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Abstract: An extended model for networked control systems is developed by
integrating a networked control systems and a communication network model.
This results in a deterministic switching system.
Stability analysis of the integrated system is then investigated using switched
system theory. Specifically, sufficient conditions for global exponential stability
of the systems are given in terms of plant and network dynamics. A simulation
example is presented to study the properties of the extended networked control
systems. Copyright c©2005 IFAC
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1. INTRODUCTION

The problem of networked control systems (NCS)
deals with the possibility of controlling a system
via a communication network and as such, instan-
taneous and perfect signals between controller and
plant may no longer be achievable (see Figure
1). This casts classical control problems into a
setting that provides control solutions to remotely
located systems such as: assembling space struc-
tures, exploring hazardous environment, execut-
ing tele-surgery, and many others. The network
however introduces delays, packet losses that de-
grade the performance of the system and possi-
bly destabilize it; furthermore, the limited band-
width of the network compromises our otherwise
achievable control objectives. In existing studies in
this area (Ling and Lemmon, 2003; Montestruque
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Fig. 1. Networked Control System.

and Antsaklis, 2001; Montestruque and Antsak-
lis, 2003; Teel and sicć, 2003) the packet dropout
is modeled as a random or deterministic variable
independent to the network dynamics.

On the other hand communication networks and
their complex dynamics have been studied by
several researchers, (Ying et al., 2004; Srikant,
2000; Low et al., 2002) in fact, due to the Internet
growth in size and complexity, and with the ad-



vent of industrial networks, an understanding of
the organization and efficiency of communication
networks has actually become necessary.

Although NCS and communication network dy-
namics are separated into two different areas of
study, they are tightly coupled. It is then reason-
able to give shape to this virtual link, by studying
the effects communication network dynamics have
on the performance of NCS and vice versa.

In this paper we propose a model for deterministic
packet dropout in a networked control system in
which the dynamics of the communication net-
work appear explicitly, thus achieving a connec-
tion between both areas. This will actually allow
us to use the congestion controller of the commu-
nication network to help in achieving the goals of
the networked control system.

In Section 2, we review the various NCS concepts
(Azimi-Sadjadi, 2003; Zhang et al., 2001; Bran-
icky et al., 2000; Seiler and Sengupta, 2001) and
describe a model for packet dropout based on the
analysis of congestion control proposed in (Low et

al., 2002). In Section 3, a model for a congestion
control network is presented (Walsh et al., 2002).
Then in Section 4, we merge the two models of
Sections 2 and 3 leading into a complete system-
network-controller model. In Section 5 an analysis
of the combined model is developed by using the
framework of switched systems theory. Finally we
present in Section 6 simulation results to illustrate
the viability of our approach.

2. PROBLEM FORMULATION AND NCS
MODEL

Consider the networked control scheme from
(Zhang et al., 2001) depicted in Figure 2. For
the remainder of this paper, the plant is a lin-
ear discrete-time system, with sampling time h
( from now on we will assume for simplicity to
be h = 1). It is assumed that the state is avail-
able for measurements. The network is placed
between the sensors and the controller, while the
signal between controller and actuator is directly
connected. The network is initially modeled as a
two-state switch: whenever a state sent across a
network is received, it is used for feedback by the
controller, and is placed in a buffer. In the case
where the state is not received (i.e. dropped by
the network), the earlier state value in the buffer is
used for feedback. The dynamical model for such
a system is thus:

x(k + 1) = Ax(k) + Bu(k) (1)

x̄(k) = θkx(k) + (1 − θk)x̄(k − 1)

u(k) =−Kx̄(k).

In the above model θk ∈ {0, 1} is called a
receiving sequence and indicates the reception
(θk = 1) or the loss (θk=0) of the packet con-
taining the state measurement at time-step k,
x(k). We assume that at each time k, a state
is sent across the network in one packet, but
will re-visit this assumption in our example. We

x(k + 1) = Ax(k) + Bu(k)
x(k)

x̄(k)

θk

−K

Fig. 2. Networked Control System Model.

then consider the augmented state vector z(k) =
[xT (k) x̄T (k)]T , for which the closed-loop system
affected by packet dropout evolves according to:

z(k + 1) =

[

A −BK
Aθk I − (I + BK)θk

]

z(k) (2)

which can be rewritten as a discrete-time switched
system

z(k + 1) = Ãθk
z(k) (3)

where the receiving sequence θk represents the
switching signal, so that whenever a packet is
received the following subsystem is activated

Ã1 =

[

A −BK
A −BK

]

. (4)

Since the matrix Ã1 is Schur stable, by the as-
sumption that the system is closed-loop stable in
the case of available full information, the corre-
sponding subsystem is stable. Whenever a packet
(a state measurement) is dropped, we have the
following subsystem:

Ã0 =

[

A −BK
0 I

]

(5)

in which the matrix Ã0 is Schur unstable and
therefore, in the case of dropped packets, the
resulting subsystem is unstable.

We have not yet provided any specifics about the
switching signal, which is the receiving sequence
θk. In particular, the switching rate is not constant
as is assumed for example in (Zhang et al., 2001).
In what follows, we discuss in detail how θk,
the switching variable, is driven by the network
dynamics, and in fact by relating the switching
signal to the network’s dynamics, we are able
to provide a complete model of the system once
connected through the communication network.



3. INTERNET CONGESTION CONTROL
ANALYTICAL MODEL

After the problem description from the NCS point
of view, we now move on the communication net-
work side to describe its dynamics and how they
affect link congestion and therefore the dropping
sequence in a NCS connected to such network. We
describe an analytical model for a communication
network developed in (Low et al., 2002), in par-
ticular we discretize the continuous-time model by
using a sampling time T = 10−8sec.

In (Low et al., 2002) the network is modeled
as a dynamical system and the congestion con-
trol problem is reformulated as an optimization
problem. Two main aspects of congestion control
are highlighted; first the characterization of the
equilibrium conditions from the point of view of
fairness, efficiency in resource usage, the depen-
dence on network parameters, etc. Second, the
stability of the equilibria is studied in terms of
performance metrics such as speed of convergence,
capacity tracking, etc.

A network is modeled as a set L of Nl links with
finite capacities c = (cl, l ∈ L). They are shared by
a set S of Ns sources, some of which may be plants
to be controlled. Each source i uses a set Li ⊆ L
of links to transmit data. The sets Li define an

Nl × Ns routing matrix Rli =
{ 1 l ∈ Li

0 l /∈ Li
.

Each source i has an associated transmission rate
ri(k); the set of transmission rates determines the
aggregate flow at each link by yl(k) =

∑

i Rliri(k).

In this study we neglect any transmission delays
between the system and its controller. We assume
each link has a capacity cl packets per second.
The next step is to model the feedback mecha-
nism that communicates to sources the congestion
information about the network. The key idea in
this line of work is to associate with each link l
a congestion measure pl(k), called price, which is
a positive real-valued quantity. The fundamental
assumption made is that sources have access to
the aggregate prices of all links in their route,
that is qi(k) =

∑

l Rlipl(k). In order to specify the
congestion control scheme, it is necessary to define
how the sources adjust their rates based on their
aggregate prices and how the links adjust their
prices based on their aggregate rates. For more
detail about the algorithms the reader can refer to
(Low et al., 2002). At the source side, it is possible
in general to postulate a dynamic model of the
form ri(k + 1) = TGi(qi(k)) + ri(k). Similarly, at
the link level it is possible to postulate a dynamic
law

vl(k + 1) = THl(yl(k), vl(k)) + vl(k) (6)

pl(k + 1) = TKl(yl(k), vl(k)) + pl(k). (7)

The key restriction in the above control laws is
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Fig. 3. Communication Network Dynamics.

that they must be decentralized, i.e., sources and
links may only have access to their local informa-
tion. The overall structure of the congestion con-
trol system is now depicted in Figure 3, where the
diagonal structure of the source and link matrices
enforces the decentralization requirement.

We take source rates as the primal variable r and
link loss frequencies as prices p. We then recall the
Reno average model (Low et al., 2002)

ri(k + 1) = T
1 − qi(k)

τ
−

1

2
qi(k)ri(k)2 + ri(k)

where τ is the transmission delay that we consider
negligible (τ ≈ 0.0001). We model queues as inte-
grators to obtain simple models of loss frequen-
cies. Let bl(k) denote the instantaneous queue
length at time k; its dynamics is then modeled
by

bl(k + 1) =

{

T (yl(k) − cl) + bl(k), bl(k) > 0
T max{0, (yl(k) − cl)} + bl(k),

bl(k) = 0

The averaged queue length can be modelled as
al(k+1) = −Tαlcl(al(k)−bl(k))+al(k), for some
constant 0 < α < 1. Given the average queue
length al(k), the marking (or dropping) frequency
is given by a static function

pl(k) =

{

0, al(k) ≤ b
l

ρl(al(k) − b
l
), b

l
≤ al(k) ≤ b̄l

νlal(k) − (1 − 2p̄l), b̄l ≤ al(k) ≤ 2b̄l

1, al(k) ≥ 2b̄l

where (b̄l, bl, p̄l) are RED parameters and ρl =
p̄l

b̄l−b
l

, ηl = 1−p̄l

b̄l

. We remark again that the

preceding analysis refers to the averaged model
of TCP. With the described network, and for
continuous time dynamics as proven in (Low et

al., 2002), the sources and links adjust their rates
and prices respectively in order to achieve the op-
timal equilibrium point at which no packet drop-
ping occurs. A question arises whether this equi-
librium is still valid in the case an external greedy
source (such as a plant to be controlled), con-
sidered as a perturbation, uses the links without



participating to the “game of optimization”, i.e.
affect the links prices without modifying its rate as
the price increase. We thus introduce in the set of
sources, the plant to be controlled assuming that
it is the greedy source. In particular the model
is modified by replacing yl(k) with yT (k), where
yT (k) = yl(k) + rgs(k), in which rgs is the rate
of the greedy source. We can infer from the above
setting that a link is congested and therefore a
packet is dropped at time k, if the instantaneous
queue length bl(k) in a link become greater than
the queue capacity b̄l, where the instantaneous
queue length bl(k) = f(cl, bl(k−1), yl) is function
of link capacity, length at previous step time, link
price and cumulative sources rates, which on the
other side is function of link prices at previous
steps.

4. NETWORK-CONTROL SYSTEM
CONNECTED VIA COMMUNICATION

NETWORK

We explored both NCS side and communication
network side. Now equipped with this framework
we want to study how the loss of packets on the
network side affects the stability of the overall
system. In particular this will allow us to explicitly
relate the stability of the system to the capacity of
the links involved in the path used by the system,
and to the rate of the sources that are accessing
such a path. This relation gives us the possibility
of designing for the stability of the system by
controlling the rate of the sources accessing the
path.

Let (L, S) be a network in which each source si

has an associated rate ri(k) that is a function of
time at which it sends packets trough a set Li ⊂ L
of links. So through every link lj a cumulative that
is the sum of all the rates of ns sources is given by
yl(k) =

∑ns

i=1 ri(k). The cumulative rate at each
link yl(k) affects the queue length bl associated
with each link. A link has a limiting capacity and
a queue of limited length beyond which it will
drop packets. In particular there is a critical queue
length bl above which the link will accommodate
packets, and below which it will start dropping
them. The packet drop will be modeled by the
binary value variable θk, as discussed earlier. In
particular we have that at every time k

θk =

nl
∏

l=1

[

sign(bl − bl(k)) + 1

2

]

(8)

where the function sign : IR → {−1, 1} is defined

as: sign(a) =
{

1 a ≥ 0

−1 a < 0
.

We therefore have θk = f(b̄l, bl). With the pro-
vided framework we are now able to study the

x(k + 1) = Ax(k) + Bu(k)
x(k)

x̄(k)
−K

Fig. 4. NCS connected to a communication net-
work.

stability of the following linear time varying sys-
tem (Figure 4):

z(k + 1) = Ãz(k) (9)

where

Ã11 = A, Ã12 = −BK

Ã21 = A

[

nl
∏

l=1

[

sign(bl − bl(k)) + 1

2

]

]

Ã22 = I − (I + BK)

[

nl
∏

l=1

[

sign(bl − bl(k)) + 1

2

]

]

where bl(k) are the instantaneous queue length.
This model of NCS is a discrete-time, time-
varying dynamical system that incorporates the
system state, and the network dynamics ci(k), rj(k).
The network is therefore an integral part of the
overall system, therefore achieving our modeling
goal.

5. STABILITY ANALYSIS FOR
INTERCONNECTED

NETWORKED-CONTROL SYSTEMS

We now proceed to study stability of the system
(9), by using a framework from switching system
theory. Consider the switching system (3), in
which θk : N

+ → {0, 1} is the switching signal, Ai

are constant matrices of appropriate dimensions
denoting the subsystems (5) and (4), in section 2.

Definition 1. (Zhai et al., 2001) The system (3)
is said to be globally exponentially stable, with
stability degree λ < 1, if for all k ≥ 0 and a
constant c satisfy ||x(k)|| ≤ cλk||x0||.

N

Since the two matrices Ã1, Ã0 are Schur stable
and unstable respectively, then for 0 < λ1 <
1, λ0 ≥ 1, h0, h1 and for all k ≥ 1 the following
conditions hold

||Ãk
0 || ≤ h0λ

k
0 , ||Ãk

1 || ≤ h1λ
k
1 . (10)

We consider the total activation time of the
unstable and stable system and denote them



K+(k), K−(k) respectively, then for the network
dropping sequence we have that:

K+(k) =
k

∑

j=0

[

1 −

nl
∏

l=1

[

sign(bl − bl(j)) + 1

2

]

]

K−(k) =

k
∑

j=0

nl
∏

l=1

[

sign(bl − bl(j)) + 1

2

]

. (11)

Also denote with Nθ(0, k), the number of switches
in the interval [0, k) where

Nθ(0, k) =

k
∑

j=0

|θj − θj−1|. (12)

and the average dwelling time τa as the average
interval between any two consecutive switching
times.

Definition 2. (Zhai et al., 2001) Consider the
switching system (3), in which the subsystems are
such that (10) holds. We say that the switching
law θk belongs to class SW [τ∗

a ] if for λ ∈ (λ1, 1)
the following conditions are satisfied

• infk>0
K−(k)
K+(k) ≥ lnλ0−lnλ∗

lnλ∗
−lnλ1

, λ∗ ∈ (λ1, λ)

• The average dwelling time τa ≥ τ∗

a

N

Next we give sufficient condition for global expo-
nential stability of the switching system (3), in
term of network dynamics.

Theorem 1. (Zhai et al., 2001) Consider the discrete-
time switching system (3) with switching law (8),
then for any λ ∈ (λ1, 1), the system is globally ex-
ponentially stable with stability degree λ if there
exists a constant τ∗

a < ∞, such that the switching
law θk ∈ SW [τ∗

a ].

The proof for the generalized case of multiple
subsystems can be found in (Zhai et al., 2001).
The main idea in the theorem is that the switching
system will be stable if the switching is sufficiently
slow and the total activation time of the stable
system is sufficiently large with respect to the
unstable one.

6. SIMULATION RESULTS

For our simulation we consider the feedback linear
system.

A =





−1 0 0
1 −3 7
3 −7 9



 , B =





1
7
3



 (13)

K = [−0.3846 0.8671 − 0.3283].(14)

Link capacity cl = 9 [packets/sec]

Maximum queue length bl = 50[packets]

Maximum average queue length b̄l = 550[packets]

Minimum price p̄l = .1

Weight for queue averaging α = 10−4

Number of Sources/ Links Ns = 50, Nl = 10;

Table 1. Network parameters.

For the network we consider the parameters de-
scribed in table 1

At each link we associate a set of sources following

law for the routing matrix Rl,i = (1+sign(i−l))
2 .

The initial conditions for queue length, average
queue length, and initial prices for each link are:
bl(1) = 0, rl(1) = 0, pl(1) = 0.5. For the provided
network setting the resulting dropping sequence
satisfy the conditions of theorem 1 on the average
dwelling time with τ∗

a = 3 and total activation
time of the stable and unstable system. After
modifying the conditions on the initial rate and
introducing a greedy source the conditions will
no longer be satisfied. We will be operating at
a sampling time T = 10−8sec. In order to model
the rate for the greedy source, we consider that
in a typical TCP protocol a packet in general
contains 20 bytes for TCP address, 20 bytes for
IP address, and 8n bytes of data, where n is the
number of data to be included in a packet. We
then conclude that a packet contains 40+8n bytes.
Assuming that we are sending at a rate of 60,000
bytes per second, we can then send 1,000 packets
per second.

In the first experiment we assume the “greedy
plant” is sending at a slow rate of rgs =
50 [packets/s], through the network, while send-
ing the rest of its data across a secure chan-
nel. Also, assume each of the remaining sources
is sending at an initial rate of ri(1) = 60, 000,
i = 1, . . . , ns. We plot the plant’s state versus
time. As we see in Figure 5, the greedy source
does not affect the traffic in any significant way
and the overall system remains stable.
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Fig. 5. NCS stabilized across a network with optimal
configuration, no loss of information and rgs = 50.

We repeat the experiment while increasing the
greedy source rate to rgs = 60, 000, and as we see



in Figure 6 the system is no longer stable due to
the fact that the network starts dropping packets
because of the excess traffic.
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Fig. 6. NCS stabilized across a network with optimal

configuration, loss of information and rgs = 60, 000.

Finally, we consider again the case of a source
sending at a rate of rgs = 50 but allow the sources
involved in the optimization problem to start with
a rate ri(1) = 1, 000. In Figure 7, we observe that
the system goes unstable due to the fact that the
network cannot reach the stable equilibria because
of the initial excess in the sources rates.
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Fig. 7. NCS stabilized across a network with optimal
configuration, no loss of information and rgs = 50,

ri(1) = 10, 000.

We then conclude that the stability of the system
is sensitive to the loss of information. Moreover,
the network stability is sensitive to the intrusion
of external sources that affect the traffic without
regulating their rate. The network stability is also
sensitive to the initial sources rate.

7. CONCLUSION

In this paper we presented a NCS model affected
by packet dropping, in which the communication
network is explicit in the model. The model pro-
vides for the first time a study of the combined
effects of the congestion controller and of the net-
worked control system. We are currently studying
the effects of time delays in combination with the
packets dropping.
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