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Abstract: This paper compares the multi-model gain scheduling (GS) control versus
the linear parameter varying (LPV) gain scheduling control. The results of this
comparative study is carried out exclusively with PI controllers. Although the
simplicity and easiness of the former approach for controlling non-linear industrial
plants, its main drawback relies on the impossibility to assure stability and
performance for slow parameter variation. On the other hand, the later approach
rigorously ensures stability and performance of the control system for any variation
(smooth as well as abrupt) of the plant parameters. Finally, both methodologies are
tested on a test bench canal. Copyright © 2005 IFAC
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1. INTRODUCTION

Nowadays, agricultural systems are receiving
considerable interest because they are able to
increase demand in water savings and minimise the
losses. For these reasons, lastly, hydraulic and
control engineers use automatic control techniques in
order to obtain a better performance in real-time
operation of open canal systems and to deliver water
to the farmers on demand. So far, the main used
control strategies have been classical PI(D)
controllers (Chentouf,2001) and predictive strategies
(Gomez,2002). For representing non-linear parameter
distributed model dynamics with linear model
parameter variation within the operating regime,
multi-models or linear parameter varying (LPV)
should be considered. In both cases, gain-scheduling
(GS) control would be a suitable control strategy
(Rugh,2000). There are two types of GS:
Conventional or classical multi-model GS and Linear

parameter-varying (LPV) GS. The classical GS
consists in designing linear time-invariant (LTI)
controllers for several operating points and then
applying an interpolation strategy to obtain a global
control. Consequently, powerful tools for linear
systems can be applied to non-linear plants. In spite
of the numerous GS applications, there is not a
formal framework until the beginning of the nineties
(Shamma,1990). This framework gives heuristic
rules to ensure global stability and global
performance, but it does not provide a systematic
design procedure. Latter, in (Shamma, 1991), linear
parameter-varying (LPV) systems are introduced. In
this context, the synthesis problem can be formulated
as a convex optimisation problem with linear matrix
inequality (LMI) constraints wherein the controller is
considered as a simple entity without the classical
interpolation drawbacks (Becker, 1994;
Apkarian,1995; Packard, 1996).



Then, with the goal of preventing these drawbacks in
control canal systems LPV GS control seems an
interesting solution to be considered. In fact, lastly, it
has been formulated an LPV model that reproduces
more faithfully the non-linear and time-varying
characteristics of a canal than the typical LTI models
obtained using hydraulic laws (Schuurmans,1995) or
classical identification (Bolea,2002).

This work focus on the comparative analysis of both
control GS techniques in case of using a PI law
regarding its application to canals. So far, the
differences between classical multi-model and LPV
GS has been only been treated in the literature
(Shamma,1991; Groot Wassink,2005) when
advanced control methods are used, but, there are not
any comparison when a simple controllers are used.
PI(D) controllers are the usual control laws in real
canal control application since their low order, easy
implementation and physical significance.

The paper is organized as follows. A brief review of
multi-models and LPV models and their associated
control strategies is introduced in Section 2. In
Section 3 both modelling methodologies are applied
to a single pool canal while in Section 4 PI
controllers are designed, tested and compared using
both GS approaches. Finally, in Section 5, the
conclusions (advantages and limitations of both
techniques) of this comparative study are presented.

2. MULTI-MODEL VERSUS LPV GS CONTROL

2.1. Conventional multi-model GS

Conventional or classical multi-model GS is widely
used technique to control non-linear systems in
variety of engineering applications. The parameters
(“gains”) of the gain-scheduling controllers are
typically chosen using LTI techniques using a two
step process. First, several operating points are
selected to cover the range of system dynamics. At
each of these points, the designer obtain an LTI
model that approximate the real plant and designs a
linear controller for each one. This process gives a
set of linear feedback control laws that performs
satisfactorily when the closed-loop system is
operated near the respective operating-points. A
global nonlinear controller for the nonlinear system is
then obtained by interpolation or ‘scheduling’ the
“gains” from the local operating point designs.
Therefore, this technique usually uses a grid of LTI
models (Johansen, 1996; Tanaka,2002) obtained by
physical laws or classical identification (Ljung,1999).
A well-known limitation of this methodology is due
to the fact that only slowly varying trajectories are
admissible for the controller in order to assure
stability and desired performance in closed-loop.

The controller design procedure is based on the
representation of a given nonlinear plant in terms of
the multi-model given by:

 Ri: IF θ1(t) is M1i, and ... and θj(t) is Mji
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The antecedent part of each rule Ri contains fuzzy or
multi-model linguistic descriptions Mji, of the
scheduling variables θj(t) and the consequent part
contains a local linear model of the nonlinear system.
The entire multi-model of the plant (1) is obtained by
fuzzy blending of the consequent local models. For a
given pair of vectors x(t) and u(t), the final output of
the global system is inferred as weighted sum of the
contributing local models
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There are different inference weights to combine the
obtained LTI controllers (Johansen,1996;
Tanaka,2002). In the continuous-time case, the
simplest fuzzy control or classical GS rule being
considered here, has the form:
Ri: IF θ1(t) is M1i, and ... and θj(t) is Mji,

then ui(t) = -Fi x(t)                         (6)
where Fi is the controller matrix. The controller’s
output is inferred as the weighted mean

∑

∑

=

=

−
= r

i
i

r

i
ii

t

txFt
tu

1

1

))((

))())(((
)(

θω

θω
            (7)

which yields

).())(())())((()(
1

txtFtxFttu
r

i
ii θθλ −=−=∑

=

           (8)

If the scheduling vector θ(t) is a function of the state
vector x(t), u(t) represents a non-linear gain-
scheduling control law.



The goal of the controller design is to determinate the
constant matrix Fi such that the desired dynamics of
the closed-loop system and some desired steady-state
input-output behaviour are obtained. For this purpose
any classical design methods as pole placement,
optimal control, etc. can be used.

2.2. LPV Control

To solve the main drawback of classical multi-model
GS methodology, LPV GS provides a rigorous
methodology that assure the stability and desired
performance for any variation (smooth or abrupt) of
the system parameters. But, to use this method it is
necessary to formulate a LPV model by physical
laws (Wu,1995) or experimental identification
(Bamieh,2002).
LPV systems are defined as linear systems whose
dynamics depend on exogenous time-varying signals.
When the variation of the parameters depends on the
state space variables and/or input variables, they are
denoted quasi-LPV or pseudo-LPV. In this case
system dynamics can be represented as (Rugh,2000)
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where the system model is linear in both x(t) and u(t)
but whose matrices A(⋅)…D(⋅) are not constant but
variable. The LPV models describes how the
dynamics of a system vary as a function of one or
more scheduling parameters θ(t) that itself can
depend on time.
LPV based gain-scheduling techniques are replacing
classical gain-scheduling techniques and becoming
more widely used in control design. In (Yu,2002;
Groot Wassink,2005) are presented design examples
and applications. Once an LPV model is built,
several control synthesis techniques can be used for
controller design, LQG control (Wu,1995), H∞

control (Apkarian,1995), predictive control
(Goto,2003), etc. Many of the control system design
techniques using LPV models can be cast or recast as
convex problems that involve linear matrix
inequalities (LMI).
If the original plant (9) is polytopic verifying
condition quadratic H∞ performance and/or LMI
region (pole-placement method), etc. only on the
vertices (Vertex Property) of the parameter hyper-
rectangle Θ is necessary and sufficient for verifying
such a condition for all parameters θ∈Θ (Yu,2002).
This implies that the number of inequalities needed
to test the design conditions can be reduced to a finite
one. Then, the model of the dynamics of the LPV
system (9) can be represented









=








= ∑

= ii

ii
r

i
i DC

BA
tDtC
tBtA

tsG
1))(())((

))(())((
:))(,( λ

θθ
θθ

θ   (10)

with },0:{},...,,{:)(
1 1

21 ∑ ∑
= =

=>==∈
r

i

r

i
iiiir IvvvvCot λλλΘθ

where vi , i=1,...,r are the vertices of the polytope
approximating the exact parameter space.

Then, the following design problem is outlined: to
obtain a static controller, F of the following way
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which guarantees difference conditions (of stability
and performance) (Apkarian,1995; Yu,2002) for any
variation of the parameters. Since the plant is
assumed polytopic, it can be realised a polytopic
design of the feedback controller F(θ) such as
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This technique is known as convex decomposition
technique, and Co is the function that forms a convex
hull from the polytope vertices. The polytopic
coordinates are calculated by fast algorithms in such
a way that for each vertex vi, i=1,...,r  its coordinates
are
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Then, the matrices Acl(θ) and Ccl(θ) that depends on
the parameter vector θ  can be expressed by
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As a major advantage, LPV gain-scheduling offers a
systematic design approach for guaranteeing stability
and performance over the whole operating regime.
Unfortunately, the design cycle is strongly affected
by issues of LPV modeling and numerical
conditioning. Moreover, algorithms that are
practically applicable suffer from conservatism
caused by the underlying assumption that the
scheduling-parameters can change arbitrarily fast in
time. Consequently, the number of actual industrially
relevant implementation of LPV control is rather
restricted (Groot Wassink,2005).

2.3. Connection between both types of techniques

The multi-model (1) can also be regarded as a quasi-
linear varying system, i.e., system linear in both x(t)
and u(t) whose matrices A(⋅).....D(⋅) are not constant,



but varying as (9). From (4) and (5), one can see that
for all possible values of θ(t), which are assumed to
be known on-line, these matrices are bounded within
a polytope whose vertices are the matrices of the
individual rules as in (10). Therefore, in the same
way we can develop the control law from (7) and (8)
to (12) and (13). Notice that in case of an LPV model
both control techniques can be used. But, in case of
multi-models LPV techniques can not be applied.

3. MODELLING OF A CANAL: MULTI-MODEL
VERSUS LPV APPROACH

3.1. Description of the system

The complete water behaviour is accurately
reproduced by Saint-Venants’s equations using a
simulator developed by the group of “Modelling and
Control of Hydraulic Systems” at the UPC. All the
experiments presented in this paper will be done on
this simulator. This canal is composed by a single
pool equipped with an upstream sluice gate and a
downstream spillway (Fig.1). Upstream of this gate
there is a damming of constant level H=3.5m. The
total length of the pool is L = 2km, with an initial
flow Q0=1m3/s, a gate discharge coefficient Cdg= 0.6,
a Manning roughness coefficient n=0.014, gate width
and canal width B=2.5m, a downstream spillway of
height ys = 0.7m, a spillway coefficient Cds= 2.66, and
a bottom slope I0= 5.10-4.

ysu

H
ydns

I0

yups

L

yups=upstream level
ydns=downstream level
Qups=upstream flow
Qdns=downstream  flow
u=gate opening

Qups
Qdns

(a)

B

(b)

Fig.1. Canal scheme.(a) Longitudinal and (b) cross section.

3.2. Multi-model

In order to design the multi-model GS controller four
operating points have been chosen. They correspond
to the four gate opening positions (j=1,2,3,4), which
are representative of four operating modes: low, low-
medium, high-medium, and high water flow rate. The
dynamic study consists of obtaining the step response
around each operating point. A response analysis
show that the dynamics (see Fig.2) can be simply
approximated by a first-order system with time delay
(FOPDT) as follows
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where kj is the jth static gain, Tj is the jth dominant
time constant and τj is the jth time delay.

This decomposition of operating range (0.9 ≤ u ≤ 0.1
[m]) is selected such that the time constant varies

with less than 1.2 between two neighbouring
regimes. Thus, assuming the local models are exactly
correct at the centre points of their corresponding
regimes, the interpolated model time constant are
never more than 2.1  of error. The weighting
functions used in the interpolation are presented in
Fig.3. They are designed to give a smooth transition
between the operating regimes.

Table 1. Continuous transfer function parameters with
respect to the gate position j

PARAMETERSOPERATING
POINT j Ki Ti[sec] τi[sec]

1 1.43 788.02 496.80
2 0.96 612.74 416.40
3 0.73 546.45 376.20
4 0.58 457.25 351.60
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Fig.2. Step time responses for the four operating points: 1
(u from 0.1 to 0.3m), 2 (u from 0.3 to 0.5m), 3 (u from 0.5

to 0.7m) and 4 (u from 0.7 to 0.9m).

The classical identification (for more details, see
(Ljung,1999, Bolea,2002) of these three parameters
with respect to the gate opening j gives the values
summarized in Table 1. An increase in the upstream
water flow, i.e., an increase of gate opening j, implies
a decrease in the gain kj and in the time constant Tj as
well as in the time delay τj.
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Fig.3. Weighting functions used in the gain-scheduler.

3.3. LPV model

In case of the irrigation canal, the plant dynamics
depends on the upstream gate opening (u). Then, it is
interesting for control purposes to dispose of an



approximate model which describes the non-linearity
and time-varying parameter with the operating
points. For these reasons in the literature an LPV
model that takes account all these properties is
proposed. This model is exhaustively presented and
explained in (Bolea,2004). In this case the quasi-LPV
model has a FOPDT structure, too
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where the parameters (theoretical steady-state gain,
k(u); time constant T(u), and delay vary with the gate
opening, i.e. with the operating mode).
The expressions of these previous parameters
(derived from hydraulic laws) are (for more details,
see (Bolea,2004))
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4. RESULTS OF CONTROL COMPARATIVE

To achieve comparable results between the control
methodologies proposed in Section 2, in the multi-
model GS PI pole placement method (Åström,1997)
is used in order to calculate the controller at each
operating point, then a test of quadratic stability by
LMIs (Tanaka,2001) is applied to guarantee the
stability for any variation of the parameters inside the
parameters space. For polytopic LPV GS PI
(Bolea,2005) the quadratic H∞ performance condition
through the Quadratic Real Lemma is used to
guarantee quadratic stability, control system
bandwidth and bounded control signal, and closed-
loop pole placement requirements by LMI regions
(Yu,2002).

The delay is handled using a Predictor Smith
configuration, and the theoretical steady-state gain is
compensated by a inverse factor k-1 (Åström,1997).

The control objective is to satisfy the water demand
from farmers (i.e. the discharge ydns). The desired

step response must fulfil the following specifications:
a damping factor of ζ ≥ 0.5 and a bandwidth
BW≤0.0025rad/sec.
The multi-model GS is obtained by the combination
of the PI controllers obtained at each operating point
using the interpolation weights presented in the Fig.3.

Fig.4. PI parameter values for: classical GS at each
operating point; and LPV GS at each bound parameter

space.

Table 2. PI parameter values

Classical GS (multi-model) LPV GS
Operating

point j Kp KI Kp KI

1 0.97 4.92 10-3

2 0.53 3.82 10-3 (Tmax): 0.31 (Tmax): 1.34 10-3

3 0.37 3.41 10-3

4 0.14 2.86 10-3 (Tmin): 0.15 (Tmin): 6.97 10-4
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Fig.5. Closed-loop simulation results for all operation
range and evolution of varying parameter T.

The LPV GS law is obtained using the algorithm
based on the computation of polytopic coordinates
described in Section 2.

The PI parameter values obtained by both methods
are shown in Table 2 and Fig.4. In these figure it is



shown the PI values obtained by multi-model GS and
by LPV model. It can be observed than these values
are practically equal than the parameter values
obtained by multi-model GS because the LPV canal
model and multi-model are very similar.

In Fig.5 the closed-loop results using both PI
controllers are represented. This test study is relevant
because the parameter T varies along of the all
operating range. It can be observed that the multi-
model GS provide results less conservative than LPV
GS, i.e. step responses faster (less bandwidth).

Besides for little gain openings we can see that this
former technique provides large overshoot in
comparison with the last technique due to two main
reasons: is less conservative and a zero is
incorporated in the closed-loop.

Both methodologies provide stability results for any
parameter variation. But, while LPV GS assures this
property just when the controller is computed in the
multi-model GS the quadratic stability of closed-loop
is checked after of calculating the controller by
stability theorem, using LMIs (Tanaka,2001).

5. CONCLUSIONS

In this paper a comparative study of classical multi-
model GS and LPV GS for an irrigation canal is
carried out considering PI controllers. They are
widely used in canal control because higher order
controllers are numerically more fragile and
computational demanding. The main conclusions
provided by this work are:
• The LPV GS produces more conservative results
than conventional GS. This is caused by the
assumption that the parameters vary arbitrarily fast,
the resulting synthesis inequalities become too large.
Then, the accuracy and the potentiality of LPV
models are not useful through advanced control
methods used for this technique.
• The LPV GS design the controller assure directly
the stability and performance for any parameter
variation inside the parameter space. On the other
hand, the global stability of multi-model GS is
guaranteed after calculating controller values. In this
case if the quadratic stability condition is not
fulfilled, it is repeated the computation of the
controller with more relaxed control objectives.
• The LPV model can be used in both LPV and
conventional GS. Notice that controller values
obtained by conventional GS techniques are
practically equal using LPV model and multi-model.
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