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Abstract: To implement a generalization of value functions in Adaptive Search Element 
(ASE)-reinforcement learning, CMAC is integrated into ASE controller. ASE-
reinforcement learning scheme is briefly studied to discuss how CMAC is integrated into 
ASE controller. Neighbourhood Sequential Training concept is utilized to establish the 
look-up table of CMAC and to produce discrete control outputs. In computer simulation, 
an ASE controller and a couple of ASE-CMAC neural network are trained to balance the 
inverted pendulum on a cart. The number of trials until the controllers are established and 
the learning performance of the controllers are evaluated to find that generalization ability 
of the CMAC improves the speed of the ASE-reinforcement learning enough to realize 
the cartpole control system. Copyright© 2005 IFAC 
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1. INTRODUCTION 

 
Reinforcement learning is a method that, through 
interaction with its environment, learns by receiving 
feedback in the form of a numerical reward that is 
commensurate with the appropriateness of the 
response. In the last fifteen to twenty years, it has 
attracted an increasing interest in neural networks 
and intelligent control communities (Kaelbling, et 
al., 1996) and is considered as an important 
alternative to conventional methods to intelligent 
control. Reinforcement learning techniques are good 
especially when input-output training data are not 
available. However, reinforcement learning has some 
drawbacks such as many trials to establish a control 
strategy, slow convergence, the large state space 
problem and the large action space problem (Zhao 
and Liu, 1996).  
 
There has been much effort to improve the 
performance of the reinforcement learning methods 
by using various intelligent control techniques. As a 

major development of reinforcement learning, the 
problem solving capacities of a reinforcement 
learning system with two adaptive neural elements, 
Adaptive Search Element (ASE) and Adaptive Critic 
Element (ACE), were illustrated (Barto, et al., 1983). 
A stochastic real-valued reinforcement learning 
algorithm for learning real-valued control outputs 
(Gullapalli, et al., 1994) and a stochastic competition 
learning based on the concept of genetic optimization 
were introduced to reduce the difficulties of the large 
action space problem (Zhao and Liu, 1996). An 
adaptive state space recruitment strategy (Kondo and 
Ito, 2002), and a reinforcement learning algorithm 
which allows generalization of learning by using 
previously learned knowledge (Ricordeau, 2003) are 
the works to implement generalization capability in 
reinforcement learning. 
 
In some developments of reinforcement learning, 
CMACs were used. To improve implementation 
efficiency and performance, BOXES-ASE/ACE 
reinforcement learning algorithm (Michie and 



     

Chambers, 1968) was modified with a state history 
queue and a dynamic link table which implements 
the CMAC state association (Hu and Fellman, 1994). 
To produce continuous outputs for controller trained 
by a stochastic reinforcement learning algorithm, a 
CMAC-based neural network was used (Han and 
Zhang, 1994). Both actor and critic were 
implemented by CMAC in examining the use of 
prior knowledge in the form of a stable controller 
that generates control inputs in parallel with a 
reinforcement learning system (Rosenstein and Barto, 
2004). 
 
In particular, there are many studies that use CMACs 
for generalization of value functions in reinforcement 
learning (Sutton and Barto, 1998). Most CMAC-
based reinforcement learning algorithms use hash 
coding technique so that similar states in the input 
space will have similar outputs or value functions. In 
a self-learning control scheme, Lin and Kim (1991) 
integrated CMAC into the BOXES-ASE/ACE 
reinforcement learning algorithm where CMACs 
were used for storing learning parameters). However, 
generalization of the ASE weights by CMAC affects 
the control performance indirectly. To deal with 
tasks with a continuous state space, Sutton (1996) 
combined CMAC with a reinforcement learning 
based on the sarsa algorithm. Unfortunately, how the 
CMACs were combined with the reinforcement 
learning algorithm and how CMACs were trained 
was not described. To take the possibility of having a 
similar output value function for non-adjoining input 
areas, Xu et al., (2002) modified CMAC structure 
where the modification requires a priori knowledge 
of learning control problems. In this case, the CMAC 
structure should be dependent on the characteristics 
of the learning system. Wei and Zhao (2003) 
introduced variable resolution discretization of input 
space to improve the generalization capability of the 
CMAC-based reinforcement learning. However, 
discretizing the input space with variable resolution 
is another issue to be resolved.  
 
Some previous works are application specific while 
others require certain conditions for combining 
CMAC with reinforcement learning methods. 
However, CMAC itself is a good parametrized 
function approximator for reinforcement learning 
without modification of its structure or conditioning 
of its parameters. Thus, CMAC can be generally 
combined with any reinforcement learning algorithm 
only by considering its training. 
 
In this paper, CMAC is integrated into the ASE 
where the ASE output is used as learning examples 
for the CMAC that is trained by the Neighbourhood 
Sequential Training (NST) method (Thompson and 
Kwon, 1995; Sayil and Lee, 2002). In Sections 2 and 
3, the ASE-reinforcement learning scheme and the 
NST training aspect of CMAC is briefly studied. 
And the ASE/CMAC neural network is trained to 
balance the inverted pendulum on a cart in Section 4. 
The learning performance of the ASE controller and 
ASE/CMAC neural network was compared to find 
that generalization ability of CMAC improves the 

ASE-reinforcement learning in terms of learning 
speed. 
 
 

 
2. ASE-REINFORCEMENT LEARNING 

 
In this section, for the purpose of presenting the idea 
of integrating CMAC into the ASE controller, ASE 
reinforcement learning scheme for cartpole control 
system is briefly discussed.  
 
The ASE controller consists of a decoder and a 
neuron like adaptive element, ASE (Fig. 1). The 
decoder, at each time step, receives a state vector 
giving the state of the cartpole system. It transforms 
each state vector into a n -component binary vector 

1 2( ) ( , , , )nt a a a=A …  whose components are all zeros 
except for a single one ia in the position 
corresponding to the pathway that represents the 
system state to decoder. The value of ia is 1.0.  
 
For the transformation by the decoder, each state 
variable should be partitioned into certain number of 
intervals. Suppose that there are 4, 4, 7, and 4 
intervals, respectively, for the four state variables as 
following: 
 
   : [ 2.4, 0.96, 0.48,1.92, 2.4]x − − ,  
   : [ 2.0, 0.8, 0.4,1.6, 2.0]x − −� , 
   : [ 12.0, 8.19, 4.41, 0.63, 3.15, 6.93,10.71,12.0]φ − − − − ,  

   : [ 150.0, 60.0, 30.0,120.0,150.0]φ − −�  
 
where x (m) and x� (m/s) are the position and velocity 
of the cart on the track, and φ (deg) and φ� (deg/s) 
the angle and angular velocity of the pole with 
respect to the vertical axis of the cart. 
 
Then, the intervals are combined to form 
448 4 * 4 * 7 * 4= regions. These regions correspond 

to the output pathways of the decoder. Thus, the 
decoder has 448n =  binary valued output pathways. 
These pathways are connected to ASE.  
 

The ASE consists of n weights, 1 2, , , nw w w" . The 
element has n  non-reinforcement input pathways 
from the decoder, a single reinforcement input 
pathway, and a single output pathway. It must be 
trained so that its weights are established and its 
output based on the weights can be used to determine 
the direction of applying the force of fixed 
magnitude. However, in the training process, the 
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Fig. 1. Scheme of ASE controller (Barto, 1983). 



     

equations of motion for the cartpole system are not 
known to ASE, and since the learning is 
unsupervised, there are no control laws to imitate 
either. 
 
Here, it is noted that the weights of ASE and the 
eligibility of the pathways are only related to the n  
non-reinforcement input pathways, but not directly to 
the state vectors. Also, through the decoder, some 
state vectors correspond to a common pathway. Then, 
it is possible to specify a “special system state” 
among many states that are decoded into the pathway. 
Whenever a specific pathway is invoked, it is 
possible to consider that the system is described by 
the special system state even though actual system 
state is one of those states that correspond to the 
specific pathway. This strategy does not disturb the 
original ASE-reinforcement learning scheme, 
including the weights and eligibility update rules. 
Let’s call the special state the pathway state. Then, 
every weight in ASE connected to a pathway of the 
decoder is related to a pathway state in the 
continuous state space.  
 
Same reasoning can be applied to each state variable. 
Since the pathway state is defined by 4 components, 
those values for the components are the special 
values for individual state variable. For example, the 
special values of 4 state variables for the pathway 
states are as following, where the selection of these 
values are based on the NST consideration: 
 
       x : -2.16, -0.72, 0.72, 2.16 

:x� -1.8, -0.6, 0.6, 1.8 
       :φ -11.34, -7.56, -3.78, 0.0, 3.78, 7.56, 11.34 

       :φ� -135.0, -45.0, 45.0, 135.0 
 
Let’s call these special values the pathway values of 
the variables. Then, the pathway states for the very 
first and last pathways could be (-2.16, -1.8, -11.34, -
135.0) and  (2.16, 1.8, 11.34, 135.0), respectively.  
 
Based on the ASE output, a fixed magnitude of force 
is applied to cart in either direction. And, the 
operation of cart is evaluated as failure when the cart 
hits the track limits or the pole falls beyond the 
specified angles. Then, the evaluation signal is fed to 
ASE as a reinforcement signal.  Refer to the paper by 
Barto, at al. (1983) for the details about the ASE 
definition and the ASE-reinforcement learning 
scheme. 
 
Applying the fixed magnitude of force is a way of 
producing output by ASE, since the ASE only learns 
to decide the direction of the force to apply. However, 
it is known that applying variable force produces 
generally better control. Therefore, it is worthwhile 
to consider the capability of control forces between 0 
and a fixed magnitude as the ASE output.  
 
The variable control forces can be generated, for 
example, between two extreme fixed magnitudes of 
control forces by assuming an unknown 
approximating function that would relate the states 
close to pathway states to those variable control 
forces. The approximating function can be assumed 

by CMAC since CMAC is very good at generalizing 
learned information. 
 
 

3. INTEGRATING CMAC INTO  
ASE CONTROLLER  

 
The CMAC (Albus, 1975) is described by a series of 
mappings: S-to-M, M-to-A, and A-to-p mapping, 
where S denotes the continuous state space, M the 
intermediate state space, and A the quantized state 
space. In the space A, there are a certain number of 
look-up tables. The output of the CMAC, p, is a 
scalar value that is a summation of values of one 
entry from each look-up table.  
 
In the S-to-M mapping for balancing the inverted 
pendulum, each of the 4 state variables is quantized 
into K  intermediate variables. The number K  is a 
parameter that determines the range of generalization 
in storing the learned information in look-up tables. 
And each intermediate variable is at different level of 
quantization. Suppose, 3K = . Then, there are 3 
intermediate variables at 3 levels of quantization. By 
using the same partitions of state variables as in the 
ASE decoder, the first intermediate variable of each 
state variable is partitioned.  
 
For the NST, every intermediate variable of a state 
variable should be partitioned into the same number 
of discrete intervals. This is to prevent some entries 
in the look-up tables from being uncovered by 
generalization. For example, when x  is quantized 
into 3 levels, then, at 3 quantization levels, the 3 
intermediate state variables for x  are partitioned into 
4 intervals respectively as following:  
 
      The first level: [ 2.4, 0.96, 0.48,1.92, 2.4]− −   
      Second level: [ 2.4, 1.44, 0.0,1.44, 2.4]− −   
      Third level: [ 2.4, 1.92, 0.48, 0.96, 2.4]− − −   
 
Of course, the partition at the first level is the same 
as the one in the ASE. In particular, the sizes of the 
4th interval in the first level, [1.92, 2.4] and the first 
interval in the 3rd level, [-2.4, -1.92] are much smaller 
than other intervals. This is due to the consideration 
of the NST method. 
 
Then, a system state is represented by a set of 
K intermediate state vectors, one from each 

quantization level. There are 448 sets of such vectors 
in the space M. Only the first among K element 
intermediate state vectors is known to the decoder. 
 
In the M-to-A mapping, every combination of the 
intervals of each intermediate variable at the same 
level should construct a look-up table with 448 
entries in a quantized state space, A. Then, for 3K = , 
there are 3 look-up tables. Because of the unique 
coding method of CMAC, a system state in S is 
mapped into 3 entries, one for each look-up table in 
the space A. Components of each intermediate state 
vector of the set of K intermediate state vectors play 
a role of key for an identifier of the entry of each 
look-up table.  
 



     

Establishing the contents of the look-up tables 
depends on the output of ASE and CMAC training 
method. However, careless training of CMAC will 
cause learning interference and result in bad contents 
in the look-up tables. Hence, the NST method is 
essential for training the CMAC integrated into the 
ASE controller. 
 
The CMAC can be integrated into the ASE controller 
as shown in Fig. 2. The output of ASE, ( )y t , is used 
as learning examples to train the CMAC.  The output 
pathways of decoder are represented by the pathway 
states, and the pathway states are defined by the 
pathway values of each variable. The addresses of 
the pathway states in the look-up tables are fixed, 
since the pathway values of each variable are 
prescribed and fixed.  
 
In fact, the pathway states are all mapped into 
different neighbourhood in the look-up tables of 
CMAC and they are all strangers to each other. The 
fixed addresses represent every different 
neighbourhood. Then, the NST method is for training 
the CMAC in such a way that training of a 
neighbourhood does not disturb other neighbourhood. 
In turn, NST method makes the learning by CMAC 
for a pathway state free from learning for other 
pathway states. 
 
Learning the training examples from ASE is only 
with the pathway states that correspond to 1 / K of the 
intermediate states in the space M. For other states, 
no direct learning is available due to the NST method. 
Then, for ( 1) /K K− of the intermediate states, direct 
learning does not occur. However, these intermediate 
states belong to 2 neighbourhoods in the space A. So, 
the content of look-up tables for those intermediate 
states in space A is established by the generalization 
of learning due to the mechanism of the hash coding.  
 
In the A-to-p mapping, the scalar values of K entries 
of the K  look-up tables are summed up to produce 
discrete outputs of CMAC, where p denotes a scalar 
value in the action space.  
 
If a system state is mapped into the same region in 
the space A as that is looked upon by the pathway 
state, the scalar value must be the same as ( )y t , 

which was determined by the ASE through 
reinforcement learning and provided for training of 
CMAC. For the rest of the system states, the 
magnitudes of the output values are less than the 
magnitude of ( )y t . 
 
 

4. EXAMPLE: A CARTPOLE SYSTEM 
 

The cartpole system is a well-known test bed for 
development of various neural networks, where a 
pole is hinged to a cart that moves on track to its 
right or left direction (Fig. 3). The pole rotates about 
the hinge. The control task is to keep the pole 
vertically balanced and the cart within the track 
boundaries. 
 
For the cartpole system, the 4th order Runge-Kutta 
method with a time step of 0.02 seconds was used to 
solve the friction dynamics equations with the 
cartpole parameters in (Barto, et al., 1983). With the 
solution, the outcome of the ASE controller is 
evaluated only in terms of the failure or success of 
the system, where failure is when the pole falls 
beyond 12.0± degree or the cart hits the track 
boundary at 2.4±  m. The equations of motion of the 
cartpole system are not known to the controller, but 
the state vector describing the system’s state at each 
time step is known. That is, the cartpole system is 
considered as a black box by the reinforcement 
learning system. The noise in producing the ASE 
output was neglected in the learning process.  
 
 The CMAC was trained by NST method. Then, the 
ASE output is distributed while it is stored in the 
look-up tables. For the output of ASE/CMAC where 
ASE is with 12.0F = ± (N), and CMAC with 3K = , 
there are 4 discrete forces such as 12.0± (N), 

8.0± (N), 4.0± (N), and 0 (N).  
 
Table 1 shows the numbers of trials until ASE and 
ASE/CMAC with 3K =  succeeded in balancing the 
pole with 3 consecutive runs for 30 trial cases. For 
example, for the case No. 1, ASE succeeds in 
balancing the pole at the 113th trial by applying 

10.0F = ± (N) to the cart at every time step. For Two 
different systems are tested for the ASE/CMAC , one 
with 10.0F = ± (N) and the other with 12.0F = ± (N).  
The trial values of x (m) and φ (rad) were set at the 
midpoint of each interval in the partitions of the 
variables for the decoder. Particularly, all x�  and 
φ� values were set at 1.0 (m/sec) and 0.2 (rad/sec), 
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respectively, following the work by Geva and Sitte  
(1993). 
 
The cases No. 25 through No. 30 are tough trial 
states where the cart starts near the right boundary of 
the track with initial velocity of 1.0 (m/sec). In these 
cases, every controller failed when the cart hits the 
right boundary of the track just after a few time 
steps. In Table 1, F implies that the controller could 
not learn to balance the pole until the 2001st trial.  
 
Observing Table 1, one can see that the ASE 
controller runs far more number of trials for most of 
the trial states, although there are some cases for 
which ASE/CMAC did try more runs. The 
ASE/CMAC learns faster than the ASE controller for 
most cases. Moreover, the ASE/CMAC with 
increased force, 12.0F = ± (N), succeeded in 
learning even faster for some cases. It was observed 
that, for some cases, ASE/CMAC spent more trials 
when the forces are less than 10 (N).  In view of 
realizing the cartpole system, the ASE controller 
learns too slowly. The number of trials, for instance, 
more than 20, is just too much to be realistic.  
 
To see the learning performance, initially the 
ASE/CMAC with 3K = and 12.0F = ± (N) was 

trained for the neutral state (0.0, 0.0, 0.0, 0.0). This is 
a simple state to realize for experiment and the 
controller tried 15 times to learn the state. With the 
learning of the neutral state, the controller was able 
to balance the pole from the state (-1.5, 0.0, 0.0, 0.0) 
right away without failure. Then, the controller failed 
1 trial before it could learn the state (1.5, 0.0, 0.0, 
0.0). It took 9 trials to learn the state (2.0, 0.0, 0.0, 
0.0) and 1 trial for the state (-2.0, 0.0, 0.0, 0.0). With 
those learning experience, the controller could even 
learn, without failure, the trial case No. 6 for which 
the controller failed previously. This means that the 
ASE/CMAC neural network is able to learn fast as 
well as to generalize learning effectively. 
 
Figure 4 shows the graph of the cart position and 
pole angle versus time when the ASE/CMAC 
with 3K = and 12.0F = ± (N) neural network was 
tested for the trial case No. 6. Although there are 
some residual oscillations of the cart and the pole, it 
is obvious that the controller succeeds in balancing 
the pole while moving the cart back and forth a little 
bit near the position 1.8x = (m). Here, it is noted 
that the system behaviour described by Fig. 4 is not 
typical for the trial state. The system behaviour by 
ASE controller is very dependent on other factors, 
such as the partition of state variables.  With training 
through some other trial states, the ASE/CMAC 
neural network with 3K = and 12.0F = ± (N) could 
balance the pole from most of the cart positions. 
Thus, the network is a realizable controller.  
 
The ASE/CMAC with 4K = and 12.0F = ± (N) was 
also tested.  However, learning speed was not as 
good as that of the ASE/CMAC with 

3K = and 12.0F = ± (N). This suggests that more 
study is required on the parameters that affect the 
integration of CMAC into the ASE-reinforcement 
learning and the training of the network, reminding 
that bigger K has an influence on the broader range 
of generalization. 
 
To measure the control quality, the force update 
interval was increased to 0.03 seconds, in which case 
no trial states could be learned. As explained by 
Geva and Sitte (1993), the longer interval is too 
severe for the ASE controller and even for the 
ASE/CMAC neural network. 
 

5. CONCLUSION 
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Fig. 4. Cart position and pole angle versus time for 

the ASE/CMAC with 3K = and 12.0F = ± (N). 

Table 1. The Numbers of trials until ASE controller 
and ASE/CMAC neural networks succeed in 

balancing the pole with 3 consecutive runs for given 
trial states.  

 
ASE/CMAC, K=3No Trial States ASE 
F=10.0 F=12.0

1 (-2.0, 1.0,  0.01, 0.2) 113 1562 18 
2 (-2.0, 1.0,  0.08, 0.2) 138 125 66 
3 (-2.0, 1.0,  0.15, 0.2) 157 76 22 
4 (-2.0, 1.0, -0.04, 0.2) 350 68 266 
5 (-2.0, 1.0, -0.11, 0.2) 254 1205 60 
6 (-2.0, 1.0, -0.16, 0.2) 332 14 F 
7 (-1.2, 1.0,  0.01, 0.2) 299 32 18 
8 (-1.2, 1.0,  0.08, 0.2) 355 12 23 
9 (-1.2, 1.0,  0.15, 0.2) 419 F 179 

10 (-1.2, 1.0, -0.04, 0.2) 532 60 204 
11 (-1.2, 1.0, -0.11, 0.2) 352 189 189 
12 (-1.2, 1.0, -0.16, 0.2) 66 170 27 
13 ( 0.0, 1.0,  0.01, 0.2) 492 136 262 
14 ( 0.0, 1.0,  0.08, 0.2) 230 562 364 
15 ( 0.0, 1.0,  0.15, 0.2) 187 201 52 
16 ( 0.0, 1.0, -0.04, 0.2) 253 18 F 
17 ( 0.0, 1.0, -0.11, 0.2) 314 52 F 
18 ( 0.0, 1.0, -0.16, 0.2) 454 78 24 
19 ( 1.2, 1.0,  0.01, 0.2) 267 F 13 
20 ( 1.2, 1.0,  0.08, 0.2) 456 F 786 
21 ( 1.2, 1.0,  0.15, 0.2) 525 495 141 
22 ( 1.2, 1.0, -0.04, 0.2) 66 52 F 
23 ( 1.2, 1.0, -0.11, 0.2) 997 177 F 
24 ( 1.2, 1.0, -0.16, 0.2) 1549 18 F 
25 ( 2.0, 1.0,  0.01, 0.2) F F F 
26 ( 2.0, 1.0,  0.08, 0.2) F F F 
27 ( 2.0, 1.0,  0.15, 0.2) F F F 
28 ( 2.0, 1.0, -0.04, 0.2) F F F 
29 ( 2.0, 1.0, -0.11, 0.2) F F F 
30 ( 2.0, 1.0, -0.16, 0.2) F F F 



     

 
For a function approximation in the ASE-
reinforcement learning, CMAC was integrated into 
the ASE controller. The CMAC uses the ASE output 
as learning examples and the output is generalized by 
Neighbourhood Sequential Training method and 
stored in the look-up tables. Analysis of the 
simulation data based on the number of trial times 
for various trial states leads to conclude that 
ASE/CMAC neural network learns faster than the 
ASE and it can be a realistic controller. 
 
A key for integrating CMAC into the ASE controller 
in the ASE/CMAC neural network is to specify the 
pathway states for ASE and to use NST method in 
training the CMAC. In addition, the quantization of 
continuous state space and the partition of state 
variables are performed by the consideration of the 
NST method. 
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