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Abstract: In this paper, we first examine several criteria for system identification with
quantized output data and show that the ordinary parameter estimator for quantization-free
case is still reasonable according to those criteria. Then, we give the optimal quantization
schemes for minimizing the estimation errors under a constraint on the number of the
quantized subsections of the output signals or the expectation of the optimal code length
when the quantized data is encoded.Copyright c©2005 IFAC

Keywords: identification, quantization, least-squares method, maximum likelihood
principle

1. INTRODUCTION

In the last few years, quantization problem of signals
to reduce the information of the transmitted signals in
controlled systems has been discussed actively by sev-
eral research groups and interesting results have been
achieved (Wong and Brockett, 1997, 1999; Brockett
and Liberzon, 2000; Nair and Evans, 2000; Elia and
Mitter, 2001; Nair and Evans, 2002; Tsumura and
Maciejowski, 2003). Compared to this activity in the
stabilization or estimation problem, the quantization
problem for system identification has not been ade-
quately considered, although it is also an important
subject when networked control systems are partially
or totally unknown.

From such view point, this problem was considered
in (Tsumura and Maciejowski, 2002) and an optimal
quantization scheme for minimizing estimation errors
under a constraint on the number of levels of the
quantized signals was given. The optimal quantization
is not uniform and the profile of the distribution of
the quantized subsections was shown. Moreover, its
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extension to more general case with high resolution
quantizers was also given in (Tsumura, 2004).

In those previous researches, the optimal quantizers
were given on a condition of applying the ordinary
parameter estimation; least squares method for normal
continuous I/O data. This problem setting arouses a
question on the reasonability of such ordinary param-
eter estimation for the quantized data.

In this paper, we first examine this reasonability and
show that the ordinary parameter estimation for the
quantization-free data is still optimal for several cri-
teria in an asymptotic situation with high resolution
quantizater. Then, we give optimal analytic quantiza-
tions of signals for such criteria. The solutions are
simple functions of the distribution density of input
signals and we can easily figure out the profile of the
density of the number of quantized subsections.

2. CRITERIA AND OPTIMAL ESTIMATORS

In this paper, we consider to derive optimal quantizers
in analytically simple forms for intuitive understand-
ing the essential property of optimal quantization and
consider system identification for a simple MA model.
The plant is:



y(i) = q(yo(i) + w(i)), yo(i) = φ(i)θ, (1)

φ(i) := [ u(i) u(i− 1) · · · u(i− n + 1) ] ,

θ := [ θ1 θ2 · · · θn ]T ,

wherew is a noise andq is a quantizer defined by

q(y) := sgn(y)ȳj , y ∈ Sj , ȳj ≥ 0, S0 := {y = 0} ,

Sj := {y : dj−1 < y ≤ dj} , j > 0,

Sj := {y : dj−1 ≤ y < dj} , j < 0,

d0 = 0 < d1 < d2 · · · , d−j = −dj . (2)

In the case of quantization-free, the estimated parame-
ter θ̂ using the least squares method with I/O datau(i)
andy(i) = yo(i) + w(i) is given by

θ̂ = (UTU)−1UTY, (3)

U := [ φ(1)T φ(2)T · · · φ(N)T ]T ,

Y := [ y(1) y(2) · · · y(N) ]T .

The estimation (3) is also reasonable according to
the criterion of the maximum likelihood with Gaus-
sian noise. With respect to this fact, a question on
such property for the case of quantized data arises.
In the followings of this section, we focus on show-
ing the reasonability of (3) whenY = Y :=
[ y(1) y(2) · · · y(N) ]T.

2.1 Least Squares Method

In this subsection, we will show the reasonability of
(3) with respect to the criterion of the least squares
method. A quantizedy meansy ∈ Sj for somej, then
we introduce a one-parameter representation ofy as

[y](s) := (1− s)yl + syu, 0 ≤ s ≤ 1, (4)

by using a parameters. Even if y represents a point
y as a special case, the representation (4) is still valid
with settingyl = yu = y.

Next we define operations on the sets as

[a] + [b]

:=
(
(1− sa)al + saau

)
+

(
(1− sb)b

l
+ sbb

u
)

,

[a] · [b]
:=

(
(1− sa)al + saau

) ·
(
(1− sb)b

l
+ sbb

u
)

.

We also define an inner by

〈[a], [b]〉 :=

1∫

0

1∫

0

[a] · [b]dsadsb. (5)

The 2-norm on the sets is defined by

‖[x]‖2 := (〈x, x〉) 1
2 .

When[x] is a sets vector, we can also define its 2-norm
in a similar way.

Assume the quantized observationsy(1), y(2), ... ,
y(N) are given, then, we define

[
Y

]
:=




(1− sy(1))yl(1) + sy(1)y
u(1)

(1− sy(2))yl(2) + sy(2)y
u(2)

...
(1− sy(N))yl(N) + sy(N)y

u(N)


 .

Let
∥∥∥[Y ]− [Uθ̃]

∥∥∥
2

2
(6)

be the criterion for estimation and it is calculated by

∥∥∥[Y ]− [Uθ̃]
∥∥∥

2

2

= 〈[Y ], [Y ]〉 − 2〈[Uθ̃], [Y ]〉+ 〈[Uθ̃], [Uθ̃]〉,
where

〈[Y ], [Y ]〉 =
∑

i

1
3

(
(yl(i))2 + yl(i)yu(i)

+ (yu(i))2
)
,

〈[Uθ̃], [Y ]〉= (Uθ̃)TY ,

〈[Uθ̃], [Uθ̃]〉= (Uθ̃)T(Uθ̃).

Then, (6) is reduced to

〈[Y ], [Y ]〉 − 2(Uθ̃)TY + (Uθ̃)T(Uθ̃)

and (3) with Y = Y is known to be its optimal
estimator.

The same conclusion with another least square crite-
rion is also derived. The reasonability of the normal
least squares method can be explained as follows: at
first, define the evaluated criterion for the estimatorθ̃
by

‖yo − ỹ‖22, (7)

whereỹ := Uθ̃ andyo is the noise-free true output. An
observationy means that the most possible true output
y′ is given by

y′ = arg max
y′′

fw(y − y′′),

wherefw is the appropriate probability density of the
noise w. Under a reasonable assumption:
arg maxw fw(w) = 0, we gety′ = y. Therefore,

‖y − ỹ‖22 (8)

is the reasonable evaluated criterion and its minimizer
θ̂ is given by (3).



Next we follow this procedure for the case of quan-
tized datay. The probability that the true output isyo,
is given by

P (yo|y) =
∫

[y]

fw(y − yo)dy.

If the width of the section[y] is enough small with
respect to the variance of the noisew, fw(y − yo)
is nearly constant in the section[y]. Then, we get an
approximation

P (yo|y) ∼ g−1(y)fw(y − yo).

With an assumption:arg maxw fw(w) = 0, the max-
imizer yo is yo = y, therefore, with respect to the
criterion (7), (8) withy = y is the reasonable criterion
and (3) with the substitutionY = Y is also derived as
the optimal estimator.

2.2 Maximum Likelihood Method

Maximum likelihood method is an essential criterion
for parameter estimation in the probabilistic approach.
In this subsection, we investigate this criterion for the
parameter estimation with quantized data.

Wheny(i) is observed, the likelihood of the parameter
θ with the MA model (1) is given by

P ([y](i)|θ) =
∫

[y]

fw(y − (Uθ)i)dy. (9)

When the quantizer is enough dense, lety be the center
of [y](i), then, (9) is approximated by

P ([y](i)|θ) ∼ g−1(y(i))fw(y(i)− (Uθ)i).

If w(i) (i = 1, 2, . . .) are mutually independent
random signals, the probability of the observations
y(1), y(2), ... ,y(N) is given by

N∏

i=1

P ([y](i)|θ). (10)

Therefore, the maximum likelihood ofθ is given as
the maximizer of (10). With a calculation:

log
N∏

i=1

P ([y](i)|θ) =
∑

i

log g−1(y(i))

+
∑

i

log fw(y(i)− (Uθ)i), (11)

we know that the maximizer of (10) coincides with the
maximum likelihood estimator withy = y. From its
direct consequence, whenfw is a normal distribution,
then (3) with the substitutionY = Y is the reasonable

estimator even for the quantized data from the maxi-
mum likelihood criterion.

From the above discussions, we conclude that (3) with
Y = Y is the reasonable estimator according to the
criterion (6), (7), or (10) (case of Gaussian of noise).

3. OPTIMAL QUANTIZATION

3.1 Preliminaries

In Section 2, we derive (3) withY = Y is still a
reasonable estimator even in the case of quantized
data. With this result, in this section, we next consider
to derive the optimal quantizer by using the derived
θ̂. In (Tsumura and Maciejowski, 2002; Tsumura,
2004), minimization of the variance ofUTE with this
estimator was considered, whereE is the quantization
error vector defined byY = Yo + E + W . In this
paper, from the consistency of the criteria discussed in
Section 2, we consider to derive the optimal quantizers
with respect to

E
[
‖Yo − Uθ̂‖22

]
= E

[
WTUUTW

+ETUUTE + 2WTUUTE
]
. (12)

The quantizer affects only the second and the third
term in (12) and moreover when the quantization is
enough dense, the expectation of the second term can
be approximated as

E
[
ETUUTE

]
= E




n−1∑

k=0

(
N∑

i=1

u(i− k)e(i)

)2



∼NE

[
n∑

k=1

φ2
k(i)e2(i)

]
. (13)

The right hand side of (13) except forN is written by

E

[
n∑

k=1

φ2
k(i)e2(i)

]
=

∫ (
n∑

k=1

φ2
k(i)

)
e2(i)

× fφ(φ1(i), . . . , φn(i))fw(w(i))

× dφ1(i) · · · dφn(i)dw(i) (14)

wherefφ is the joint density ofφ1, φ2, . . . , φn.

Now we define subsetsΦj of the regression vectorφ
associated with the subsectionSj by

Φj := {φ : y = φθ ∈ Sj} , (15)

and consider the following variable transformation
(Tsumura and Maciejowski, 2002):

y = φθ = φT · T−1θ =: φ̃θ̃, T−1θ =
[

θ̃1

O

]
,



whereT is an orthogonal matrix. Then,Φj is repre-
sented as

Φj =
{

φ : φ̃1θ̃1 ∈ (dj−1, dj ]
}

, j > 0.

We also define subsections on the space ofφ̃1:

Ij :=
{

φ̃1 : φ̃1θ̃1 ∈ (dj−1, dj ]
}

, j > 0,

then, the subsectionsSj , Φj , and Ij correspond to
each other, and the probability distribution ofy de-
pends only on that of̃φ1. Therefore, in order to analyse
the probability distribution ofy and the errore, the
variableφ̃1 and its subsectionIj are convenient to deal
with.

Owing to the orthogonal transformation ofφ, (14) is
also given by

∫ (
n∑

k=1

φ2
k(i)

)
e2(i)fφ(φ1(i), . . . , φn(i))

× fw(w(i))dφ1(i) · · · dφn(i)dw(i)

=
∫ (

n∑

k=1

φ̃2
k(i)

)
e2(i)fφ̃(φ̃1(i), . . . , φ̃n(i))

× fw(w̃(i))dφ̃1(i) · · · dφ̃n(i)dw̃(i), (16)

wherefφ̃(φ̃1, φ̃2, . . . , φ̃n) is the joint density ofφ̃1,

φ̃2, . . . , φ̃n. Here letφ denote

φ := [ φ̃2 φ̃3 · · · φ̃n ]T ,

then, the marginal distribution densityfφ̃1
(φ̃1) on the

space of̃φ1 is defined by

fφ̃1
(φ̃1) :=

∫
fφ̃(

[
φ̃1 φ

T ]T
)dφ.

With the fact that the distribution ofe is only given by
that ofφ̃1, then (16) is written by

∫
e2

(
n∑

k=1

φ̃2
k

)
fφ̃(φ̃1, . . . , φ̃n)fw̃(w̃)

× dφ̃1 · · · dφ̃ndw̃

=
∫

e2 · σ2(φ̃1)fφ̃1
(φ̃1)fw̃(w̃)dφ̃1dw̃, (17)

whereσ(φ̃1) is defined by

∫ (
n∑

k=1

φ̃2
k

)
fφ̃(φ̃1, . . . , φ̃n)dφ̃2 · · · dφ̃n

=: σ2(φ̃1)fφ̃1
(φ̃1). (18)

On the other hand, the expectation ofUTE should be
zero, therefore,

E

[
N∑

i=1

(φk(i) · e(i))
]

=: N
∑

j

EΦj (φk(i) · e(i)) = 0. (19)

We can also approximateE[WTUUTE] as

E[WTUUTE]

∼N

∫
w · e · σ2(φ̃1)fφ̃1

(φ̃1)fw̃(w̃)dφ̃1dw̃.

From them, the essential part for the minimization of
(12) by the quantization is

E
[
ETUUTE + 2WTUUTE

]

∼N

∫
(e2 + 2w · e) · σ2(φ̃1)fφ̃1

(φ̃1)fw̃(w̃)dφ̃1dw̃.

(20)

With this in mind, we next consider the minimiza-
tion of (20) such thatEIj (φk(i) · e(i)) = 0 (∀j)
(or EIj (φ̃k(i) · e(i)) = 0) under constraints of the
total number of the quantized subsections or the code
length when the quantized data is optimally encoded.
The former case is called “fixed-rate quantization” and
the latter case is called “variable-rate quantization.”
The difficulty to solve these problems is the calcu-
lation of (20) or the quantities in the constraints in
analytic forms. In the following subsections, we solve
this difficulty for high resolution case.

3.2 Fixed-rate Quantization

The key idea to solve these problems is introducing the
following quantity on the distribution of quantization
subsections.

Definition 3.1. The quantity g(φ̃1) which satisfies
g(φ̃1)dφ̃1 is equal to the number of quantized sub-
sections indφ̃1, is called distribution density of the
number of quantized subsections.

Note that this quantity is the same introduced in (Ben-
nett, 1948; Lloyd, 1982) and from this definition,
g−1(φ̃1) represents the width of the quantization step
at φ̃1.

By using thisg, the minimization problem is written
as

min
g

E
[
‖Yo − Uθ̂‖22

]
. (21)

We next assume “smoothness” of the densityg(φ̃1)
andfφ̃1

(φ̃1) such that we can select the mean values



gi ∼ g(φ̃1) andfi ∼ fφ̃1
(φ̃1) for the subsectionIi

and

pi :=
∫

Ii

fφ̃1
(φ̃1)dφ̃1 =: fig

−1
i .

Moreover, by usingσ(φ̃1) of fφ̃ at φ̃1 defined in (18),
an approximation of (14) (or (16), (17)) can be given
by

∫
e2

(
n∑

k=1

φ̃2
k

)
fφ̃(φ̃1, . . . , φ̃n)fw̃(w̃)

× dφ̃1 · · · dφ̃ndw̃

=
∫

e2 · σ2(φ̃1)fφ̃1
(φ̃1)fw̃(w̃)dφ̃1dw̃

∼
∫

1
12

g(φ̃1)−2σ2(φ̃1)fφ̃1
(φ̃1)dφ̃1. (22)

Now we define the followings.

w :=

∞∫

0

w̃ · fw̃(w̃)dw̃ (23)

wo := w′|
∞∫

0

(w̃ − w′) · fw̃(w̃)dw̃ = 0 (24)

F (φ̃1) := σ2(φ̃1)fφ̃1
(φ̃1) (25)

As similar to (22),

∫
e · w ·

(
n∑

k=1

φ̃2
k

)
fφ̃1

(φ̃1, . . . , φ̃n)fw̃(w̃)

× dφ̃1 · · · dφ̃ndw̃

= 2wwo

∫
1
12

g(φ̃1)−2
(
σ2(φ̃1)fφ̃1

(φ̃1)
)′′

dφ̃1

(26)

is derived. Therefore,

E
[
ETUUTE + 2WTUUTE

]

∼N

∫
1
12

g(φ̃1)−2R(φ̃1)dφ̃1, (27)

R(φ̃1) := σ2(φ̃1)fφ̃1
(φ̃1)

+ 4wwo

(
σ2(φ̃1)fφ̃1

(φ̃1)
)′′

. (28)

From the above approximation, the original minimiza-
tion problem atN →∞ and high resolution case can
be replaced by the following:

gf(φ̃1) := arg min
g

∫
F(g(φ̃1), G(φ̃1))dφ̃1 (29)

s.t. G(φ̃min
1 ) = 0, G(φ̃max

1 ) = M, (30)

where

F(g(φ̃1), G(φ̃1)) :=
(

1
g(φ̃1)

)2

R(φ̃1) (31)

d

dφ̃1

G(φ̃1) = g(φ̃1). (32)

By employing the similar process in (Bennett, 1948;
Lloyd, 1982), we can derive the next result.

Proposition 3.1.The solution of (29) is:

gf(φ̃1) = KR(φ̃1)
1
3 (33)

K = D−1M (34)

D =
∫

R(φ̃1)
1
3 dφ̃1. (35)

Moreover, the optimized value is given by
∫
F(gf(φ̃1), Gf(φ̃1))dφ̃1 = D3M−2. (36)

From this result, the asymptotic optimal quantiza-
tion at high resolution case is easily calculated if the
marginal distribution of the regressor vectorfφ̃1

(φ̃1)
is known.

3.3 Variable-rate Quantization

In the previous subsection, we derived an optimal
quantizer to minimize the identification error under
the constraint of the number of quantization steps, i.e.,
fixed-rate quantization, in the case of high resolution.
On the other hand, for the purpose to reduce the
information of the observed data, it is more reasonable
to apply variable-rate coding for the quantized signals
and measure the mean code length as the quantity
of the information. According to this observation, we
consider the minimization of (21) under constraint of
the expectation of the optimal code length, that is,
variable-rate quantization, in high resolution case.

Let C(·) be an encoder which is a mapping from
source alphabets to code alphabets andl(·) the code
length. We regardq(φ̃1) as the corresponding source
alphabets, then,l(C(q(φ̃1))) represents the code length
of the code alphabets. The expectation of the variable-
rate optimal code length for a quantized signal has
relation with entropy of the source from the following
well-known proposition.

Proposition 3.2.(Shannon, 1948),
(Cover and Thomas, 1991) Letx be source alphabets,
then,

E[l(C(x))] ≥ H(x), (39)

whereH(x) represents the entropy ofx.

With this proposition, the optimization problem of the
quantizer for the code length is reduced to the same



problem under constraint of entropy of the quantized
signals.

On the other hand, the basic idea and tools to represent
the quantity (21) or the quantizer in high resolution
case are the same of the previous subsection. Then, we
can get the asymptotic approximation of the entropy of
the quantized signal:

H(f, g) :=
∑

i

−pi log pi

=
∑

i

−
∫

Ii

fφ̃1
(φ̃1)dφ̃1 log fig

−1
i

∼Hd(fφ̃1
)

+
∫
−fφ̃1

(φ̃1) log
(
g(φ̃1)−1

)
dφ̃1, (40)

where Hd(f) :=
∫ − log fdF . By using (40), we

consider the following problem for high resolution
case.

gv(φ̃1) := arg min
g

∫
F(g(φ̃1), G(φ̃1))dφ̃1(41)

s.t.H(f, g) = log M (42)

Note thatM is an expected number of quantization
steps in the sense of (42).

By employing the similar process in (Gish and Pierce,
1968; Berger, 1972), we can derive the next result.

Proposition 3.3.The solution of (41) is:

gv(φ̃1) = KMR(φ̃1)
1
2 fφ̃1

(φ̃1)−
1
2 (43)

K = exp L (44)

L :=−3
2
H(f)− 1

2

∫
fφ̃1

log R(φ̃1)dφ̃1

=
∫

fφ̃1
(φ̃1) log

fφ̃1
(φ̃1)

3
2

R(φ̃1)
1
2

dφ̃1 (45)

Moreover, the optimized value is given by
∫
F(gv(φ̃1), Gv(φ̃1))dφ̃1 = K−2M−2. (46)

As the previous proposition, the optimal quantizer for
the code length can be explicitly given by usingf(φ̃1).

4. CONCLUSION

In this paper, we investigated the reasonability of the
ordinary parameter estimator for the quantized data.
We showed that it is also reasonable for the criteria
of least squares errors or maximum likelihood. Then,
we extended the results of optimal quantization prob-
lem for system identification given by (Tsumura and
Maciejowski, 2002) and (Tsumura, 2004) for a crite-
rion given in this paper. We consider two cases of the

optimization: fixed-rate quantization and variable-rate
quantization. For high resolution case, we explicitly
derived the optimal quantizations and the minimized
quantization errors for these two cases.
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