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Abstract: We introduce a novel modelling framework for studying dynamics,
distributed control, and optimization of complex networks made up of chemical
processes. We are interested in developing self-organizing structures so that
stability and optimality follows as a consequence of how the networks are put
together and how they are connected with boundary conditions or other networks.
By considering only the topology of the system and basic conservation principles,
a result analogous to Tellegen’s Theorem of electrical circuit theory is produced.
Using this result and passivity theory, a network is shown to converge to a
stationary point when the flow relationships are positive. Also, under similar
conditions, it is shown that the network is self-optimizing in that the entropy
production is minimized. Copyright c©2005 IFAC

1. INTRODUCTION

By developing conditions under which a process
network is passive, we can show that either a
system is inherently stable or how to design an
effective control scheme to ensure stability. Pas-
sivity is also closely related to variational princi-
ples and can be used to demonstrate optimality.
Stability and optimality are important properties
to consider in a large scale integrated system like
a chemical plant.

Passivity theory traces its origins to electrical cir-
cuit theory; specifically the notions that circuits
with dissipative components were stable. Alonso
and Ydstie (Alonso & Ydstie, 1997) outlined the
conditions in which process systems have dissipa-
tive properties.

This theory could be applied to various types
of networked systems previously examined with
other methods, such as plant-wide (integrated)
process networks (Luyben et al., 1999), (Hangos
et al., 1999), (Gilles, 1998), (Kumar & Daou-

tidis, 2002), chemical reaction networks (Fishtik
et al., 2004), or biological networks (Majewski &
Domach, 1989), (Hatzimanikatis et al., 1996).

An important property of passivity is that in-
terconnections of passive subsystems result in a
passive overall system. Therefore, decentralization
of a much larger network into smaller, more man-
ageable subnetworks becomes feasible. Also, this
allows for the addition or substraction of various
parts of the network without necessarily having
to perform a stability analysis over the whole
network.

2. PROCESS NETWORKS

Consider a network as shown in Figure 1, rep-
resented by a graph, G = (F, P, T ). F , the set
of edges, represents flow of material and energy
amongst vertices and terminals. P , the set of
vertices represents elementary processes. T rep-
resents the set of terminals where the network is
integrated with the environment.



Fig. 1. A simple process network with four ter-
minals, ten flows (fourteen in the complete
network), and six processes, (nine in the com-
plete network)

A network is said to be a process network if the
following assumption holds true:

Assumption 1.
(i) The state of an elementary process j is defined
by the vector vj .
(ii) There exists a function, S(vj), called the en-
tropy, which is concave.
(iii) S(vj) is homogeneous of degree one (i.e.
λS(vj) = S(λvj)).
(iv) There exists at least one inventory, vi con-
tained in every v for which ∂S

∂vi
> 0.

The problem we consider is

(1) to establish conditions under which the pro-
cess network is passive and

(2) to establish a variational principle for process
networks

At each node, we define intensive potentials, w,
based on the entropy and extensive variables.

w =
∂S

∂v
(1)

From this expression and Assumption 1 (iii), we
develop another relationship:

Lemma 1. For an elementary process with en-
tropy, S, extensive variables, v, and intensive vari-
ables, w,

wT v = S (2)

vT dw = 0 (3)

Proof: Start by expanding the following partial
derivative using the chain rule:

∂S(λv)
∂λ

=
∂S(λv)
∂(λv)

∂λv

∂λ
(4)

From the homogeneity condition (Assumption 1,
(iii)), and the fact that neither S nor v are
functions of λ, Equation (4) is simplified to

S(v) =
λ∂S(v)

λ∂v
v

Fig. 2. Depiction of the mapping between intensive
variables, w, and extensive variables, v

The λ’s cancel out, and using Equation (1), Equa-
tion (2) follows. By taking the partial derivative of
both sides of Equation (2) with respect to v gives:

∂(wT v)
∂v

=
∂S

∂v
= wT (5)

Using the product rule, (5) is expanded to

wT + vT ∂w

∂v
= wT (6)

The wT ’s cancel, and Equation (3) follows, which
is the generalized form of the Gibbs-Duhem equa-
tion. 2

Note that the relationships in Equation (2) pro-
vide a mapping between solutions given in in-
tensive and extensive variables. For any elemen-
tary process in which the extensive variables are
known, the exact mapping to intensive variables
can be determined. However, if a set of intensive
variables are known, a range of extensive variables
can be determined. Therefore, for each phase in
the system, one extensive variable in addition to
the set of intensive variables must be known in
order to fully specify. This can be seen graphically
in Figure 2.

Let nt represent the number of terminals, np the
number of processes, nf the number of edges, and
n the number of distinct material components. At
each vertex and terminal in the network, a balance
of the extensive variables holds true so that:

dvj

dt
= pj +

nt+np∑

i=0,i6=j

fij , j = 1, ..., nt + np (7)

pj is the n + 2 vector of production rates (e.g.
changes in mass/energy due to chemical reaction)
at node j, and fij is the n + 2 vector of flows of
energy, volume, and mass from node i to node j,
and is equal to zero when no connection is defined.
Thus, there are no more than nf non-zero vector
flows in the network.

If we view the connection between any two nodes
as a one-dimensional segment (e.g. pipe) of length
Lij , then we can define a change in potential from
node i to node j as:



Wij =

Lij∫

0

(
∂w

∂x
)dx (8)

in which ∂w
∂x denotes the local gradient. By using

the fundamental theorem of calculus, Equation (8)
can be simplified to

Wij = wi − wj (9)

These potential differences, Wij , act as driving
forces that cause flow in the network. The actual
flows are given by constitutive relationships of the
form

f = Λ(u)W

where u is a control/optimization parameter and
Λ(u) is a matrix function.

Since the variables Wij are continuous, around
any closed loop we have

∮
(
∂w

∂x
)dx = 0 (10)

Equation (10) is analogous to Kirchoff’s voltage
law for electrical networks for a multi-component
system, while Equation (7) is analogous to Kir-
choff’s current law.

3. A TOPOLOGICAL RESULT

In this section, we develop a property of process
networks which only relies on topological prop-
erties. We also introduce the concept of network
operators, which allows us to generalize the topo-
logical result to cover a wide range of network
applications. For example, in the next section, we
use the generalized result to establish sufficient
conditions for the stability of process networks
using thermodynamics and passivity theory.

Lemma 2. For two process networks, (a) and (b),
with the same topology and (possibly) differing
operating conditions,

np∑

j=1

wbT
j

dva
j

dt
=

np∑

j=1

wbT
j pa

j + (11)

+
nf∑

k=1

W bT
k fa

k +
nt∑

j=1

wbT
j fa

j

Proof: Beginning with Equation (7) for each pro-
cess and terminal in network a:

dva
j

dt
= pa

j +
np+nt∑

i=0,i 6=j

fa
ij (12)

j = 0, ..., np + nt

In this equation, the flow from every other process
or terminal in the system into process or terminal

Fig. 3. A network showing the connections of the
terminals to a reference (ground) state.

j is considered. For most networks, especially very
large ones, most of these flows will be zero. Also,
it should be noted that we have an introduced
an extra node, indexed by 0. This node, which
satisfies Equation (7), considers the flow into or
out of the terminals from outside the network, as
shown in Figure 3. This node has a fixed reference
potential, assumed to be equal to zero. Next, by
multiplying equation (12) by the potential, wj of
network b gives

wbT
j

dva
j

dt
= wbT

j pa
j +

np+nt∑

i=0,i 6=j

wbT
j fa

ij (13)

j = 0, ..., np + nt

Taking the summation of Equation (13) over all
processes, terminals, and the zero node gives

np+nt∑

i=0

wbT
j

dva
j

dt
=

np+nt∑

i=0

wbT
j pa

j + (14)

+
np+nt∑

i=0

np+nt∑

i=0,i6=j

wbT
j fa

ij

Since no storage or production occurs at the ter-
minals, and that the potential of the zero node is
assumed to be zero, Equation (14) is simplified to
np∑

j=1

wbT
j

dva
j

dt
=

np∑

j=1

wbT
j pa

j +
np+nt∑

j=0

np+nt∑

i=0,i6=j

wbT
j fa

ij(15)

Using the fact that fij = −fji, and that flow
only occurs through connected nodes/terminals,
Equation (11) follows, where fa

k is the subset of
fa

ij made up of only positive internal flows. 2

For a steady state system with no terminals and
no production, Equation (11) implies that the
vector product of flows (f) and driving forces (W )
are orthogonal.

In order to facilitate further proofs, we introduce
the following definition:

Definition 1. Operators (Γv,Γf , ΓW ) are called
network operators provided Equations (7) and
(10) hold for the transformed variables, v̄ = Γvv,



f̄ = Γff , p̄ = Γpp, W̄ = ΓW W , and w̄ = Γww

Examples of acceptable network operators include
time-averaging with finite, moving window, dis-
counting with exponential, linear filters, Fourier
transforms, multiplication with constant matrices
and vectors and linear forecasts based on past
information.

Corollary 1. Since Lemma 2 is based only on the
topology of the system, with the conservation
equations (7),(10), transformed variables (v̄, W̄ ,
w̄, and f̄) can be substituted into Equation (11)
and the result holds true.

4. PASSIVITY

In order to show the stability of a process net-
work, we will exploit passivity theory (Byrnes et
al., 1991). A system with state x is passive if there
exists a positive semi-definite storage function, V ,
that satisfies the passivity inequality:

V (x(t)) ≤ V (x(0)) +

t∫

0

uT yds− ε0

t∫

0

xT xds (16)

with V (x) ≥ 0 if |x| 6= 0 and V (x) = 0 if |x| = 0. x
is the vector of states, u the vector of inputs, y the
vector of outputs, and ε0 is a positive constant.

In a process network there exists a natural storage
function based on the entropy. At each process
node we define a scalar storage function, g(v1, v2)
based on the potentials and inventories:

g(v1, v2) = (v1 − v2)T (w2(v2)− w1(v1)) (17)

This storage function provides a way to deter-
mine how far away one solution (v1, w1) is from
another (v2, w2). One solution could for example
be a stationary point or an oscillating solution.
Passivity would then address if the second solution
converges to the first. Defining deviation variables

v̄ =
(

v1

v2

)
w̄ =

(
w1 − w2

w2 − w1

)

Using these variables, Equation (17) can be re-
written as

g(v̄) = −w̄T v̄ (18)

Recall from definition (1, ii) that entropy is a
strictly concave function of v and from equation
(1) that the derivative with respect to v defines
the potentials, w. It can be easily seen that for
any pair v1, v2:

g(v̄) > 0 |w̄| 6= 0

and
g(v̄) = 0 |w̄| = 0

An overall storage function of the network, G(t)
is defined at time t as:

G(t) = G(v1(t), v2(t)) =
np∑

i=1

gi(v1, v2) (19)

Lemma 3. For a network in which the entropy
function, S(v), is concave then:

dG

dt
= −

nf∑

k=1

W̄T
k f̄k −

np∑

j=1

w̄T
j p̄j −

nt∑

j=1

w̄T
j f̄j (20)

Proof: Starting by taking the derivative of g(v̄)
which gives:

dg

dt
= −dw̄

dt

T

v̄ − w̄T dv̄

dt
(21)

From Equation (3), the first term in the RHS is
equal to zero. Therefore

dg

dt
= −w̄T dv̄

dt
(22)

By summing over all the nodes we get:

dG

dt
= −

np∑

i=1

w̄T
i

dv̄i

dt
(23)

By using Equation (11) and Corollary (1), Equa-
tion (23) can be rewritten as Equation (20). 2

If we assume

nf∑

k=1

W̄T
k f̄ +

np∑

j=1

w̄T
j p̄j ≥ ε0

np∑

j=1

w̄T
j w̄j (24)

and by integrating Equation (20), we get

G(t) ≤ G(0)− ε0

t∫

0

np∑

j=1

w̄T
j w̄j −

t∫

0

nt∑

j=1

w̄T
j f̄j (25)

If we set
w̄terminals 7−→ y

f̄terminals 7−→ u

w̄nodes 7−→ x

then the network is clearly passive. Note that
the mapping of control variables u and output
variables y can be interchanged, depending on the
desired output of the network. Inequality (24) is
true if the monotonocity relationships:

W̄T f̄ ≥ ε1W̄
T W̄ p̄T w̄ ≥ ε2w̄

T w̄ (26)

are satisfied and is further relaxed by using a
discrete form of the Poincaré inequality similar to
one given by Straughan (Straughan, 1992). Some
physical examples where the inequalities (26) hold
are given for electrical circuits by Penfield et al
(Penfield et al., 1970) and for reaction and diffu-
sion systems by Kreuzer (Kreuzer, 1981).



5. OPTIMALITY

Assume a network is characterized by a solution,
x∗. This solution fixes the flows between nodes,
f∗, potentials, w∗, (and consequently the poten-
tial differences, W ∗), the production rates, p∗,
and the inventories, v∗, all at each node. Using a
definition of entropy production given by Ydstie
(Ydstie, 2002), we have

σs =

f∫

0

W (f̂)df̂ +

p∫

0

w(p̂)dp̂ (27)

Given certain classes of constitutive relationships
defining flow and production rates based on poten-
tial differences and potentials, respectively, then
we develop following result.

Lemma 4. Supposing that the monotonicity rela-
tionships (26) hold, the solution of a network, x∗,
obeying balance equations (7),(10) compared to a
finitely perturbed network, x, minimizes entropy
production, as given by the following inequality

t∫

0

nf∑

k=1

αkdt +

t∫

0

np∑

i=1

βidt ≥ (28)

t∫

0

nf∑

k=1

α∗kdt +

t∫

0

np∑

i=1

β∗i dt

with

αk =

fk∫

0

Wk(f)df βi =

pi∫

0

wi(p)dp

Proof: We start by allowing the flows (within
the network), and production rates to differ from
those given by x∗ (at some time, t = 0), while
keeping the potentials and inventories (w∗, v∗ re-
spectively) fixed. These deviations in extensive
variables must still obey Equation (7). Equation
(11) for one network is
np∑

j=1

wT
j

dvj

dt
=

np∑

j=1

wT
j pj +

nf∑

k=1

WT
k fk +

nt∑

j=1

wT
j fj(29)

We define the time derivative of entropy S, using
the chain rule and Equation (1) to give:

dS

dt
=

dS

dv

dv

dt
= wT dv

dt
(30)

Substituting this into (29) gives
np∑

j=1

dSj

dt
=

np∑

j=1

wT
j pj +

nf∑

k=1

WT
k fk +

nt∑

j=1

wT
j fj (31)

Recalling from Corollary (1), that deviation vari-
ables can substituted into Equation (11), we define
the following deviation variables:

w̄ = w∗ W̄ = W ∗ f̄ = f − f∗

p̄ = p− p∗ S̄ = S − S∗

Substituting these into (31) and integrating gives

np∑

i=1

S̄(t) =

t∫

0

np∑

j=1

w̄T
j p̄jdt +

t∫

0

nf∑

k=1

W̄T
k f̄kdt(32)

+

t∫

0

nt∑

j=1

w̄T
j f̄jdt

Since the flows at the terminals are fixed, the last
term goes to zero, since f̄j = fj−f∗j = 0 at all the
terminals. From monotonicity relationships (26),
we have:

f∗∫

f

(W ∗ −W (f))df ≥ 0 (33)

p∗∫

p

(w∗ − w(p))dp ≥ 0 (34)

where W (f) and w(p) define potential differences
and potentials for which the flow/production is
equal to f or p as given by the constitutive
relationship (e.g. W (f∗) = W ∗).

Since W ∗ is constant, Equation (33) is rewritten
as

W ∗T (f∗ − f) ≥
f∗∫

f

W (f)df

and subsequently

W ∗T (f∗ − f) ≥
f∗∫

0

W (f)df −
f∫

0

W (f)df

Recalling the definition of α and deviation vari-
ables W̄ and f̄ this is simplified to

W̄T f̄ ≥ α∗ − α (35)

A similar transformation is performed on (34) to
give

w̄T p̄ ≥ β∗ − β (36)

Substituting (35) and (36) into (32) gives

np∑

i=1

S̄(t)i ≥
t∫

0

nf∑

k=1

(α∗k − αk)dt + (37)

t∫

0

np∑

i=1

(β∗i − βi)dt

Writing this in deviation form gives:

np∑

i=1

Si(t) +

t∫

0

nf∑

k=1

αkdt +

t∫

0

np∑

i=1

βkdt ≥



np∑

i=1

Si(t)∗ +

t∫

0

nf∑

k=1

α∗kdt +

t∫

0

np∑

i=1

β∗kdt (38)

Also, since the potentials and the inventories of
both the simulated and deviated networks are
the same at all times, we have S∗i = Si for all
i = [1, np]. Using this, we derive Equation (28). 2

Using the expression for entropy production,
Equation (27), this can be interpreted to show
that the entropy production of the whole network
over time t = [0, t] will never be less in a deviated
network compared to the network governed by
solution, x∗. Also, we could easily show a similar
result by fixing the flows and varying the poten-
tials within the network.

6. CONCLUSIONS

A modelling framework has been developed to
describe complex networks of chemical processes.
The framework is based largely on fundamental
ideas from thermodynamics, including the use of
an entropy function, as well as flows or production
of extensive variables based on potentials or po-
tential differences. Using a storage function based
on entropy is used to develop passivity of the net-
work. By establishing passivity, a network can eas-
ily be stabilized using feedback control. Also, for
finite perturbations in flows and production rates,
it was shown that the network that obeys the
constitutive laws will never have a higher entropy
production than the deviated network. These two
properties (passivity and optimality) were demon-
strated in two examples. Another example was
used to illustrate a sufficient condition for both
the optimality and passivity results. Some pos-
sible applications include plant-wide control, real
time process optimization, bio-chemical metabolic
networks, and supply chain management.
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7. NOMENCLATURE

np - the number of processes in the network
nt - the number of terminals in the network
nf - the number of flows between processes and/or
terminals
fij - the vector containing flows from node or
terminal i to node or terminal j
fj - the vector containing flows into (positive) or
out of (negative) terminal j
wj - the vector of potentials at node or terminal j
Wk - vector of potential differences for connection
k
pj - production vector at node or terminal j

vj - inventory vector at node or terminal j
Sj - Entropy at node or terminal j
σs,j - Entropy production at node or connection j
Λ - Diffusivity coefficient matrix
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