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Abstract: In this paper, we first examine several criteria for system identification with
guantized output data and show that the ordinary parameter estimator for quantization-free
case is still reasonable according to those criteria. Then, we give the optimal quantization
schemes for minimizing the estimation errors under a constraint on the number of the
guantized subsections of the output signals or the expectation of the optimal code length
when the quantized data is encod€dpyright(©)2005 IFAC
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1. INTRODUCTION extension to more general case with high resolution
guantizers was also given in (Tsumura, 2004).

In the last few years, quantization problem of signals ) i )
to reduce the information of the transmitted signals in N those previous researches, the optimal quantizers
controlled systems has been discussed actively by sey€'e given on a condition of applying the ordinary
eral research groups and interesting results have beeRarameter estimation; least squares method for normal
achieved (Wong and Brockett, 1997, 1999; Brockett contln_uous I/0 data. Thls_ _problem settlr_lg arouses a
and Liberzon, 2000: Nair and Evans, 2000: Elia and questlon on.the reasonablhty of such ordinary param-
Mitter, 2001; Nair and Evans, 2002; Tsumura and ©ter estimation for the quantized data.
Maciejowski, 2003). Compared to this activity in the |n this paper, we first examine this reasonability and
stabilization or estimation problem, the quantization show that the ordinary parameter estimation for the
problem for system identification has not been ade- quantization-free data is still optimal for several cri-
quately considered, although it is also an important teria in an asymptotic situation with high resolution
subject when networked control systems are partially quantizater. Then, we give optimal analytic quantiza-
or totally unknown. tions of signals for such criteria. The solutions are

From such view point, this problem was considered s?mple functions of the.disFribution density Qf input
in (Tsumura and Maciejowski, 2002) and an optimal S|gngls and we can easily f|gure out the pr(_)flle of the
quantization scheme for minimizing estimation errors density of the number of quantized subsections.
under a constraint on the number of levels of the
guantized signals was given. The optimal quantization
is not uniform and the profile of the distribution of
the quantized subsections was shown. Moreover, its

2. CRITERIA AND OPTIMAL ESTIMATORS

In this paper, we consider to derive optimal quantizers
in analytically simple forms for intuitive understand-
1 K. Tsumura is with Department of Information Physics and ing the essential property of optimal quantization and
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Y1) = q(yo(i) + w (7)), yo(i) = ¢(i)0, (1) When([z] is a sets vector, we can also define its 2-norm
$(1) = [u(i) u(i—1) - w(i-n+1)], in a similar way.
0:=[0, 6y - gn]T) Assume the quantized observatiopd ), y(2), ... ,

7(N) are given, then, we define

wherew is a noise and is a quantizer defined by z
(1 = s51)7 (1) + s5yy*(1)

— — 7l — TR
a(y) =595, y € S, 4 2 0, So:= {y =0}, 7= | O I@TO 50T @)
Sj::{y:dj,1<y§dj},j>0> 1 ; —u
G ey ido <y<dl j<O (1 — sz T (N) + sy 7 (N)
do=0<dy <dg---, d_j = —dj. (@ Let
In the case of quantization-free, the estimated parame- H [7] - [Ué] H2 (6)

ter 6 using the least squares method with 1/0 dad

dy(i) =y, b o N o
andy (i) = yo (i) +w(i) is given by be the criterion for estimation and it is calculated by

6= U"U)"'UY, 3) - 2
U:=[¢()T @2)T - o(N)T]T, |71 - wa,
Yi=[y(1) y@) - y(\)]". —([V], [V]) — 2(U8], [V)) + ([Ud], [U6)),

The estimation (3) is also reasonable according towhere
the criterion of the maximum likelihood with Gaus-

sian noise. With respect to this fact, a question on =1 o 1 e 1w
such property for the case of quantized data arises. (YL IY]) = Z 3 (@' (@) +7 (D7)
In the followings of this section, we focus on show- ! g
ing the reasonability of (3) whety = Y = +@"(0)%)
[9(1) 52 -+ FN)IT 5 -
(o), [Y]) = (UO)'Y,

2.1 Least Squares Method )
Then, (6) is reduced to

In this subsection, we will show the reasonability of

(3) with respect to the criterion of the least squares (IV],[Y]) = 2(U6)Y + (U§)" (UF)
method. A quantizeg meang, € S; for somej, then
we introduce a one-parameter representation as and (3) withY = Y is known to be its optimal
estimator.
Gl(s):=(1—-9)7 +s7", 0<s<1, (4

The same conclusion with another least square crite-
rion is also derived. The reasonability of the normal
gleast squares method can be explained as follows: at

first, define the evaluated criterion for the estimator

by using a parametet. Even if j represents a point
y as a special case, the representation (4) is still vali
with settingg’ = 7% = v.

by
Next we define operations on the sets as )
Hyo_g||27 (7)
@ + [ o
o -, 3 —u wherey := U# andy, is the noise-free true output. An

= ((1-s7)a +sza") + <(1 —sp)b + s3b ) g observationy means that the most possible true output
@ - b y' is given by

= ((1 - s)a@ + sza") - ((1 — sp)b + sb ) y' = argmax fu(y — "),

We also define an inner by ) ) . )
wheref,, is the appropriate probability density of the

11 noise w. Under a reasonable assumption:
— J—
il : // (B)dsads;. 5) arg max,, f,(w) = 0, we gety’ = y. Therefore,
0

ly = 713 (8)

The 2-norm on the sets is defined by
is the reasonable evaluated criterion and its minimizer

Iz, == (7,7)7 . 0 is given by (3).



Next we follow this procedure for the case of quan-
tized datay. The probability that the true outputis,
is given by

P(yo|y) = /fw(y — Yo)dy
@

If the width of the sectiony] is enough small with
respect to the variance of the noise f,(y — y,)
is nearly constant in the sectigg|. Then, we get an
approximation
P(y0|y) ~ g_l(y)fw(y - yo)'
With an assumptionarg max,, f,,(w) = 0, the max-
imizer y, is y, = ¥, therefore, with respect to the
criterion (7), (8) withy = 7 is the reasonable criterion
and (3) with the substitutiolr = Y is also derived as
the optimal estimator.

2.2 Maximum Likelihood Method

Maximum likelihood method is an essential criterion

for parameter estimation in the probabilistic approach.

In this subsection, we investigate this criterion for the
parameter estimation with quantized data.

Wheny(i) is observed, the likelihood of the parameter
0 with the MA model (1) is given by

P([7](3)[6) = / fuly — U0y ()

(vl

When the quantizer is enough densejlbe the center
of [7](¢), then, (9) is approximated by
P([g1(0)|0) ~ g7 @) fu (@) — (UO):).

If w(@) ¢ = 1, 2,...) are mutually independent

random signals, the probability of the observations

,7(NV) is given by

N
[T P00
i=1

y(1),7(2), ..

(10)

Therefore, the maximum likelihood df is given as
the maximizer of (10). With a calculation:

N
log [T P((m1(3)16) = Zlog P I0)
+ Z log fu(F(i) — (U);), (11)

we know that the maximizer of (10) coincides with the
maximum likelihood estimator wity = 3. From its
direct consequence, wheh, is a normal distribution,
then (3) with the substitutiol’ = Y is the reasonable

estimator even for the quantized data from the maxi-
mum likelihood criterion.

From the above discussions, we conclude that (3) with
Y =Y is the reasonable estimator according to the
criterion (6), (7), or (10) (case of Gaussian of noise).

3. OPTIMAL QUANTIZATION
3.1 Preliminaries

In Section 2, we derive (3) with” = Y is still a
reasonable estimator even in the case of quantized
data. With this result, in this section, we next consider
to derive the optimal quantizer by using the derived
6. In (Tsumura and Maciejowski, 2002; Tsumura,
2004), minimization of the variance 6f* E with this
estimator was considered, whetds the quantization
error vector defined by = Y, + E + W. In this
paper, from the consistency of the criteria discussed in
Section 2, we consider to derive the optimal quantizers
with respect to

E {||YO - Ué||§} = E[WTUUTW

+ETUUTE +2WTUUTE]. (12)

The quantizer affects only the second and the third
term in (12) and moreover when the quantization is
enough dense, the expectation of the second term can
be approximated as

n—1

E[ETUUTE] =E [Z

k

oS s ].

(13)

The right hand side of (13) except fof is written by

B Zqﬁi(i)eQ(i)] - / (Za:i(i))
k=1

k=1
X f¢(¢1(i)7 SR ¢n(l>)fw(w(l>)
X dn (i) - deoa (i) (i)

wheref is the joint density oy, ¢, ...

(14)
’ d)n

Now we define subsetB; of the regression vectas
associated with the subsectiSn by

q)j I:{¢1y:¢9€Sj}, (15)

and consider the following variable transformation
(Tsumura and Maciejowski, 2002):

01

O )

y=o¢0 = ¢T-T7'0 =: 0, T7'0 = [



whereT is an orthogonal matrix. Ther®; is repre-
sented as

@ ={0: 610 € (@1, 41}, 7 >0,

We also define subsections on the space;of
I = {le L 10y € (dj—1, dj]}; Jj>0,

then, the subsectionS;, ®;, and I; correspond to
each other, and the probability distribution gfde-
pends only on that af,. Therefore, in order to analyse
the probability distribution ofy and the error, the
variableq% and its subsectioh; are convenient to deal
with.

Owing to the orthogonal transformation of (14) is
also given by

/ (’éaﬁi(i)) () folor0)...... 6u(0)
X fu(w(i))d1(i) - - - dn (i) dw(i)

:/ (iéi(i)) () f5(@1(), ..., fuli))
X fu (_w(i))dél(i) < depy, (i) dib (i),

where f5(¢1, b2, .., ¢y is the joint density ofp,,
b9, ..., dn. Here lety denote

(16)

6:=[ds &3 onl",

then, the marginal distribution densify, (¢1) on the
space ofp; is defined by

F5.60) = [ 1506, 371"

With the fact that the distribution efis only given by
that of ¢, then (16) is written by

IE (z ¢> P ) )
k=1

X d(;sl T d&ndﬁ]

= [ a0y, @ fa@)dhds, @)
whereo(¢,) is defined by
[ (3568) st st
k=1
= 0%(61) 15, (61)- (18)

On the other hand, the expectationlof E should be
zero, therefore,

E

N
> (i) - e@))]

=1

=N Z Eg, (¢x(i) - e(4)) = 0. (19)

We can also approximatelWTUUTE] as

EWTUU"E]
N [ et (60,60 fald)ddnd

From them, the essential part for the minimization of
(12) by the quantization is

E[E'UUTE +2W'UU"E]

N [(@ 20 €) (G0, 60 )b
(20)

With this in mind, we next consider the minimiza-
tion of (20) such thaft;, (¢x(i) - e(i)) = 0 (V)

(or Elj(ék(i) - e(i)) = 0) under constraints of the
total number of the quantized subsections or the code
length when the quantized data is optimally encoded.
The former case is called “fixed-rate quantization” and
the latter case is called “variable-rate quantization.”
The difficulty to solve these problems is the calcu-
lation of (20) or the quantities in the constraints in
analytic forms. In the following subsections, we solve
this difficulty for high resolution case.

3.2 Fixed-rate Quantization

The key idea to solve these problems is introducing the
following quantity on the distribution of quantization
subsections.

Definition 3.1. The quantity g(g?)l) which satisfies
g(¢1)de, is equal to the number of quantized sub-
sections indq@l, is called distribution density of the
number of quantized subsections.

Note that this quantity is the same introduced in (Ben-
nett, 1948; Lloyd, 1982) and from this definition,
g_i((bl) represents the width of the quantization step
ato;.

By using thisg, the minimization problem is written
as

min E [||YO - Ué||§] . (1)
g

We next assume “smoothness” of the den@i@l)
and f5 (¢1) such that we can select the mean values



gi ~ g(d1) and f; ~ f(;,l(&l) for the subsectiod;
and

pii= [ f3,(¢1)der = fig;"
/

Moreover, by using:(¢: ) of f; at¢é; defined in (18),
an approximation of (14) (or (16), (17)) can be given
by

[ (z ¢>) Fsrr )
k=1

> d<z31 ..

= [ @605, (o) fal@dinda

Ay dib

~ [ G590 G0, Gdh. @)
Now we define the followings.
w:= [ W- fg(0)dw (23)
/
wo=w'| [ (@ —w')- fo(d)dd=0 (24)
/
F(¢1) := (1) [, (1) (25)
As similar to (22),
/6 w - <Z($z> f(z;l(ggla"wqgn)fqb(w)
k=1
X dy - - - dppdid
— 9% LIS R 2~~~Nd~
= wwo/129(¢1) (U (¢1)f¢1(¢1)) $1
(26)
is derived. Therefore,
E[ETUUTE + 2WTUUTE]
N [ Geé) PRGN, @)
R(le) = 02(¢~51)f4;1(<2~51)
+ 4w, (235, (3) - (28)

From the above approximation, the original minimiza-
tion problem atN — oo and high resolution case can
be replaced by the following:

1(n) = argiin [ F(9(61), G(d)ddr (@9)
st.G(¢P™) =0, G(¢P™) = M, (30)

where

2
) R(¢1) (31)

d - -

—G(¢1) = g(1).
dgy

By employing the similar process in (Bennett, 1948;

Lloyd, 1982), we can derive the next result.

(32)

Proposition 3.1.The solution of (29) is:

9:(61) = KR(91)* (33)
K=D"'M (34)
D= [ R(Gv)¥din (35)
Moreover, the optimized value is given by
[ Flarlan. Gilad = par2 9)

From this result, the asymptotic optimal quantiza-
tion at high resolution case is easily calculated if the
marginal distribution of the regressor vectby (451)

is known.

3.3 Variable-rate Quantization

In the previous subsection, we derived an optimal
guantizer to minimize the identification error under
the constraint of the number of quantization steps, i.e.,
fixed-rate quantization, in the case of high resolution.
On the other hand, for the purpose to reduce the
information of the observed data, it is more reasonable
to apply variable-rate coding for the quantized signals
and measure the mean code length as the quantity
of the information. According to this observation, we
consider the minimization of (21) under constraint of
the expectation of the optimal code length, that is,
variable-rate quantization, in high resolution case.

Let C(-) be an encoder which is a mapping from
source alphabets to code alphabets gndthe code
length. We regard (¢, ) as the corresponding source
alphabets, theri(C'(¢(¢1))) represents the code length
of the code alphabets. The expectation of the variable-
rate optimal code length for a quantized signal has
relation with entropy of the source from the following
well-known proposition.

Proposition 3.2.(Shannon, 1948),
(Cover and Thomas, 1991) Letbe source alphabets,

then,
E[l(C(x))] > H(z), (39)

whereH (x) represents the entropy of

With this proposition, the optimization problem of the
qguantizer for the code length is reduced to the same



problem under constraint of entropy of the quantized optimization: fixed-rate quantization and variable-rate

signals.

On the other hand, the basic idea and tools to represen

the quantity (21) or the quantizer in high resolution

guantization. For high resolution case, we explicitly
genved the optimal quantizations and the minimized
quantization errors for these two cases.

case are the same of the previous subsection. Then, we

can get the asymptotic approximation of the entropy of

the quantized signal:
H(f,9) = —pilogp;

=3~ [ 53,6061 1og £
i I@

d(

e

where Hy(f) := [ —log fdF. By using (40), we
consider the foIIowmg problem for high resolution
case.

[(60)10g (9(61)7") dér, (40)

gu(o1) = argngn/}—(g(a)l), G(¢1))dey (41)
St.H(f,g) =logM (42)

Note that)M is an expected number of quantization
steps in the sense of (42).

By employing the similar process in (Gish and Pierce,
1968; Berger, 1972), we can derive the next result.

Proposition 3.3.The solution of (41) is:

gv($1) = KMR($1) f5 (61) 2 (43)
K =explL (44)
Lim~3H(D) = 5 [ 5,108 R b,
f¢ ((51)%
L d 45
/f¢1 ¢1)1 R(on) 1 (45)
Moreover, the optimized value is given by
[ Fau(n), Guah = K202 (@s)

As the previous proposition, the optimal quantizer for
the code length can be explicitly given by usifi@ ).

4. CONCLUSION

In this paper, we investigated the reasonability of the
ordinary parameter estimator for the quantized data.
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