
A MONITORING APPROACH FOR DISCRETE
EVENT SYSTEMS BASED ON A TIME PETRI

NET MODEL

Mohamed Ghazel ∗ Armand Toguyéni ∗
Michel Bigand ∗∗

∗ Laboratoire d’Automatique, Génie Informatique et Signal
∗∗ Équipe de Recherche en Génie Industriel

École Centrale de Lille, BP 48, 59651 Villeneuve d’Ascq,
France

Abstract: We develop in this paper a monitoring approach for Discrete Event
Systems (DES) starting from a time Petri net model representing the a priori
known behavior of such a system. The originality of our approach lies in the
combination made of the concept of event observability with the exploitation of the
temporal constraints on these events in order to refine the result of the monitoring
process. Copyright c©2005 IFAC

Keywords: Monitoring, diagnosis, time Petri nets, discret event system, time.

1. INTRODUCTION

In this paper, we propose a monitoring approach
to be applied to Discrete Event Systems (DES)
for which one knows the behavior a priori. This
behavior is represented by a Time Petri Net model
(TPN hereafter). In addition, the events which
can occur are of two types: observable and un-
observable. Our objective here is to develop a
method which allows filling up this partial ob-
servability on the system in order to track online
its state and to identify the events which occur.
That will mainly enable to monitor the system by
discerning online possible failures. The monitoring
approach that we propose uses first the observ-
able events to estimate the states the system can
assume. We exploit thereafter the temporal con-
straints on the events in order to refine the results
of the estimation.
The paper is organized as follows: In section 2,
we present the Time Petri Net formalism. A rep-
resentation of the state of such model is also
proposed. Section 3 is dedicated to the discussion
of the Enumerative Approach, a reachability anal-

ysis method for TPNs, and in the fourth section
we present our monitoring approach. Finally, we
conclude the paper and we present the prospects
of this work in the last section.

2. TIME PETRI NET: PRESENTATION -
ANALYSIS

2.1 Definition

Let T ⊂ Q+ be a temporal field, a Time
Petri Net (Merlin, 1974) on T is a 6-tuple
N =< P, T, B, F, M0, SIM > such that:

• N =< P, T,B, F, M0 > is a marked Petri Net
(PN), (B = backward and F = forward),

• SIM : T → T × T∞ is the Static Interval
Mapping, which associates to each transition
in T its static firing interval, with rational
bounds of firing (as T ⊂ Q). We say here
static firing interval, because when studying
the dynamics of the TPN, these intervals will
then evolve and one would then speak about

dynamic firing interval.
For t ∈ T such that SIM(t) = [α, β], t can
fire only when it remains enabled between α
and β t.u (time unit), and must fire if it stays
enabled during β t.u.

2.2 State of a Time Petri Net

The state of a given TPN can be represented
by a pair E = (M, I), where M is the marking
of the net, and I is the firing interval mapping
which associates to each transition t in T its firing
temporal interval. The initial state is defined by
E0 = (M0, I0), where M0 is the initial marking
and I0 is the mapping associating to each tran-
sition enabled by M0 its static firing interval,
and the empty interval for all other transitions.
Formally I0 is defined by:

I0(t) =
{

SIM(t) if ∀ p ∈ P : M(p) ≥ B(p, t)
∅ otherwise

Since time is continuous, and as each enabled
transition can fire at any time during its firing
interval, it becomes impossible to enumerate all
states of a TPN, as opposed to the case of usual
PN with a finite number of markings. In this case
the set of states can be represented by the marking
graph. In other terms, and according to the firing
rules discussed in section 2.2, each state can have
an infinity of successor states, except for the par-
ticular case where the interval [0,∞[is associated
to each transition of the net. The TPN in this
case is in fact equivalent to the usual PN obtained
by removing the firing intervals associated to the
transitions.
To have an idea on the semantics and the ex-
pression capacity of TPNs, the reader can refer
to (Diaz and al., 2001).

3. BEHAVIOURAL ANALYSIS -
REACHABILITY ANALYSIS BY THE

ENUMERATIVE METHOD

3.1 Introduction

In order to obtain a finite representation of the
states of a TPN, (Berthomieu and Menasche,
1982) proposed the concept of State Class. This
concept represents the base of the enumerative
method of reachability analysis in TPNs which
will be discussed in paragraph 3.4.

3.2 Definitions

As explained in section 2.2, a state of a TPN is a
pair E = (M, I), M being the current marking of

the net, and I the firing interval mapping. A more
convenient representation which replaces I by the
Firing Domain D (see Definition 1 hereafter)
is defined in (Berthomieu and Menasche, 1982),
(Diaz and al., 2001):

Definition 1. For a state E, let Te = {ti/ M ≥
B(ti)} be the set of enabled transitions. The Fir-
ing Domain D is the set of vectors solutions of
the system of linear inequations in τi (possibly
parameterized), where τi represents the relative
firing date of transition ti.
In the vectors of D, the ith component corre-
sponds to the τi variable. Note that the system
of linear inequations on τi variables for which D
is a solution, can be written in the form A.t ≤ b
(Aspvall and Shiloach, 1980), where t is the vector
whose components correspond to τi variables.

Definition 2. A Dated Firing Sequence
(DFS) (Diaz and al., 2001) is a pair (s, u), where
s is a realizable firing sequence of transitions
(s ∈ T ∗), and u is the sequence of firing dates
of the transitions in s. Here s is called the Firing
Support of the DFS (s, u).

3.3 State class

State classes bring a generalization of the notion
of the TPN state. Indeed, instead of considering
the state reached by the net from its initial state
following the occurrence of a DFS (s, u), a state
class represents all states reachable from the con-
sidered initial state following the occurrence of all
DFSs which have as firing support s.
Thus, a state class is associated to a realizable
firing sequence from the initial state.
More explicitly, a state class C associated to a
realizable firing sequence s is the pair (M, D),
where M is the marking obtained after the firing
of s starting from the initial state, and D is the
firing domain of all reachable states, starting from
the initial state, by the realization of all achievable
DFSs having as firing support s. In the rest of this
paper, we will use the term ’class’ to indicate a
state class.

3.4 Reachability search by the enumerative method

In this section, we will discuss the rule of tran-
sition between classes, as well as the steps to be
followed to obtain the graph of classes of a given
TPN.

3.4.1. rules of firing Let N = < P, T, B, F, M0,
SIM > be a TPN, and ti ∈ T .
ti is firable starting from a given class C = (M,D)
iff:

(1) M ≥ B(ti).
(2) (a) A.t ≤ b.

(b) τi ≤ τj ∀ i 6= j.

The first condition (1) is the usual firing condition
in PNs. Conditions (2.a) and (2.b) translate the
fact that the firing domain is respected, and that
ti can be fired first among all enabled transitions.

3.4.2. Transition between classes (Berthomieu
and Menasche, 1982), (Diaz and al., 2001)
Consider that starting from a given class C =
(M, D), the system state reaches the class C ′ =
(M ′, D′) following the firing of the transition ti,

(1) The new marking M ′ is determined as in
usual PNs: M ′ = M −B(ti) + F (ti).

(2) The new firing domain D′ is determined
starting from the linear system A.t ≤ b of
D, according to the following algorithm:
(a) Conditions (2.b) quoted in 3.4.1 are

added to the linear system A.t ≤ b.
(b) All variables τj associated to transitions

tj in conflict with ti are dismissed from
the system.

(c) Each variable τk / k 6= i is replaced by
the sum τi + τk. Then, τi is eliminated
from the system.

(d) For each transition tl newly enabled (by
M ′), a new variable τl framed by the
bounds of the static firing interval of tl
is introduced to the linear system.

4. DEVELOPMENT OF A MONITORING
APPROACH BASED ON THE GRAPH OF

CLASSES

4.1 Introduction/Problematic

The objective of our approach is to determine
the state of the system, starting from some given
dated occurrences of observable events. In addi-
tion the approach attempts to find the scenarios
(of events) which could make the system evolve
from a starting state to its current state deter-
mined while applying the approach (following the
occurrence of the last observable event). Con-
cretely, the approach uses a TPN model of the
system, which specifies the normal and abnormal
(or failing) behaviors of the system. In this model,
each transition corresponds to a different event.
Let us denote To the set of transitions correspond-
ing to observable events, and Tun the set of those
corresponding to unobservable events.
The method to obtain the behavioural model of
the system is out of the scope of this paper.

4.2 Principle

4.2.1. Introduction This section presents the
principle of our monitoring approach as well as
the various steps to follow in order to implement
this approach. The goal is to determine the state
of the system, starting from the timed occurrences
of observable events. For that, a tool allowing to
estimate the system state is devised. Let us call
this tool Estimator (do not confuse with the
notion of Estimator as defined in the continuous-
Automatic field).
Moreover, additional methods and algorithms al-
low refining the result (estimation) provided on
the basis of the estimator, by exploiting the tem-
poral constraints related to its states. Indeed, this
information is used to decrease the number of
possible evolution scenarios in the system starting
from its last determined state. We will next dis-
cuss the various stages to obtain our Estimator.

4.2.2. Building the graph of classes The steps
to follow in order to obtain the graph of classes
were explained in paragraph 3.4.2. However, a
condition must be checked at this stage. Indeed, in
order to be able to work out the graph of classes
of our TPN model, the number of classes must
be finite. Several research tasks relating to the
property analysis of TPN models were undertaken
(Diaz and al., 2001), and some theorems were
proven. The theorem which interests us most is
the following:

Theorem. The number of classes of a Time Petri
Net is finite if and only if this net is bounded.
Moreover, many other theorems that propose suf-
ficient conditions for the bounded property have
been developed. These theorems with their proofs
can be found in (Diaz and al., 2001).

4.2.3. Elaboration of the Estimator The idea
to use an estimator in the evaluation of the sys-
tem state was inspired from the research works
of Lafortune and Sampath (Lafortune and Sam-
path, 2000), (Sampath et al., 1996) who work
out Diagnosers for DESs starting from event
models. (Ushio et al., 1998) propose also to build
observers based on PN models in order to monitor
DESs. Here we exploit in addition the temporal
information through methods we develop in order
to refine the monitoring results.
In fact, our Estimator is a graph similar to the
graph of classes, except that the transitions be-
tween its nodes are done by transitions which
correspond to observable events (transitions in To)
only. Also the nodes of the Estimator correspond
to macro-states that could contain several classes.
In order to be able to build our Estimator, we
define a set of mappings on the set C of classes:

• The transition mapping, which manages the
transitions between the classes:
f : C × T ∗ −→ C
Let ci and cj be two classes in C, and s a
transition sequence in T ∗:
f((ci, s)) = cj iff s connects ci to cj in
the graph of classes. This mapping verifies:
f((x, st)) = f((f((x, s)), t))

• The mapping of unobservable reachability
UR, which enables to find the set of classes
reachable, from a given class c, after the firing
of all unobservable sequences (sequences of
T ∗un) which are realizable starting from c.
UR : C −→ P(C)

ci 7−→ UR(ci) = {cj ∈ C / ∃ s ∈
T ∗un, f((ci, s)) = cj}

P(C) being the set of partitions of C.
We will explain now how to obtain the nodes of the
estimator. The initial node N0 in the Estimator
contains the initial class c0 as well as the set of
classes reachable starting from c0 after the firing
of a sequence of T ∗un. The set of classes of N0 can
so be represented by: {c0} ∪ UR(c0).
The set of nodes of the Estimator is obtained by
following the algorithm below:

(1) For each class ci of N0, find in the graph of
classes the set T ci

obs−next of transitions corre-
sponding to observable events (transitions in
To) which are firable starting from ci. In the
graph of classes, these transitions correspond
to the arcs leaving ci and labeled with a
transition of To. Let us denote TN0−obs−next

the set formed by reuniting the T ci

obs−next sets
relative to all classes ci in N0, i.e:

TN0−obs−next =
⋃

ci∈N0

T ci

obs−next

Note that TN0−obs−next is a set in the math-
ematical sense of the term. That means an
element does not repeat.

(2) For each transition ti of TN0−obs−next, a
new node Ni is created and a directed arc
labeled with ti connects N0 to the node newly
created.

(3) For each transition ti ∈ TN0−obs−next, we
denote Oi (O=Origin) the set of classes of
N0 which have an arc labeled with ti, in the
graph of classes, connecting them to a given
class cij .
The node Ni created will thus contain all
classes cij as well as all classes reachable,
from the cij classes, following the firing of un-
observable sequences (from T ∗un). Formally,
the set of classes in Ni can be represented as
follows: ⋃

j

{{cij} ∪ UR(cij)}

(4) Reiterate steps (1), (2) and (3) for all classes
of each node Ni (instead of N0) in order to

find their, respectively, next nodes, and so
on.

4.2.4. Equivalence between Nodes We will in-
troduce now two new concepts which will be used
thereafter.
Let Ni and Nj be two nodes of the Estimator, such
that there is a directed arc Ni −→ Nj , labeled
with a transition tk (of To).

Definition 1. We call Set of Entry Classes
of Nj (SEC(Nj)), the set of all classes of Nj ,
obtained as result of the firing of tk starting from
a class in Ni.

Definition 2. The Set of Shadow Classes of
the node Nj (SSC(Nj)) corresponds to the set
of all classes in Nj , obtained following the firing
of all realizable unobservable sequences starting
from classes in SEC(Nj).
In other terms, for each node N , we have:
SSC(N) = UR(SEC(N)).

Definition 3. Let Ni and Nj be two nodes ob-
tained by following steps (1) to (4) of the Estima-
tor building algorithm.
Ni and Nj are equivalent (Ni ⇔ Nj) iff
SEC(Ni) = SEC(Nj) and SSC(Ni) = SSC(Nj).

Remark 1. The set SEC of the initial node N0

is the singleton {c0}, where c0 is the initial class
in the graph of classes.
Remark 2. The classes set of a given node N can
be written as: SEC(N) ∪ SSC(N)
Remark 3. Sets SEC and SSC of a given node
are not inevitably disjoint.
Remark 4. The Set of Entry Classes of a given
node N can be obtained starting from any arc
entering to N .
Property. Given Ni and Nj 2 nodes obtained
while building the Estimator:
IF SEC(Ni) = SEC(Nj) THEN Ni ⇔ Nj .
Proof:
SEC(Ni) = SEC(Nj) (1)
According to definition 2, we have:
SSC(Ni) = UR(SEC(Ni)) and
SSC(Nj) = UR(SEC(Nj))
Then from (1) we obtain
SSC(Ni) = SSC(Nj) (2)
Hence, according to definition 3, (1) and (2)
imply:

Ni ⇔ Nj

Remark 5. While building the estimator by ap-
plying the algorithm presented above, a new node
Ni, with a set SECi of entry classes, is created
(steps (2) and (3)) only when, among the nodes
already obtained, none has SECi as set of entry
classes. In other terms, a new node Ni is created
only when, among the nodes already obtained,
none is equivalent to Ni (Property 4.2.4).

The Estimator nodes can be represented as in
figure 1.

tunobs1 tunobs2

tunobs3

tunobs1

tunobs4

tobs

: entry class : shadow class tobs: transition in To tunobs: transition in Tun

Norig Ndest

Fig. 1. General form of Estimator nodes

4.3 On-line Monitoring / Use of the Estimator

4.3.1. Introduction Let us recall here that our
objective is to monitor (detection/diagnosis) a
system for which we know in advance the "com-
plete" factual behavior in time.
The proposed monitoring approach is based on
the use of the Estimator at each occurrence of
a new observable event. It allows tracking the
evolution of the system state. The initial state
of the system can be represented by class c0 of
node N0. When time passes (without occurrence
of observable events), the state of our TPN can
be represented by c0 or one of the classes of
SSC(N0) = UR(c0). As soon as an observable
event ek (represented by a transition tk) occurs
at a given date θ, the system state moves from
the node N0 to the node Ni obtained by following
the outgoing arc of N0 labeled with tk. Thus, the
Estimator provides the following information: the
system state after the occurrence of ek can be
represented by one of the classes in SEC(Ni).
The next paragraph shows how to refine this re-
sult.

4.3.2. Enrichment of the Estimator The result
we obtain based on the Estimator can be refined
by exploiting the temporal data (occurrence dates
of observable events, obtained by on-line obser-
vation) and temporal constraints on the system
behavior (from the TPN model of the system).
The refining of these results is done by eliminating
the scenarios which do not respect the identified
constraints.
Note that the graph of classes does not give the
set of realizable Dated Firing Sequences (DFS) for
a given firing sequence. Indeed, the relative firing
dates in a DFS are not always independent (for
example when many transitions not in conflict are
simultaneously enabled).
However, there is a relation between the classes
firing domains and the date sequences relating to
realizable DFSs. Moreover, there is a technique
making it possible to obtain a framing for the en-
tire duration of a given realizable firing sequence

σ (Diaz and al., 2001). The technique consists
in applying the algorithm presented in paragraph
3.4.2 on the classes resulting from the sequence σ,
but instead of removing variable τi corresponding
to the fired transition ti, in the 3rd step, τi will
be just replaced by a new variable θi. Thus θi

becomes a parameter of the linear system of the
class obtained after the firing of ti and possibly
of the following classes reached as a result of the
realization of σ.
Hence, the linear system corresponding to the
firing domain of the last obtained class, will con-
tain as many parameters θi as transitions in
the considered sequence σ. Any solution θ =
(θ1, . . . , θn) of this last linear system (Aspvall and
Shiloach, 1980) represents a sequence of possible
relative dates for a DFS whose firing support is σ.
Thanks to this technique, checking of temporal
properties, like temporal framing of the firing se-
quences duration, or establishing the time interval
during which the system has a given marking,
becomes possible. And in this way, we will be able
to add additional information to our Estimator.
Concretely, during the building of the Estimator,
each time a new arc labeled t is created from a
node Norig towards a node Ndest, for each class cj

of SEC(Ndest):

• find in SEC(Norig) all classes ci which have
in the graph of classes, a firing sequence
(scenario) st, where s ∈ T ∗un ∪ ∅, which
connects it to cj

• For each pair (ci, st), determine the minimal
duration (dmin) and the maximum duration
(dmax), of the firing of the sequence st start-
ing from ci. Durations dmin and dmax corre-
spond in fact to the bounds of the time in-
terval during which the firing of t is expected
if the scenario st effectively occurs starting
from the ci class

• For each pair (st, ci), we dedicate a line in the
table associated to the class cj . The Origin
Class column corresponds here to the ci class.
The Scenario column corresponds to the fir-
ing sequence st, and the Interval column
corresponds to the interval [dmin, dmax]

Each class in the set SEC of a given node in the
Estimator will have the following form:

Cj(Mj , Dj)

Scenario Origin class Interval
s.t ci [dmin, dmax]

.

.

Table 1. General form of classes in the
SEC set

4.3.3. On-line follow-up We next discuss, the
way in which the monitoring activity will be car-
ried out in a dynamic way through the Estimator.
Initially, the state of the system is in node N0

(in c0 more precisely). Following the occurrence
of a given observable event e represented by a
transition t, the system state reaches the node
Ni obtained while following the outgoing arc of
node N0, labeled with t. More precisely, the new
state can be represented by one of the classes in
SEC(Ni). Thereafter, the following algorithm is
applied:

(1) For each class in SEC(Ni), exclude scenar-
ios other that those in the form st where
s ∈ T ∗un ∪ ∅.

(2) Among the scenarios remaining in the classes
of SEC(Ni), exclude scenarios for which the
origin class does not belong to SEC(N0)
and/or the date when e occurred does not
belong to the interval corresponding to the
scenario.

(3) Exclude the classes of SEC(Ni) for which
all associated scenarios were excluded. Let
us denote S̃EC(Ni) the set of classes in
SEC(Ni) which were not excluded.

(4) In SSC(Ni), exclude all classes of the set
(SSC(Ni)− UR(S̃EC(Ni))).

(5) Each time a new observable event occurs, re-
iterate steps (1) to (4) on the reached node
but by considering only the remaining (not
excluded) classes of the preceding node.

Interpretation. The first step corresponds to
the suppression of the scenarios for which origin
class does not belong to the node N0. Step (2)
eliminates the scenarios which do not respect the
temporal constraints on the event as they were
expressed in the system model (TPN). In the 3rd

step, we eliminate classes whose no scenario is
effectively realizable knowing the temporal data
and constraints. One keeps in step (4) only the
classes which will be reached starting from the
remaining classes. Finally at the 5th step, one
repeats in the same way steps (1) to (4) on the
new node (instead of N0) reached following the
occurrence of an observable event.
Hence, the result of the monitoring analysis pro-
cess after the occurrence of e can be represented
by the remaining scenarios.

5. CONCLUSION

The monitoring approach we developed in this
paper is characterized by the use of temporal con-
straints to refine the monitoring process result ob-
tained by using only observable events. It is about
an on-line monitoring approach which requires an
advance knowledge of the system behavior.

In future work, we will try to improve our ap-
proach by integrating it with the technique of
Causal Temporal Signatures (CTS) (Toguyéni et
al., 1997) developed in our laboratory, and whose
general idea is to exploit the occurrence of the
events progressively to decrease the number of
former scenarios which were considered to be real-
izable. The interpretation of some missing of ob-
servable events until fixed temporal terminal will
also be taken into account in the framework of our
approach. In addition, we will extend the TINA
tool (Roux and Berthomieu, 1986) which imple-
ments the enumerative method by integrating our
monitoring approach. That will allow automatic
building of the Estimator and automatic on-line
follow-up of the system state.

REFERENCES

Aspvall, B. and Y. Shiloach (1980). A polynomial
time algorithm for solving systems of linear
inequalities with two variables per inequality.
SIAM Journal on computing 9, 827–845.

Berthomieu, B. and M. Menasche (1982). A state
enumeration approach for analysing time
petri nets. Proceedings of applications and
theory of Petri nets (ATPN’82) pp. 27–56.

Diaz, M. and al. (2001). Les réseaux de Petri,
modèles fondamentaux. Hermès. Paris.

Lafortune, S. and M. Sampath (2000). Discrete
event systems approach to failure diagno-
sis: Theory and applications. 11ème Interna-
tional Workshop on Principles of Diagnosis.

Merlin, P. (1974). A study of the recoverability of
computer system. PhD thesis, university of
Californie.

Roux, J.L. and B. Berthomieu (1986). Verification
of a local area network protocol with tina: A
software package for petri nets. Proceedings
of the 7 workshop on applications and theory
of Petri nets pp. 183–205.

Sampath, R., K. Sinnamohideen, S. Lafortune and
D. Teneketzis (1996). Failure diagnosis using
discrete event models. IEEE Transactions on
Systems Technology 4, 105–124.

Toguyéni, A., E. Craye and J.C. Gentina (1997).
Time and reasoning for on-line diagnosis
of failures in flexible manufacturing sys-
tems. Proceeding of 15th IMACS World
Congress on Scientific Computation, Model-
ing, and Applied Mathematics, Berlin, Ger-
many 6, 709–714.

Ushio, T., I. Onishi and K. Okuda (1998). Fault
detection based on petri net models with
faulty behaviors. Proceeding of IEEE Inter-
national Conference on Systems, Man, and
Cybernetics pp. 113–118.

