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Abstract: In this paper it is presented a procedure for closed loop controller
redesign using a relay based experiment. The present closed loop is evaluated
in relation to a symmetrical optimum design. The loop gain is estimated at
a few frequency points using an excitation derived from a relay experiment.
The controller is redesigned to yield some stability margin using a controller
procedure derived from the symmetrical optimum. Simulation examples illustrate
the properties of the design scheme. Copyright c©2005 IFAC
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1. INTRODUCTION

Techniques for identification and controller re-
design using closed-loop data are very attractive
to industrial applications. The closed-loop iden-
tification doesn’t cause stops in system opera-
tion unlike open-loop identification. Other reasons
which can be listed are demands on safety in pro-
cess operation, unstable processes and restrictions
in production. Its has also been argued that in
closed loop it is possible to obtain representative
restricted complexity process models which can
be used to redesign controllers such as PI and
PID (Hof and Schrama, 1995). This is justified as
the dynamics exhibited by the plant with the old
controller is relevant to the new controller design.

On the other side, there exists several PID con-
troller design procedures that do not use mod-
els, but the information of a few process trans-
fer function frequency points. The earliest one
is the Ziegler-Nichols frequency design technique
(Ziegler and Nichols, 1942) from which a several
technique have been derived. Usually, the infor-
mation is obtained from relay experiments, which

have proven to be very useful for process identifi-
cation and on-line controller tuning (Åström and
Hägglund, 1995).

When redesigning a controller, specially when us-
ing little information from the process transfer
function, it is important to evaluate the robust-
ness properties of the existing loop and to redesign
the controller leaving some safety margins for the
case of model errors. One common approach is to
evaluate the gain and phase margins and use the
information to redesign the controller as the one
presented in (de Arruda and Barros, 2003a). In
the present paper the controller evaluation and
redesign is based on the symmetrical optimum
technique (Kessler, 1958). This technique has ad-
vantages as robustness aspects (phase margin,
gain margin, sensivity, neglected dynamics), de-
sired closed loop characteristics and cover a large
domain of current, real applications. It received
some attention in recent years as it takes into
account the existence of fast dynamics lumped in
one pole. The pole is used as a limiting factor
for the crossover frequency, thus resulting in a
closed loop with some stability margin. The sym-



metrical optimum and a relay experiment have
been recently used in (Voda and Landau, 1995)
with good results, but in the context of open loop
experiment.

In this paper a technique for controller evaluation
and redesign based on the symmetrical optimum
controller design technique is presented. A relay
test applied to the closed loop is used to define
a periodic excitation reference signal. The closed
loop frequency response at a few points is es-
timated and the loop gain at those frequencies
is computed. The loop gain frequency response
variation between the estimated frequency points
is analyzed to determine the presence of unmod-
elled dynamics in a frequency interval. The new
crossover frequency is defined based on this infor-
mation and the controller is redesigned. Here, the
presentation is limited to the PI controller case,
however the procedure can be easily extended
to the PID controller case. Simulation examples
are used to illustrate the proposed closed loop
evaluation and closed loop design technique.

2. THE PROBLEM STATEMENT

Consider the closed loop shown in Fig. 1. The
process transfer function is given by G (s) while
the controller is given by C (s). The closed loop
transfer function from the reference signal r (t) to
the process output y (t) is

T (s) =
Y (s)
R (s)

=
L (s)

1 + L (s)
(1)

where L (s) = G (s)C (s) is the Loop Gain Trans-
fer Function.
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Fig. 1. The Closed Loop.

2.1 The Symmetrical Optimum Design

The symmetrical optimum design technique as-
sumes a simple model with two poles, at zero and
at ωΣ = −1/TΣ given as

GSO (s) =
K

s (s + 1/TΣ)
.

The model assumes a slow dominating dynamics
captured by an integrator and a pole at ωΣ

representing all fast dynamics, including time-
delays.

The PI controller, given by

CSO (s) =
Kp (s + 1/Ti)

s
,

is designed using the following equations

Kp =
2ωg

K
, Ti =

2
ωg

, ωg =
1

2TΣ
.

The resulting loop gain transfer function is

LSO (s) =
ωg (2s + ωg)
s2 (s + 2ωg)

.

The estimated pole is located at frequency 2ωg

while the controller zero is added at frequency
ωg/2. The resulting loop gain has a 20db/decade
asymptotic decay in the frequency range [ωg/2, 2ωg]
, with the gain crossover (unity loop gain) fre-
quency ωg. These characteristics result in good
robustness properties (see (Voda and Landau,
1995)).

The problem statement is: Given a closed loop
system, evaluate how the closed loop compares
to a symmetrical optimum design. If it is too
far, redesign the controller to approximately and
safely match the symmetrical optimum specifica-
tion. This is made comparing the present closed
loop gain crossover frequency to half of the esti-
mated transfer function pole.

3. THE RELAY BASED ESTIMATION

In this paper it is not desired to estimate a plant
model, instead only a few closed loop frequency
points are evaluated. The frequencies are the
gain crossover frequency and its second and forth
harmonics. The excitation is derived after a relay
experiment as described below.

3.1 The Relay Experiment

A basic procedure for the estimation of a general
frequency point of a given transfer function using
a relay feedback is presented in (de Arruda and
Barros, 2003b). The feedback structure applied for
loop transfer function estimation is presented in
Fig. 2. The conditions of the limit cycle operation
are defined by the following proposition.

Proposition 1. Consider the closed loop system
shown in Fig (2). Assume that for a stable closed
loop T (s) and a real positive number r, the
transfer function

F (s) =
2
r

T (s)
T (s)

(
1−r

r

)
+ 1

− 1 (2)

is also stable. Then if a limit cycle is present it
oscillates at a frequency ωo such that

|L (jωo)| ≈ r .



Proof. See (de Arruda and Barros, 2003b).

Fig. 2. Relay Closed Loop Experiment for Loop
Transfer Function Estimation.

Selecting r = 1, the current gain crossover fre-
quency ωg can be estimated. This estimate is
denoted ω̂g. In this case the scheme reduces to
the one presented in (Schei, 1992).

In order to estimate the loop gain at additional
frequencies 2ωg and 4ωg, an excitation signal is
composed with three square waves with the above
frequencies weighted by 0.4d, 0.3d and 0.3d
respectively, where d is the desired maximum
amplitude. This frequencies define the vector W =
{ωg, 2ωg, 4ωg} . One such example is shown in
Fig.3.

The loop gain transfer function at the chosen
frequencies is estimated using the DFT on the
reference yr and output signals y, computing the
closed loop gain Ti and then recovering the loop
gain (Li) using the loop equations

Li(jω) =
Ti(jω)

1 − Ti(jω)
.

.
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Fig. 3. The experiment. First a relay test is made
then the derived excitation is applied at the
setpoint.

3.2 The Fast Pole Estimation and Controller
Evaluation

The loop gain frequency response at the estimated
frequency points is analyzed to determine the
presence of the fast pole within the frequency
intervals defined by W. From the estimated loop

gain at those frequencies, it is possible to evalu-
ate in which interval the unmodelled pole ωΣ is
located using the following procedure.

In the symmetrical optimum design, between the
crossover frequency ωg and 2ωg the loop gain
shown asymptotically decay as a pure first order
system, that is, 20db/decade or 6db/octave. The
evaluation procedure is made taking into account
the contribution of a first order pole.

The true gain decay for a first order real pole
includes a discount of 3db at the pole location and
of 1db one octave higher. Using this information,
the contribution of a real pole to the magnitude
decay in the intervals [ωg, 2ωg] and [2ωg, 4ωg] can
be specified as:

Table 1. Contribution of the pole to the
magnitude decay within the intervals .

Pole [ωg , 2ωg] [2ωg , 4ωg ]

ωg 10 db 11 db
2ωg 8 db 10 db
4ωg 7 db 8 db

Based on the above data, two tests were de-
fined: the first analyzing the decay in the in-
terval [ωg, 2ωg] , and the second in the interval
[2ωg, 4ωg] . The first test uses the following rule:

Table 2. Magnitude decay of the inter-
val [ωg, 2ωg] related with the estimated

pole location.

Decay Range Estimated Pole Location (ω̂Σ )

≥ 11 ω̂g/2
[10,11) ω̂g

[8,10) 2ω̂g

[6,8) 4ω̂g

< 6 8ω̂g

The second test uses
Table 3. Magnitude decay of the inter-
val [2ωg, 4ωg] related with the estimated

pole location.

Decay Range Estimated Pole Location (ω̂Σ )

≥ 12 ω̂g/2
[11,12) ω̂g

[10,11) 2ω̂g

[8,10) 4ω̂g

< 8 8ω̂g

The estimated pole location ω̂Σ is chosen in a
conservative way as the smallest estimated pole
location obtained from the two tests.

It should be remarked that the technique can be
extended to evaluate the phase behavior, which
would allow one to estimate the contribution of
time delays, not considered in this paper.

In this paper the estimated pole is expressed as

ω̂Σ = 2αω̂g

with parameter α indicating the estimated pole
relative to the current crossover frequency ωg.



Then α can be calculated and be used in the
controller redesign procedure next.

4. THE CONTROLLER REDESIGN
PROCEDURE

The new crossover frequency is defined as ω′
g =

ω̂Σ/2 = αω̂g. The new controller zero is set at

ωz = ω′
g/2.

It should be noted that the pole estimation in in-
tervals results a more conservative new controller
than if the model is estimated as the symmetrical
optimum is used in the design because of the pole
location chosen as explained before. It should be
clear that the obtained controller is not a true
symmetrical optimum design.

In order to avoid the estimation of the process
gain, the new controller is designed as a modifi-
cation of the old controller. The process model is
assumed to be

GSO (s) =
K

s (s + 2αωg)
.

The old PI controller is given by

C1 (s) =
K1

p

(
s + 1/T 1

i

)
s

and the new PI controller

CSO2 (s) =
K2

p (s + αωg/2)
s

.

The gain K2
p can be computed noticing that from

the experiment

|GSO (s) CS (s)||s=jωg
= 1

and for the design

|GSO (s) CSO2 (s)||s=jαωg
= 1.

Equating the two equations, cancelling the process
gain K and solving for K2

p it yields

K2
p = 2K1

pα2

√(
2α
T 1

i

− ωg

)2

+
(

1
T 1

i

− 2αωg

)2

ωg (4α2 + 1)
.

5. SIMULATION EXAMPLES

In this section three simulation examples are
shown which illustrate the use of the technique.

5.1 Example 1

The process is given by

G (s) =
1

(10s + 1)(s + 1)

and the initial controller is

C1 (s) =
18.1246 (s + 1/2.1272)

s
.

With the estimates shown in table (4)

Table 4. Actual and estimated loop gain
transfer function points.

|L(j�)|(db) |L̂(jω)|(db)

ω1 0.1950 0.3112
ω2 -10.6955 -10.6955
ω4 -22.3471 -22.3471

one computes α = 0.5 and the new controller is

CSO2 (s) =
3.9149 (s + 1/3.3104)

s
.

The step responses and the loop gains for both
controllers are shown in Figures 4 and 5.
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Fig. 4. Step Responses 1
(10s+1)(s+1) .
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Fig. 5. Loop Gain Bode Diagrams 1
(10s+1)(s+1) .

Besides, the process does not contain an integrator
and the symmetrical optimum be formulated for
plants containing integrators, it is clear that the
robustness of the method had guaranteed a better
result to the step response test.



5.2 Example 2

The process now is given by

G (s) =
1

(10s + 1)(s + 1)2

and the initial controller

C1 (s) =
8.5491 (s + 1/4.8119)

s
.

With the estimates shown in table (5)

Table 5. Actual and estimated loop gain
transfer function points.

Redesign |L(j�)|(db) |L̂(jω)|(db)

ω1 -0.0166 0.1531
ω2 -11.6819 -11.3767

ω4 -26.8685 -26.4242

one computes α = 0.5 and the new controller is

CSO2 (s) =
2.0328 (s + 1/6.3025)

s
.

The step responses and the loop gains for both
controllers are shown in Figures 6 and 7.
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Fig. 6. Step Responses 1
(10s+1)(s+1)2
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Fig. 7. Loop Gain Bode Diagrams 1
(10s+1)(s+1)2

5.3 Example 3

The process is given by

G (s) =
1

(s + 1)4

and the initial controller

C1 (s) =
2.8955 (s + 1/4.6840)

s
.

With the estimates shown in table (6)

Table 6. Actual and estimated loop gain
transfer function points for the initial

system.

Redesign 1 |L(j�)|(db) |L̂(jω)|(db)

ω1 0.0701 0.2826
ω2 -14.2674 -10.4078
ω4 –34.6733 -25.6860

one computes α = 0.5 and the new controller is

CSO2 (s) =
0.7663 (s + 1/4.7110)

s
.

The closed loop is too slow as it can be noted in
Figure 8, so the procedure is repeated for this new
loop. With the estimates shown in table 7

Table 7. Actual and estimated loop
gain transfer function points for the re-

designed system.

Redesign 2 |L(j�)|(db) |L̂(jω)|(db)

ω1 2.4020 2.4050
ω2 -1.7640 -1.7281
ω4 -6.6553 -6.4807

now α = 2.0 and the new controller is

CSO2 (s) =
2.0007 (s + 1/7.0028)

s
.

The step responses and the loop gains for the three
controllers are shown in Figures 8 and 9.
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Fig. 8. Step Responses 1
(s+1)4 .

From the results it can be seen that the technique
have improved the stability of the close loop
system in both experiments.
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6. CONCLUSIONS

In this paper a controller evaluation and redesign
technique was presented. The closed loop is eval-
uated by estimating the loop gain response at
the crossover frequency and the two first even
harmonic frequencies. Then, using the loop gain
magnitude decay, the closed loop is evaluated in
a symmetrical optimum sense. The controller is
redesigned on a design procedure based on the
symmetrical optimum design, using an approxi-
mate and conservative evaluation of the fast pole.
Simulation examples illustrate the use of the tech-
nique.
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