

SAMPLE PAGES TO BE FOLLOWED EXACTLY
IN PREPARING SCRIPTS

GENERALIZATION OF REINFORCEMENT LEARNING WITH CMAC

Sunggyu Kwon* and Kwang Y. Lee**

* Faculty of Mechanical and Automotive Engineering
Keimyung University, Daegu, Korea.

(Email: cmack@kmu.ac.kr)
** Department of Electrical Engineering

The Pennsylvania State University, University Park, PA 16802, U.S.A.
(Email: kwanglee@psu.edu)

Abstract: To implement a generalization of value functions in Adaptive Search Element
(ASE)-reinforcement learning, CMAC is integrated into ASE controller. ASE-
reinforcement learning scheme is briefly studied to discuss how CMAC is integrated into
ASE controller. Neighbourhood Sequential Training concept is utilized to establish the
look-up table of CMAC and to produce discrete control outputs. In computer simulation,
an ASE controller and a couple of ASE-CMAC neural network are trained to balance the
inverted pendulum on a cart. The number of trials until the controllers are established and
the learning performance of the controllers are evaluated to find that generalization ability
of the CMAC improves the speed of the ASE-reinforcement learning enough to realize
the cartpole control system. Copyright© 2005 IFAC

Keywords: CMAC, learning system, reinforcement learning, quantized states, neural
networks

1. INTRODUCTION

Reinforcement learning is a method that, through
interaction with its environment, learns by receiving
feedback in the form of a numerical reward that is
commensurate with the appropriateness of the
response. In the last fifteen to twenty years, it has
attracted an increasing interest in neural networks
and intelligent control communities (Kaelbling, et
al., 1996) and is considered as an important
alternative to conventional methods to intelligent
control. Reinforcement learning techniques are good
especially when input-output training data are not
available. However, reinforcement learning has some
drawbacks such as many trials to establish a control
strategy, slow convergence, the large state space
problem and the large action space problem (Zhao
and Liu, 1996).

There has been much effort to improve the
performance of the reinforcement learning methods
by using various intelligent control techniques. As a

major development of reinforcement learning, the
problem solving capacities of a reinforcement
learning system with two adaptive neural elements,
Adaptive Search Element (ASE) and Adaptive Critic
Element (ACE), were illustrated (Barto, et al., 1983).
A stochastic real-valued reinforcement learning
algorithm for learning real-valued control outputs
(Gullapalli, et al., 1994) and a stochastic competition
learning based on the concept of genetic optimization
were introduced to reduce the difficulties of the large
action space problem (Zhao and Liu, 1996). An
adaptive state space recruitment strategy (Kondo and
Ito, 2002), and a reinforcement learning algorithm
which allows generalization of learning by using
previously learned knowledge (Ricordeau, 2003) are
the works to implement generalization capability in
reinforcement learning.

In some developments of reinforcement learning,
CMACs were used. To improve implementation
efficiency and performance, BOXES-ASE/ACE
reinforcement learning algorithm (Michie and

Chambers, 1968) was modified with a state history
queue and a dynamic link table which implements
the CMAC state association (Hu and Fellman, 1994).
To produce continuous outputs for controller trained
by a stochastic reinforcement learning algorithm, a
CMAC-based neural network was used (Han and
Zhang, 1994). Both actor and critic were
implemented by CMAC in examining the use of
prior knowledge in the form of a stable controller
that generates control inputs in parallel with a
reinforcement learning system (Rosenstein and Barto,
2004).

In particular, there are many studies that use CMACs
for generalization of value functions in reinforcement
learning (Sutton and Barto, 1998). Most CMAC-
based reinforcement learning algorithms use hash
coding technique so that similar states in the input
space will have similar outputs or value functions. In
a self-learning control scheme, Lin and Kim (1991)
integrated CMAC into the BOXES-ASE/ACE
reinforcement learning algorithm where CMACs
were used for storing learning parameters). However,
generalization of the ASE weights by CMAC affects
the control performance indirectly. To deal with
tasks with a continuous state space, Sutton (1996)
combined CMAC with a reinforcement learning
based on the sarsa algorithm. Unfortunately, how the
CMACs were combined with the reinforcement
learning algorithm and how CMACs were trained
was not described. To take the possibility of having a
similar output value function for non-adjoining input
areas, Xu et al., (2002) modified CMAC structure
where the modification requires a priori knowledge
of learning control problems. In this case, the CMAC
structure should be dependent on the characteristics
of the learning system. Wei and Zhao (2003)
introduced variable resolution discretization of input
space to improve the generalization capability of the
CMAC-based reinforcement learning. However,
discretizing the input space with variable resolution
is another issue to be resolved.

Some previous works are application specific while
others require certain conditions for combining
CMAC with reinforcement learning methods.
However, CMAC itself is a good parametrized
function approximator for reinforcement learning
without modification of its structure or conditioning
of its parameters. Thus, CMAC can be generally
combined with any reinforcement learning algorithm
only by considering its training.

In this paper, CMAC is integrated into the ASE
where the ASE output is used as learning examples
for the CMAC that is trained by the Neighbourhood
Sequential Training (NST) method (Thompson and
Kwon, 1995; Sayil and Lee, 2002). In Sections 2 and
3, the ASE-reinforcement learning scheme and the
NST training aspect of CMAC is briefly studied.
And the ASE/CMAC neural network is trained to
balance the inverted pendulum on a cart in Section 4.
The learning performance of the ASE controller and
ASE/CMAC neural network was compared to find
that generalization ability of CMAC improves the

ASE-reinforcement learning in terms of learning
speed.

2. ASE-REINFORCEMENT LEARNING

In this section, for the purpose of presenting the idea
of integrating CMAC into the ASE controller, ASE
reinforcement learning scheme for cartpole control
system is briefly discussed.

The ASE controller consists of a decoder and a
neuron like adaptive element, ASE (Fig. 1). The
decoder, at each time step, receives a state vector
giving the state of the cartpole system. It transforms
each state vector into a n -component binary vector

1 2() (, , ,)nt a a a=A … whose components are all zeros
except for a single one ia in the position
corresponding to the pathway that represents the
system state to decoder. The value of ia is 1.0.

For the transformation by the decoder, each state
variable should be partitioned into certain number of
intervals. Suppose that there are 4, 4, 7, and 4
intervals, respectively, for the four state variables as
following:

 : [2.4, 0.96, 0.48,1.92, 2.4]x − − ,
 : [2.0, 0.8, 0.4,1.6, 2.0]x − −� ,
 : [12.0, 8.19, 4.41, 0.63, 3.15, 6.93,10.71,12.0]φ − − − − ,

 : [150.0, 60.0, 30.0,120.0,150.0]φ − −�

where x (m) and x� (m/s) are the position and velocity
of the cart on the track, and φ (deg) and φ� (deg/s)
the angle and angular velocity of the pole with
respect to the vertical axis of the cart.

Then, the intervals are combined to form
448 4 * 4 * 7 * 4= regions. These regions correspond

to the output pathways of the decoder. Thus, the
decoder has 448n = binary valued output pathways.
These pathways are connected to ASE.

The ASE consists of n weights, 1 2, , , nw w w" . The
element has n non-reinforcement input pathways
from the decoder, a single reinforcement input
pathway, and a single output pathway. It must be
trained so that its weights are established and its
output based on the weights can be used to determine
the direction of applying the force of fixed
magnitude. However, in the training process, the

 ASE
w1

w2

wn

y(t)

Reinforcement

+1 right
-1 left

r(t)

DECODER CARTPOLE

SYSTEM

State Vector
•

(x, x, φ, φ) •

a2

a1

an

• • • • • •

Fig. 1. Scheme of ASE controller (Barto, 1983).

equations of motion for the cartpole system are not
known to ASE, and since the learning is
unsupervised, there are no control laws to imitate
either.

Here, it is noted that the weights of ASE and the
eligibility of the pathways are only related to the n
non-reinforcement input pathways, but not directly to
the state vectors. Also, through the decoder, some
state vectors correspond to a common pathway. Then,
it is possible to specify a “special system state”
among many states that are decoded into the pathway.
Whenever a specific pathway is invoked, it is
possible to consider that the system is described by
the special system state even though actual system
state is one of those states that correspond to the
specific pathway. This strategy does not disturb the
original ASE-reinforcement learning scheme,
including the weights and eligibility update rules.
Let’s call the special state the pathway state. Then,
every weight in ASE connected to a pathway of the
decoder is related to a pathway state in the
continuous state space.

Same reasoning can be applied to each state variable.
Since the pathway state is defined by 4 components,
those values for the components are the special
values for individual state variable. For example, the
special values of 4 state variables for the pathway
states are as following, where the selection of these
values are based on the NST consideration:

 x : -2.16, -0.72, 0.72, 2.16

:x� -1.8, -0.6, 0.6, 1.8
 :φ -11.34, -7.56, -3.78, 0.0, 3.78, 7.56, 11.34

 :φ� -135.0, -45.0, 45.0, 135.0

Let’s call these special values the pathway values of
the variables. Then, the pathway states for the very
first and last pathways could be (-2.16, -1.8, -11.34, -
135.0) and (2.16, 1.8, 11.34, 135.0), respectively.

Based on the ASE output, a fixed magnitude of force
is applied to cart in either direction. And, the
operation of cart is evaluated as failure when the cart
hits the track limits or the pole falls beyond the
specified angles. Then, the evaluation signal is fed to
ASE as a reinforcement signal. Refer to the paper by
Barto, at al. (1983) for the details about the ASE
definition and the ASE-reinforcement learning
scheme.

Applying the fixed magnitude of force is a way of
producing output by ASE, since the ASE only learns
to decide the direction of the force to apply. However,
it is known that applying variable force produces
generally better control. Therefore, it is worthwhile
to consider the capability of control forces between 0
and a fixed magnitude as the ASE output.

The variable control forces can be generated, for
example, between two extreme fixed magnitudes of
control forces by assuming an unknown
approximating function that would relate the states
close to pathway states to those variable control
forces. The approximating function can be assumed

by CMAC since CMAC is very good at generalizing
learned information.

3. INTEGRATING CMAC INTO
ASE CONTROLLER

The CMAC (Albus, 1975) is described by a series of
mappings: S-to-M, M-to-A, and A-to-p mapping,
where S denotes the continuous state space, M the
intermediate state space, and A the quantized state
space. In the space A, there are a certain number of
look-up tables. The output of the CMAC, p, is a
scalar value that is a summation of values of one
entry from each look-up table.

In the S-to-M mapping for balancing the inverted
pendulum, each of the 4 state variables is quantized
into K intermediate variables. The number K is a
parameter that determines the range of generalization
in storing the learned information in look-up tables.
And each intermediate variable is at different level of
quantization. Suppose, 3K = . Then, there are 3
intermediate variables at 3 levels of quantization. By
using the same partitions of state variables as in the
ASE decoder, the first intermediate variable of each
state variable is partitioned.

For the NST, every intermediate variable of a state
variable should be partitioned into the same number
of discrete intervals. This is to prevent some entries
in the look-up tables from being uncovered by
generalization. For example, when x is quantized
into 3 levels, then, at 3 quantization levels, the 3
intermediate state variables for x are partitioned into
4 intervals respectively as following:

 The first level: [2.4, 0.96, 0.48,1.92, 2.4]− −
 Second level: [2.4, 1.44, 0.0,1.44, 2.4]− −
 Third level: [2.4, 1.92, 0.48, 0.96, 2.4]− − −

Of course, the partition at the first level is the same
as the one in the ASE. In particular, the sizes of the
4th interval in the first level, [1.92, 2.4] and the first
interval in the 3rd level, [-2.4, -1.92] are much smaller
than other intervals. This is due to the consideration
of the NST method.

Then, a system state is represented by a set of
K intermediate state vectors, one from each

quantization level. There are 448 sets of such vectors
in the space M. Only the first among K element
intermediate state vectors is known to the decoder.

In the M-to-A mapping, every combination of the
intervals of each intermediate variable at the same
level should construct a look-up table with 448
entries in a quantized state space, A. Then, for 3K = ,
there are 3 look-up tables. Because of the unique
coding method of CMAC, a system state in S is
mapped into 3 entries, one for each look-up table in
the space A. Components of each intermediate state
vector of the set of K intermediate state vectors play
a role of key for an identifier of the entry of each
look-up table.

Establishing the contents of the look-up tables
depends on the output of ASE and CMAC training
method. However, careless training of CMAC will
cause learning interference and result in bad contents
in the look-up tables. Hence, the NST method is
essential for training the CMAC integrated into the
ASE controller.

The CMAC can be integrated into the ASE controller
as shown in Fig. 2. The output of ASE, ()y t , is used
as learning examples to train the CMAC. The output
pathways of decoder are represented by the pathway
states, and the pathway states are defined by the
pathway values of each variable. The addresses of
the pathway states in the look-up tables are fixed,
since the pathway values of each variable are
prescribed and fixed.

In fact, the pathway states are all mapped into
different neighbourhood in the look-up tables of
CMAC and they are all strangers to each other. The
fixed addresses represent every different
neighbourhood. Then, the NST method is for training
the CMAC in such a way that training of a
neighbourhood does not disturb other neighbourhood.
In turn, NST method makes the learning by CMAC
for a pathway state free from learning for other
pathway states.

Learning the training examples from ASE is only
with the pathway states that correspond to 1 / K of the
intermediate states in the space M. For other states,
no direct learning is available due to the NST method.
Then, for (1) /K K− of the intermediate states, direct
learning does not occur. However, these intermediate
states belong to 2 neighbourhoods in the space A. So,
the content of look-up tables for those intermediate
states in space A is established by the generalization
of learning due to the mechanism of the hash coding.

In the A-to-p mapping, the scalar values of K entries
of the K look-up tables are summed up to produce
discrete outputs of CMAC, where p denotes a scalar
value in the action space.

If a system state is mapped into the same region in
the space A as that is looked upon by the pathway
state, the scalar value must be the same as ()y t ,

which was determined by the ASE through
reinforcement learning and provided for training of
CMAC. For the rest of the system states, the
magnitudes of the output values are less than the
magnitude of ()y t .

4. EXAMPLE: A CARTPOLE SYSTEM

The cartpole system is a well-known test bed for
development of various neural networks, where a
pole is hinged to a cart that moves on track to its
right or left direction (Fig. 3). The pole rotates about
the hinge. The control task is to keep the pole
vertically balanced and the cart within the track
boundaries.

For the cartpole system, the 4th order Runge-Kutta
method with a time step of 0.02 seconds was used to
solve the friction dynamics equations with the
cartpole parameters in (Barto, et al., 1983). With the
solution, the outcome of the ASE controller is
evaluated only in terms of the failure or success of
the system, where failure is when the pole falls
beyond 12.0± degree or the cart hits the track
boundary at 2.4± m. The equations of motion of the
cartpole system are not known to the controller, but
the state vector describing the system’s state at each
time step is known. That is, the cartpole system is
considered as a black box by the reinforcement
learning system. The noise in producing the ASE
output was neglected in the learning process.

 The CMAC was trained by NST method. Then, the
ASE output is distributed while it is stored in the
look-up tables. For the output of ASE/CMAC where
ASE is with 12.0F = ± (N), and CMAC with 3K = ,
there are 4 discrete forces such as 12.0± (N),

8.0± (N), 4.0± (N), and 0 (N).

Table 1 shows the numbers of trials until ASE and
ASE/CMAC with 3K = succeeded in balancing the
pole with 3 consecutive runs for 30 trial cases. For
example, for the case No. 1, ASE succeeds in
balancing the pole at the 113th trial by applying

10.0F = ± (N) to the cart at every time step. For Two
different systems are tested for the ASE/CMAC , one
with 10.0F = ± (N) and the other with 12.0F = ± (N).
The trial values of x (m) and φ (rad) were set at the
midpoint of each interval in the partitions of the
variables for the decoder. Particularly, all x� and
φ� values were set at 1.0 (m/sec) and 0.2 (rad/sec),

ASE

 a2

a1

an

w1
w2

wn

y(t)
Reinforcement

r(t)

DECODER
CARTPOLE

SYSTEM

State Vector
• (x, x, φ, φ) •

• • • • • •

S-to-M
M-to-A

QUNATIZER
LOOK-UP
TABLES

A-to-p

CMAC

discrete
 forces

Fig. 2. An ASE/CMAC neural network where a

CMAC is integrated into ASE controller. ASE
provides the learning information for CMAC.

F

φ

x

F

φ

x

F

φ

x

Fig. 3. A cartpole system.

respectively, following the work by Geva and Sitte
(1993).

The cases No. 25 through No. 30 are tough trial
states where the cart starts near the right boundary of
the track with initial velocity of 1.0 (m/sec). In these
cases, every controller failed when the cart hits the
right boundary of the track just after a few time
steps. In Table 1, F implies that the controller could
not learn to balance the pole until the 2001st trial.

Observing Table 1, one can see that the ASE
controller runs far more number of trials for most of
the trial states, although there are some cases for
which ASE/CMAC did try more runs. The
ASE/CMAC learns faster than the ASE controller for
most cases. Moreover, the ASE/CMAC with
increased force, 12.0F = ± (N), succeeded in
learning even faster for some cases. It was observed
that, for some cases, ASE/CMAC spent more trials
when the forces are less than 10 (N). In view of
realizing the cartpole system, the ASE controller
learns too slowly. The number of trials, for instance,
more than 20, is just too much to be realistic.

To see the learning performance, initially the
ASE/CMAC with 3K = and 12.0F = ± (N) was

trained for the neutral state (0.0, 0.0, 0.0, 0.0). This is
a simple state to realize for experiment and the
controller tried 15 times to learn the state. With the
learning of the neutral state, the controller was able
to balance the pole from the state (-1.5, 0.0, 0.0, 0.0)
right away without failure. Then, the controller failed
1 trial before it could learn the state (1.5, 0.0, 0.0,
0.0). It took 9 trials to learn the state (2.0, 0.0, 0.0,
0.0) and 1 trial for the state (-2.0, 0.0, 0.0, 0.0). With
those learning experience, the controller could even
learn, without failure, the trial case No. 6 for which
the controller failed previously. This means that the
ASE/CMAC neural network is able to learn fast as
well as to generalize learning effectively.

Figure 4 shows the graph of the cart position and
pole angle versus time when the ASE/CMAC
with 3K = and 12.0F = ± (N) neural network was
tested for the trial case No. 6. Although there are
some residual oscillations of the cart and the pole, it
is obvious that the controller succeeds in balancing
the pole while moving the cart back and forth a little
bit near the position 1.8x = (m). Here, it is noted
that the system behaviour described by Fig. 4 is not
typical for the trial state. The system behaviour by
ASE controller is very dependent on other factors,
such as the partition of state variables. With training
through some other trial states, the ASE/CMAC
neural network with 3K = and 12.0F = ± (N) could
balance the pole from most of the cart positions.
Thus, the network is a realizable controller.

The ASE/CMAC with 4K = and 12.0F = ± (N) was
also tested. However, learning speed was not as
good as that of the ASE/CMAC with

3K = and 12.0F = ± (N). This suggests that more
study is required on the parameters that affect the
integration of CMAC into the ASE-reinforcement
learning and the training of the network, reminding
that bigger K has an influence on the broader range
of generalization.

To measure the control quality, the force update
interval was increased to 0.03 seconds, in which case
no trial states could be learned. As explained by
Geva and Sitte (1993), the longer interval is too
severe for the ASE controller and even for the
ASE/CMAC neural network.

5. CONCLUSION

time t(sec)

0 50 100 150 200 250 300 350

ca
rt

po
si

tio
n

x(
m

)

-3

-2

-1

0

1

2

3

po
le

 a
ng

le
 φ

(r
ad

)

-3

-2

-1

0

1

2

3

cart position
pole angle

Fig. 4. Cart position and pole angle versus time for

the ASE/CMAC with 3K = and 12.0F = ± (N).

Table 1. The Numbers of trials until ASE controller
and ASE/CMAC neural networks succeed in

balancing the pole with 3 consecutive runs for given
trial states.

ASE/CMAC, K=3No Trial States ASE
F=10.0 F=12.0

1 (-2.0, 1.0, 0.01, 0.2) 113 1562 18
2 (-2.0, 1.0, 0.08, 0.2) 138 125 66
3 (-2.0, 1.0, 0.15, 0.2) 157 76 22
4 (-2.0, 1.0, -0.04, 0.2) 350 68 266
5 (-2.0, 1.0, -0.11, 0.2) 254 1205 60
6 (-2.0, 1.0, -0.16, 0.2) 332 14 F
7 (-1.2, 1.0, 0.01, 0.2) 299 32 18
8 (-1.2, 1.0, 0.08, 0.2) 355 12 23
9 (-1.2, 1.0, 0.15, 0.2) 419 F 179

10 (-1.2, 1.0, -0.04, 0.2) 532 60 204
11 (-1.2, 1.0, -0.11, 0.2) 352 189 189
12 (-1.2, 1.0, -0.16, 0.2) 66 170 27
13 (0.0, 1.0, 0.01, 0.2) 492 136 262
14 (0.0, 1.0, 0.08, 0.2) 230 562 364
15 (0.0, 1.0, 0.15, 0.2) 187 201 52
16 (0.0, 1.0, -0.04, 0.2) 253 18 F
17 (0.0, 1.0, -0.11, 0.2) 314 52 F
18 (0.0, 1.0, -0.16, 0.2) 454 78 24
19 (1.2, 1.0, 0.01, 0.2) 267 F 13
20 (1.2, 1.0, 0.08, 0.2) 456 F 786
21 (1.2, 1.0, 0.15, 0.2) 525 495 141
22 (1.2, 1.0, -0.04, 0.2) 66 52 F
23 (1.2, 1.0, -0.11, 0.2) 997 177 F
24 (1.2, 1.0, -0.16, 0.2) 1549 18 F
25 (2.0, 1.0, 0.01, 0.2) F F F
26 (2.0, 1.0, 0.08, 0.2) F F F
27 (2.0, 1.0, 0.15, 0.2) F F F
28 (2.0, 1.0, -0.04, 0.2) F F F
29 (2.0, 1.0, -0.11, 0.2) F F F
30 (2.0, 1.0, -0.16, 0.2) F F F

For a function approximation in the ASE-
reinforcement learning, CMAC was integrated into
the ASE controller. The CMAC uses the ASE output
as learning examples and the output is generalized by
Neighbourhood Sequential Training method and
stored in the look-up tables. Analysis of the
simulation data based on the number of trial times
for various trial states leads to conclude that
ASE/CMAC neural network learns faster than the
ASE and it can be a realistic controller.

A key for integrating CMAC into the ASE controller
in the ASE/CMAC neural network is to specify the
pathway states for ASE and to use NST method in
training the CMAC. In addition, the quantization of
continuous state space and the partition of state
variables are performed by the consideration of the
NST method.

REFERENCES

Albus, J. S. (1975), “Data Storage in the Cerebellar

Model Articulation Controller (CMAC),” Journal
of Dynamic Systems, Measurement and Control,
Transactions ASME, Series G, Vol. 97, No. 3,
September 1975, pp. 228-233.

Barto, A. G., R. S. Sutton, and C. W. Anderson
(1983), “Neuronlike Adaptive Elements That Can
Solve Difficult Learning Control Problems,”
IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-13, No. 5,
September/October 1983, pp. 834-846.

Fujisawa, S., R. Kurozumi, T. Yamamoto, and Y.
Suita (2002), “Path Planning for Mobile Robots
using an Improved Reinforcement Learning
Scheme,” Proceedings of the 2002 IEEE
International Symposium on Intelligent Control,
27-30 October 2002, pp. 67-74.

Geva, S. and J. Sitte (1993), “A Cartpole Experiment
Benchmark for Trainable Controllers,” IEEE
Control Systems, October 1993, pp. 40-51.

Gullapalli, V., J. A. Franklin, and H. Benbrahim
(1994), “Acquiring Robot Skills via
Reinforcement Learning,” IEEE Control Systems,
February 1994, pp. 13-24.

Han, M. and B. Zhang (1994), “Control of Robotic
Manipulators using a CMAC-Based
Reinforcement Learning System,” Proceedings of
the IEEE/RSJ/GI International Conference on
Intelligent Robots and Systems 1994, Volume 3,
2-16, September 1994, pp. 2117-2122.

Hu, Y. and R. Fellman (1994), “A Hardware
Efficient Implementation of a Boxes
Reinforcement Learning System,” Proceedings of
IEEE International Conference on Neural
Networks, Vol. 4, 27 June – 2 July 1994, pp.
2297-2302.

Kaelbling, L. P., M. L. Littman, and A. W. Moore
(1996), “Reinforcement Learning: A Survey,”
Journal of Artificial Intelligence Research, Vol.
4, 1996, pp. 237-285.

Kondo, T. and K. Ito (2002), “A Reinforcement
Learning using Adaptive State Space

Construction Strategy for Real Autonomous
Mobile Robots,” Proceedings of the 41st SICE
Annual Conference, Vol. 5, 5-7 August, 2002, pp.
3139-3144.

Kretchmar, R. M. and C. W. Anderson (1997),
“Comparison of CMACs and Radial Basis
Functions for Local Function Approximators in
Reinforcement Learning,” Proceedings of
International Conference on Neural Networks,
Vol. 2, 9-12 June 1997, pp. 834-837.1997.

Lin, C. and H. Kim (1991), “CMAC-Based Adaptive
Critic Self-Learning Control,” IEEE Transactions
on Neural Networks, Vol. 2, No. 5, September
1991, pp. 530-533.

Michie, D. and R. A. Chambers (1968), “’BOXES’
as a Model of Pattern-Formation,” Towards a
Theoretical Biology, pp. 206-215.

Ricordeau, M. (2003), “Q-Concept-Learning:
Generalization with Concept Lattice
Representation in Reinforcement Learning,”
Proceedings of the 15th IEEE International
Conference on Tools with Artificial Intelligence,
3-5 November 2003, pp. 316-323.

Rosenstein, M. T. and A. G. Barto (2004),
“Reinforcement Learning with Supervision by a
Stable Controller,” Proceedings of the 2004
American Control Conference, Boston,
Massachusetts, June 30 – July 2, 2004, pp. 4517-
4522.

Sayil, S. and K. Y. Lee (2002), “A Hybrid Maximum
Error Algorithm with Neighborhood Training for
CMAC”, Proc. 2002 International Joint
Conference on Neural Networks, 2002 World
Congress on Computational Intelligence,
Honolulu, Hawaii, May 12-17, pp. 165-170.

Sutton, R. S. (1996), “Generalization in
Reinforcement Learning: Successful Examples
using Sparse Coarse Coding,” Advances in Neural
information Processing Systems 8, 1996, pp.
1038-1044.

Sutton, R. S. and A. G. Barto (1998), Reinforcement
Learning: An Introduction, The MIT Press,
Cambridge, Massachusetts.

Thompson, D. E. and S. Kwon (1995),
“Neighborhood Sequential and Random Training
Techniques for CMAC,” IEEE Transactions on
Neural Networks, Vol. 6, No. 1, January 1995, pp.
196-202.

Wei, Y. and M. Zhao (2003), “Effective Strategies
for Complex Skill Real-time Learning using
Reinforcement Learning,” Proceedings of the
2003 IEEE International Conference on Robotics,
Intelligent Systems and Signal Processing,
October 2003, pp. 388-392.

Xu, X., D. Hu, and H. He (2002), “Accelerated
Reinforcement Learning Control using Modified
CMAC Neural Networks,” Proceedings of the 9th
International Conference on Neural Information
Processing, Vol. 5, pp. 2575-2578.

Zhao, L. and Z. Liu (1996), “A Genetic Algorithm
for Reinforcement Learning,” Proceedings of the
IEEE International Conference on Neural
Networks, Vol. 2, 3-6 June 1996, pp 1056-1060.

