 2.53× 10−9. This indicates
the importance of temperature and rainfall on the
spread of the disease.

On the basis of these of the model, the estimate
of X̄ is 8.9 × 104, which gives a value of R0 =
7.41(±0.57). This is at the higher end of the pub-
lished figures. However, the estimated value of α,
the fraction of infectives dying from the disease is
lower than expected. The estimated value suggests
that less than 10% of infectives died, but values
published in the literature indicate that the death
rate exceeds 15% for both contemporary and his-
torical outbreaks of the disease. The most likely
reason for this discrepancy lies with the assump-
tion that the non-disease induced death rate, µ, is
constant throughout the population. In practice,
the childhood mortality was so high that almost
50% of children died in the first year of birth. Since
smallpox is primarily a disease of childhood, the
high childhood mortality reduces the size of the
pool of susceptibles, meaning that the fraction of
the infectives dying from the disease will need to
be higher in order to match the observed number
of smallpox burials. Current work is focussing on
incorporating the age dependent death rate and
the resultant age-structure of the population into
the nonlinear model.

6. CONCLUSION

This paper has presented an estimator based upon
a second order Gaussian filter, to estimate the
parameters of a nonlinear SEIR model of the

disease dynamics. The nonlinear model is driven
by variations in the transmission parameter, β(t),
which is affected by both temperature and rain-
fall, plus a noise term. The resultant model was
fitted to half of the data, giving residuals that
are Gaussian and white, and uncorrelated with
both the temperature and rainfall variations. The
model was validated against the second half of
the data. The model gave an estimate of 7.41 for
R0, which is higher than expected, although it is
suspected that this may be because the model
does not take into account the age structure of
the population.
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