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Abstract: This article presents a solution to pH control based on model-free 
intelligent control (MFIC) using reinforcement learning. This control technique is 
proposed because the algorithm gives a general solution for acid-base system, yet 
simple enough for its implementation in existing control hardware. In standard 
reinforcement learning, the interaction between an agent and the environment is 
based on a fixed time scale: during learning, the agent can select several primitive 
actions depending on the system state. A novel solution is presented, using multi-
step actions (MSA): actions on multiple time scales consist of several identical 
primitive actions. This solves the problem of determining a suitable fixed time scale 
to select control actions so as to trade off accuracy in control against learning 
complexity. The application of multi-step actions on a simulated pH process shows 
that the proposed MFIC learns to control adequately the neutralization process. 
Copyright © 2005 IFAC 
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1. INTRODUCTION# 
 

The control of pH in neutralization processes is a 
ubiquitous problem encountered in chemical and 
biotechnological industries. For example, the effluent 
of streams from wastewater treatment plants must be 
maintained within stringent environment limits, using 
neutralization to eliminate undesirable compounds 
(Shinskey, 1973).  
 
In most neutralization processes the control of pH is 
not only a control problem but also the chemical 
equilibrium, kinetic and thermodynamic problems 
must also be considered (Gustafsson et. al., 1995). 
This characteristic makes difficult to control pH 
process. Another problem is the process buffer 
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capacity, which is unknown and dramatically 
changes process gain.  
 
Also, due to the nonlinear dependence of the pH 
value on the amount of titrated agent the process will 
be inherently nonlinear. Moreover, variations of the 
buffering effects could make the process time-
varying. Therefore, it is difficult to develop an 
appropriate mathematical model of the pH process 
for controller design. All of this makes the process 
difficult to control with classical process control 
techniques (Loh et. al., 1995). 
 
Several control strategies have been previously 
applied for neutralization processes; for instance, 
Fuzzy Control (Fuente et al., 2003), Fuzzy Internal 
Model Control (Edgar and Postlethwaite, 2000), 
Fuzzy Predictive Control (Biasizzo et al., 1997), and 
Neural Networks (Loh et al., 1995). Unfortunately, in 



these approaches there are some weaknesses, such as: 
o complexity of the control structures (which 

could be difficult to implement on existing 
control systems),  

o conservativeness (the controllers take a long 
time to reject disturbances and to reach the 
desired setpoint),  

o difficulty of tuning, which makes it a time-
consuming task (these controllers have many 
tuning parameters, or require many experiments 
before its application to a real industrial 
process). 

 
This paper presents an alternative solution to pH 
control  based on Model-Free Intelligent Control 
(MFIC). This control technique is proposed because 
the algorithm gives a general solution for acid-base 
system, simple to implement in existing control 
hardware and easy to handle. This alternative 
approach is used to solve the pH control process 
problem, which is based on applying reinforcement 
learning algorithms. 
 
 

2. REINFORCEMENT LEARNING 
 
Reinforcement Learning can be defined as ‘learning 
what to do by doing’, i.e. how to map perceptions of 
process states to control actions, so as to maximize 
an externally provided scalar reward signal. These 
algorithms are based on online learning directly from 
the closed-loop behaviour of the plant. Compared to 
other control techniques based on learning, the 
reinforcement learning approach to model-free 
control design has some clear advantages: 
o It is possible to put in the design of the controller 

previous knowledge of the system 
o The control algorithm is quite simple from a 

computational point of view, so it is feasible to 
implement using low-cost hardware. 

o It is possible to derive and obtain a feedback 
control law from an optimal control point of 
view based on actual experience rather than a 
process model, which makes it attractive for 
Control and Plant Engineers 

 
In standard reinforcement learning algorithms, like 
Q-learning, there is a difficulty for Process Control 
implementations: these algorithms scale very badly 
with increasing problem size, granularity of states or 
control actions. Among others, one intuitive reason 
for this is that the number of decisions from the start 
state to the goal state increase exponentially.  
 
According to the problem size, to keep tractable the 
number of decision to be taken to reach the goal state 
hierarchical approaches based on temporal 
abstraction have been proposed. Temporal 
abstraction can be defined as an explicit 
representation of extended actions, as policies 
together with a termination condition (Precup, 2000). 
The original one-step action is called primitive 

action. Semi Markov Decision Processes (SMDPs) is 
the theory used to deal with temporal abstraction as a 
minimal extension of reinforcement learning 
framework. SMDPs is a Markov Decision Processes 
(MDP) appropriate for modeling continuous-time 
discrete-event systems.  
 
Several reinforcement learning algorithms resorting 
to hierarchical temporal abstraction approaches have 
been proposed: Options (Sutton et al.,1999); 
Hierarchy of Abstract Machine (HAM) (Parr, 1998); 
MaxQ (Dietterich, 1997) and Multi-step actions 
(MSA) (Riedmiller, 1998). The first three methods 
are based on the notion that the whole task is 
decomposed into subtasks each of which corresponds 
to a subgoal.  
 
 

3. MULTI-STEP ACTIONS 
 
In this paper the concept of MSA (Schoknecht and 
Riedmiller, 2003) is applied to pH control because it 
is suited for systems where no decomposition in 
subproblems is known in advance. As in the general 
framework defined by Sutton et al. (1999), MSA is a 
special type of semi-Markov option. A Markov 
option would require a state-dependent termination 
condition. In the MSA algorithms, the termination 
condition is applied after executing a sequence of n 
primitive actions.  
 
The MSA method is a method enabling an intelligent 
control to learn a control policy by using multiple 
time scales simultaneously. The MSA consists of 
several identical actions on the primitive time scale. 
This algorithm is possible to increase responsiveness 
and add flexibility to the controller behavior. Also, 
giving a learning controller the possibility of using 
MSA to reach the goal can improve the speed of 
learning and reduce control efforts. This approach 
have been successfully applied in a simple thermostat 
control (Riedmiller, 1998; Schoknecht and 
Riedmiller, 2003). Thus, we think that the algorithm 
can be extended to complex and highly nonlinear 
problem, such as pH control problem.  
 
The MFIC based on MSA can address many of 
weaknesses inherent in traditional PID or other 
advanced control methods. For example:  
o PID is basically linear and time-invariant and 

cannot effectively control complex processes 
that are nonlinear, time variant, coupled, and 
have large time delays, major disturbance and 
uncertainties.  

o Model based adaptive control methods have 
some problems such as requirement of off line 
training, excitation of signal for correct 
identification and the model convergence and the 
system stability issues in real application. 

o Model predictive control is designed using 
empirical model of the plant, so this controller 
cannot be used for general acid-base systems 



because each model  only represents the specific 
process.  

 
 

4. Q-LEARNING WITH MULTI-STEP 
ACTIONS  

 
This paper proposes the application of the MSA 
algorithm for pH control. This proposed solution can 
be used for general-purpose of acid-base system 
control, providing the user-friendly and smart control 
system that users demand. The advantages of MFIC 
based on MSA are: 
o no precise quantitative knowledge of the process 

is available,  
o no process identification mechanism (identifier 

is include in the system, which is an online 
learning), no controlled design for a specific 
process is needed,  

o simple manual tuning of controller parameter is 
required and stability analysis criteria are 
available to guarantee the closed-loop system 
stability. 

 
The idea of MSA is based on a set of all multiple step 
actions of degree m, defined as 

, where a( ) ( ){ 1| AaaA mm ∈= } m denotes the MSA 
that arises if action a is executed in m consecutive 
time steps (Schoknecht and Riedmiller, 2003). The 
next action will be executed after the whole MSA has 
been applied. Thus, the MSA has a time-dependent 
termination condition after m primitive time steps.  
 
The concept of MSA can be integrated in learning 
algorithms, such as Q-learning. For example, when 
the agent executes action am of degree m in state s the 
environment makes transition to state sn after m time 
steps. The state-action value can be updated as 
follows: 
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where is Q-value for state-action in time t, and 

is Q-value for next state, α is learning rate, and 
γ is discount factor. When action a
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selected in si, the environment makes transition to 
si+m with reward . When executing am

iasr
m, all 

actions ai, i = 1, 2, …, m – 1 are executed implicitly. 
The transition from si to state si+m contains all 
information necessary to update the Q-values for 
those lower-level actions at all intermediate states.  
 

Compared to standard reinforcement learning, this Q-
learning-modification algorithms is proposed for pH 
process because it  can extract more training 
examples from the same experiences. The agent 
executes a primitive action and applies it for m time 
steps.  
 
Reinforcement learning based on MSA seems to be a 
promising approach to overcome the pH problem as 
mentioned above because the control law can easily 
adapt to varying scenarios by online learning. By 
experiencing a sequence identical action applying for 
pH process, the agent can speed up learning and 
planning to maintain the process in the desired pH 
value. In order to explore the set of possible actions 
and acquire experience through the reinforcement 
signals, the actions are selected using an 
exploration/exploitation policy. In this study ε-greedy 
policy is applied to select one of the available actions 
in visited state and experience it for a multiple time 
steps of the plant. The ε-greedy policy has been 
selected because it gives better performance for pH 
process than softmax policy (Syafiie et al., 2004).  
 
 

5. APPLICATION TO A NEUTRALIZATION 
PROCESS 

 
This section describes the implementation of the 
MSA approach on a pH neutralization process.  
 
 
5.1 States and Reward 
 
The control objective is to maintain the pH inside a 
band of ±δ around the desired setpoint (the width of 
this band is defined by measurement noise in the 
process and allowed tolerance). This band is defined 
as the goal state. Another states are defined 
corresponding to values of the pH outside this band, 
as depicted in Figure 1. 
 
To classify the reading of pH and to select an action 
available in each visited state, this study uses 11 
symbolic states, where the goal state is 6 
(corresponds to the desired pH band). Each state has 
5 possible actions, except in the goal state that has 
only 1 action, which is called wait action. This is 
selected by experience.   
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Figure 1. Control objective and definition of states. 



The probability that the system moves to a new state 
from the current state depends on the system 
behavior following the execution of the chosen 
action. For instance, if the process is in state 1, and 
the controller chooses action 1, the process may 
move either to state 2 or to another state or stay in 
state 1.  
 
These states and reward are defined by a parameter 
that refers to the setpoint, r, as a desired output. The 
goal state is restricted by boundary values: upper, 
r+δ, and lower, r-δ as shown in Equation 2. The 
maximum reward is introduced in the goal state. 
When the system is outside the desired band, the 
controller is punished by negative rewards. This 
reward function is applied in each state as a single 
number:  
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5.2 Control Actions 
 
In reinforcement learning, the agent selects an action 
and executes it in current time and receives next 
reward. From the chosen action, the control signal, ut, 
is calculated in MFIC as follows: 
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where at is the optimal action chosen by the agent 
from those available actions in every visited state, 
and aw is wait action where there is no variation of  
the previous control signal. For example, if the 
system has three actions, where action one is to 
increase the previous control signal, action two is to 
maintain the previous control signal and action three 
is to decrease it. Therefore, action two is called wait 
action. The controller gain, k, is a tuning parameter 
that can be selected to weight how much to increase 
or decrease previous control signal over action 
chosen.  
 
MFIC uses zero initial condition of Q-function. This 
value is updated by time over taking action and the 
process behavior. When the environment changes, 
for example, the setpoint changes, the action-value is 
immediately reset to initial condition. Resetting Q-
value to the initial condition makes possible for the 
agent to learn new environment without any 
influence from the past learning of the past 
environment.  
 
 
5.3 Control Algorithm 

 
The MSA algorithm developed for the learning 
system is as follows: 

1. Read the state st 
2. Select an action at, this action is chosen 

from state st using ε-greedy policy 
3. Apply the selected action at for n time steps 
4. Do until terminating condition m=n 

1. Read the resulting state st+m 
2. Update Q-value using Equation (1) 

 
 

6. EXPERIMENTAL RESULTS AND 
DISCUSSION 

 
The experimental results section describes and 
discusses the application of MFIC based on 
reinforcement learning to a pH process control on the 
laboratory plant.  
 
 
6.1 Description of the Experimental Setup 

 
The experimental setup, shown in Figure 2, consists 
of a continuous stirred tank reactor (CSTR) where a 
process stream (sodium acetate) to be maintained at 
certain pH value is titrated with a solution of 
hydrochloric acid (HCl). The solution of sodium 
acetate (CH3COONa) is prepared and stored in a 
storage tank. Concentration and pH value of sodium 
acetate can be achieved by adding varying amounts 
into the storage tank. This solution is fed from 
storage tank using a pump. The reaction occurs in the 
CSTR which has overflows (outlet not shown); 
therefore the volume of liquid in the tank (1 liter) can 
be considered constant. 
 
process stream titrating flow

effluent stream

PCpHreactor

 
Figure 2. pH neutralization process plant. It is to 
control pH value of the process stream (alkaline) 
manipulating titrating flow (acid). 
 
The control variable ut is the flowrate of the titrating 
stream (normalized to the maximum value), which is 
applied using a peristaltic pump (ISMATEC MS-1 
REGLO/6-160).  
 
The output variable, yt, is the logarithmic hydrogen 
ion concentration (pH) in the reactor. It is assumed 
that the mixing is homogeneous, therefore the 
concentration in the effluent stream is similar to the 
concentration in the reactor. The pH value in the 
mixture is measured using an Ag-AgCl electrode 
(Crison 52-00) and transmitted using a pH-meter 
(Kent EIL9143). The electrode dynamic response 
presents appreciable and asymmetric inertia. The pH 
measured and the control signals are transmitted 



through an A/D interface (ComputerBoards CIO-
AD16, 0-5V). The plant is controlled and monitored 
from a personal computer, using Matlab and the 
Real-Time Toolbox for online control.  
 
 
6.2 Parameters Selection 
 
For the experimental process,  the zero initialized Q-
value is used. The value of the meta – parameter for 
the agent are selected to be: discount factor, γ=0.98 
and learning rate, α=0.1, which were determined to 
be a good values from previous work (Syafiie et al., 
2004).  
 
As mentioned above, the defined system has eleven 
states. In this implementation, the parameters δ and η 
are selected to be δ=0.1 and η=0.1, based on the 
level of measurement noise and the desired operating 
range of pH. From the parameters δ and η, it can be 
defined that state 1 is when the measured pH is 
higher than r+δ+8η. It means that the agent is in 
state 1 if the pH is higher than r+δ+8η. State 2 is 
defined when the pH is lower than r+δ+8η and 
higher than r+δ+6η. The rest of the states are defined 
following Figure 1.  
 
In MFIC, the ε-greedy policy, is applied for choosing 
an action in every visited state of the pH process. 
Parameter ε used in the ε-greedy policy is selected to 
be ε=0.1, to leave space for the agent to explore the 
available actions. This means that exploration 
(choosing an action that does not have maximum 
action-value) will be selected with a probability of 1 
out of 10, which represents a good compromise for 
the plant, given its time-varying and nonlinear 
characteristic (less experience would be necessary if 
the plant were more linear and the concentration less 
uncertain). 
 
The PID controller was tuned based on operating 
condition at pH = 5, where correction gain and 
proportional gain are chosen 0.01 and 0.001 
respectively. Derivative time and integral time are 
selected to be 1. Whereas for MFIC, the wait action 
is chosen to be 22, which is no manipulation of 

previous control signal. The gain of MFIC is chosen 
2x10-5, and 3 identical primitive actions are executed 
in every multiple time scale. 
 
 
6.3 Experimental Results and Discussion  
 
Application of the proposed MFIC of MSA controller 
to the laboratory plant shows good result. The 
responses of the plant for some changes in setpoint 
and comparison to a PID and standard Q-learning 
controller can be seen in Figure 3 for the sodium 
acetate – hydrochloride acid system.  
 
The comparison shows that the responses of the 
proposed MFIC of MSA algorithm settle in reference 
faster than the PID and standard Q-learning 
controller. The responses of the plant show that MSA 
controller based on reinforcement learning 
algorithms are lay closer to the references, whereas 
PID and standard Q-learning controllers have higher 
peak of oscillations. It can be seen in Figure 4.  
 
The control signal (Figure 5) shows that MSA and 
standard Q-learning controllers manipulate the 
actuator smoother than PID controller: MSA and 
original Q-learning controllers have smoother control 
signals than PID. Since MFIC allows a tolerance 
error of the process whenever the pH is within the 
control band, the control signal is smoother when the 
process is closer or within the pH band.  
 
 

7. CONCLUSIONS 
 
The Model-Free Intelligent Control (MFIC) 
algorithm based on multi-step actions (MSA) has 
been extended to process control problems and 
applied on a pH control. The optimal control actions 
are selected using the ε-greedy policy. It has been 
shown that the behavior of the pH control over the 
application of multi-step actions gives good 
performance. It is noteworthy the smoothness of the 
resulting control signal. Thus, the proposed technique 
is promising for pH process. 
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Figure 3. Output Responses of the plant for NaCH3COO-HCl systems. 
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Figure 4. Output Responses of the plant for NaCH3COO-HCl systems for 10000 to 12000 seconds. 
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Figure 5. Control signal of the plant for NaCH3COO-HCl systems. 
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