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Abstract: In this paper, upper bounds for time-varying delays in the real-time control of a 
lab helicopter in the sense of practical stability analysis are derived. Sub-optimal 
controller parameters for this non-linear plant with a given maximum time-delay are 
calculated with the help of Lyapunov-Razumikhin method using LMIs (Linear Matrix 
Inequalities). These parameters are then optimized for extended time-delay margins by 
considering design specifications like settling-time and overshoot, using a novel 3-
dimensional search algorithm in the vicinity of the previously identified values. Trade-off 
between settling-time and overshoot is achieved with the help of appropriate weighting 
factors in an objective function based approach.  Copyright © 2005 IFAC 
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1 INTRODUCTION 
 
The presence of time delays in industrial processes is 
an important phenomenon and must be considered in 
the stability analysis and controller design. Delays 
could occur because of data communication or by 
material flow in machines. They can be classified as 
constant or time-varying, bounded or unbounded, 
distributed or not, deterministic or stochastic. Control 
of these time-delay systems is an active research area. 
Normally the delay may appear either in the state, or 
in the input (or output) of the corresponding systems 
(Marshal, 1979).  Stability of such systems is the most 
important property to be considered and becomes hard 
to establish keeping in mind the fact that introduction 
of time-delay in the states or input causes the system 
to have infinite number of poles or zeros (Marshall, 
1992) for closed loop systems. The reported stability 
could either be delay-independent or delay-dependent, 
the former being more restrictive than the later and 
more difficult to ensure (Boukas, 2002). 
 
In this paper, signal delays due to data-transmission 
are considered, which could occur e.g. by large/long 

bus-system or by the use of the internet (with TCP/IP 
or UDP as protocols). If the control-system and the 
plant are spatially separated, the delays occur two 
times in the control loop, once from the plant to the 
controller (forward direction), and secondly from the 
controller back to the plant (backward direction), see 
Fig. 1. Since time delays in the control loop have a 
major influence on stability of control systems, they 
must be carefully considered in the mathematical 
description of the system dynamics. Zhang et al. 
(2001) gives an excellent overview of stability issues 
in networked control systems. They divide the 
stability issue into two categories, i) developing new 
network protocols for control applications, and ii) to 
take the network as it is, and focus on control 
algorithms to achieve stability. For a general class of 
systems, the authors suggest to mark stability regions 
using simulations while continuing to increase the 
time delay. In our work, we first find a conservative 
controller using the Razumikhin theorem, and then we 
go further and receive with a simulation setup optimal 
control parameters for a stable control system. 
 



     

This contribution is based on the work by Niculesu et. 
al. (1997), the delay-dependent stability with an input 
delay of a twin rotor laboratory helicopter is 
considered.  For a remote control, two kinds of 
strategies can be considered for such a plant. In the 
first one, a control law is designed remotely and is 
sent to the plant over some communication link, 
which is executed locally on the plant. In this case 
there is no input delay in the system and hence no 
bounds on delays. The only condition is that the 
system must be stabilizable. In the second case, the 
output of the controller towards the plant is delayed. 
This causes an input delay and thus introducing the 
concept of stability margins based on time-delay, 
which will be the focus of this work. 
 
An LMI (Linear Matrix Inequality) based approach is 
used to find the parameters of a third-order state-
feedback controller. A Lyapunov-Razumikhin 
function maximizes the time-delay (in sub-optimal 
sense) of the closed loop system for a stable system 
like the one considered in Fig. 1. Once the stability of 
this sub-optimal controller is achieved, it becomes of 
practical interest to see how much the parameters of 
this stabilizing controller can be varied while 
remaining within the stability margin of the system. 
Furthermore, can the upper bound on the input delay 
be improved for such a perturbation? These questions 
will be dealt with in detail within the following 
sections.  In addition, specific consideration on the 
performance of the plant, such as settling-time, over-
shoot, etc., can also be taken care of in the design of 
the controller as will be shown later. 
 
 

2 PROBLEM DEFINITION 
 
In contrast to systems free of delays, a time-delay 
system considers not only the current system states, 
but also the past states which lead to a system 
described by delay differential equations (DDE): 

 ( )( ) , ( ), ( )x t f t x t x t τ= − ,  (1) 

with , 0nx τ∈ > . And appropriate initial conditions 
derived on the interval [t0-τ, t0]. Due to the 
tremendously increasing usage of tele-control over the 
internet, such time delay control systems get more and 
more important in practical applications. A general 
representation is shown in Fig. 1, with K as the 
controller, Gs the plant, w the desired input and x the 
plant output. The time delay occurs from the 
controller to the plant and again from the plant 
backward to the control unit. 
 

 
 
Fig. 1. Closed loop system with time-delays in the 

communication channels 

 
In general, control design algorithms do not consider 
time delay aspects in the control loop, like root-locus, 
Nyquist plots or pole placement approaches. Stability 
analysis of time delay systems are easier to handle in 
the time domain than in the frequency domain, 
especially in the case of time-varying uncertainties 
and nonlinearities (Gu, 2003). Based on the second 
Method of Lyapunov, the theorems such as the 
Krasovskii and the Razumikhin provide stability 
conditions for time-delay systems in the time-domain. 
These methods deal exclusively with state space 
descriptions and the stability tests amount to sufficient 
conditions that can be posed as solutions of LMI 
problems. 
 
These robust control approaches are very conservative 
and have large stability margins, as it was eventually 
experimentally tested. Based on a controller, 
calculated with the Razumikhin theorem, a 3-D search 
algorithm is imposed for further improving the system 
response. 
 
 

3 DEFINITION OF THE LYAPUNOV-
RAZUMIKHIN FUNCTION 

 
The Razumikhin theorem is an extension to the 
classical Lyapunov stability theorem. It is used in the 
derivation of the following controller design by 
Niculescu, et al. (1997), the definition can be found in 
(Hale, et al., 1993) or (Gu, 2003). 
 
 
3.1 Solution Approach – Controller Algorithm 
 
Based on a system presented in state space form, we 
can derive the equation with an input delay of the 
following form:  
 
The system ( ) ( ) ( )x t Ax t Bu t= +  considers the 

following input ( )( ) ( )u t Kx t tτ= −  as a control law. 
This results in a closed loop description to 

( )( ) ( ) ( )x t Ax t BKx t tτ= + − . Applying the 
Razumikhin theorem for such an input delay system, 
the following theorem found in Niculescu, et al. 
(1997), results in: 
If the following inequalities hold simultaneously 
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with nxnQ ∈  being positive-definite and symmetric, 

a matrix mxnW ∈  and the positive scalars β1 and β2 
hold, then the closed loop system is uniformly 
asymptotically stable. The input of the form  

 ( )1( ) ( )u t WQ x t tτ−= −  (5) 

for all the delays ( )tτ  satisfies 0 ( ) *tτ τ≤ ≤ with 
-1K WQ=  is a substituting controller. For a complete 

proof see the excellent paper of Niculescu, et al. 
(1997). 
 
 
3.2 Controller Calculation 
 
In order to solve inequalities (2), (3) and (4), it is 
necessary to convert the bilinear conditions into a LMI 
system, based on the algorithm proposed by 
Niculescu, et al. (1997). (This is necessary because the 
variables β1 and β2 are multiplicatively associated 
with Q, and therefore not solvable with available LMI 
solvers). 
 
To solve a so called generalized eigenvalue problem 
(gevp), like equation (2), a scalar (here: 1 *λ τ= ) 
gets minimized by holding the set of inequalities. The 
optimization variable must be an isolated outer-factor 
of a LMI-matrix. LMI-Solver (e.g. LMI-Toolbox in 
Matlab) can not handle equation (2) directly. It must 
be first converted into the generalized eigenvalue 
problem (gevp) form, whereas the LMI of equation (2) 
yields to 
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with 
1

*
λ

τ
=  . 

Now the upper bound for the time delay *τ can be 
maximized by minimizing λ . 
Algorithm from Niculescu, et al. (1997), to solve the 
nonlinear gevp problem 
• Step one:  

Solve equation (8) with respect to 0Q > . 
• Step two:  

Solve the LMI system (equations (3)(4)(6)(7)(8)) 
whereas Q is fixed. 
 

 1 2
1 2, ,

min ( , , ) s.t.

hold for Q>0(3), (4), (6) (8)
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• Step three:  

Solve the LMI system (equations (3)(4)(6)(7)(8)) 
whereas W, β1 and β2 are fixed.  
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Return to step 2 until the convergence of λ  is attained 
within a desired precision. 
 
 

4 HELICOPTER SYSTEM 
 
The system under consideration is represented by a 
helicopter model from Quanser (2004), see Fig. 2. It 
consists of a fixed base, on which a rotary arm is 
mounted. The arm carries the helicopter body on one 
end, and a counterweight on the other. The arm can 
make an elevation motion around the angle epsilon. 
An encoder mounted on the axis allows measuring the 
elevation angle of the arm. The helicopter body is 
fixed at one end of the arm and is free to elevate in a 
certain range. Two motors with propellers mounted on 
the helicopter arm can generate a force proportional to 
the voltage applied to the motors. The force generated 
by the propellers cause the helicopter body to lift off 
the ground. The purpose of the counterweight is to 
reduce the power requirements on the motors around 
equilibrium. The corresponding nonlinear 
mathematical model looks like the following: 

( ) sin( ) 2ges tJ g y M m k r vε ε⋅ = − ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅  (11) 

The dimension parameters can be seen in  
Fig. 2, where kt=0.5 N/V represents the motor constant 
and v the voltage to the motors, g the gravity constant 
and Jges the moment of inertia around the rotating 
point, m is the mass of the helicopter blades inclusive 
motors and the fixing devices, M is the counterweight.  
Please note, that if ( )y t  is not available, we can 
construct a “classical” (asymptotic) observer or to 
approximate ( )y t  by some delay terms 

( )
( ) ( )

y t
y t y t θ

θ
≈

− −
, as suggested by Niculescu and 

Michiels (2004) for a different control problem. 
 
To apply the Lyapunov-Razumikhin control algorithm 
presented in the previous section, the model must be 
linearized around the quiescent point 0ε =  and 
transferred into the state space form 

 
x Ax Bu

y Cx

= +

=
  (12) 
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A third state was added to represent the integral of the 
elevation angle, which is necessary to reach steady 
state accuracy of the elevation angle. Parameter 
identification enabled the analysis of the damping 
coefficient for an improvement of the mathematical 
model. This was done by the actuation of a step input 
to the real system while the decaying oscillation was 
observed, for which a damping factor got derived. The 
corresponding numerically computed state space 
model results finally in: 
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By applying the Razumikhin control algorithm from 
the previous section, the following control vector is 
obtained 

 [ ]3.155 2.022 3.637K = − − − , (15) 

for a maximum time delay of * 0.116τ =  seconds. By 
applying this control vector to the real plant, we can 
see that the controller is very conservative and shows 
even a stable behaviour for time delays up to 0.4 
seconds. The analysis of the stability margin on the 
controller design was necessary for a further 
improvement of the system, even for small delays. 
 
 
5 NONLINEAR SIMULATION DEVELOPMENTS 

 
For a stability margin extension, a simulation of the 
nonlinear mathematical model of the helicopter is set 
up in Simulink. The above calculated controller 
parameters from the Razumikhin approach are used as 
a starting point. By varying these controller 
parameters successively with additional gain factors 
and considering the settling time and the overshoot, a 
further improvement of the control system is derived. 
These additional gain factors were increased from 0.1 

to 3 sequentially to consider all possible combinations 
(this range of the gains was previously analysed). The 
Matlab Simulink simulation block diagram is given in 
Fig. 3.  

 
 
As shown in Fig. 3, the additional gain parameters 
(GainK1, GainK2 and GainK3) are multiplied with the 
parameters from (15). The “Elevation Angle” is 
considered for the analysis of the settling time and 
overshoot. Delay was fixed for each pass-through to 
get the best controller parameters.  
 
 

6 RESULTS 
 
The simulation results obtained in section 5 are shown 
in Table 1, where the delay is varied in steps from 0.1 
to 0.7 seconds, with an increment of 0.1 seconds. It 
must be noted that in obtaining these parameters, the 
objective is to minimize the settling-time for a given 
value of time delay. Settling times and overshoots 
against the gains are plotted in Fig. 4. System 
response in terms of elevation angle for τ = 0.4 sec is 
shown in Fig. 5.  
 

 
Fig. 4. Settling time and elevation angle vs. gains, for 

an elevation step-input of 0.25 rad 
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Fig. 2. Schematic drawing of the 3D Helicopter 
model with fixed travel and pitch axis 
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Careful examination of the data in Table 1 reveals a 
steady decrease in the gain parameters for increasing 
time delays. This can be explained in the context of 
passivity theory. Lowering the gains on control inputs 
is equivalent to dissipating the additional energy 
induced into the system by time-delays (Anderson and 
Spong, 1989). At the same time, we see an increase in 
the settling times for increasing delays which is quite 
normal. It has to be noted that the Razumikhin 
theorem provides the gain parameters for time-varying 
delays so the system will remain stable with given 
gain values even for time-varying delays as far as the 
delay remains bounded by a certain given value. 
 
In order to obtain a continuous range of gains for 
intermediate values of delays (in the range from 0 to 
0.7 seconds), the identified values of gains are 
linearized afterwards, as shown by the plot in Fig. 6 
where the additional gain parameter GainK1 is 
displayed. The dots are the actual values, produced by 
the simulation, whereas the solid line is obtained by 
linear curve fitting, providing gains that are finally 
used in the real-time implementation, which shows 
good performance on actual non-linear plants. 

 
Table 1: Simulation results for the additional GainKx 

parameters 
 

Time 
Delay 
(sec) 

Min. 
Settling 
Time 
(sec) 

Max. 
Over-
shoot 
(rad) 

Gain
K1 

Gain 
K2 

Gain 
K3 

0.1 4.2514 0 1.8 2.3 1.5 
0.2 2.7529 0.0043 1.6 2.5 1.8 
0.3 3.6228 0.0015 1.8 1.7 1.2 
0.4 6.1138 0.0302 1.2 0.6 1.3 
0.5 14.998 0 0.9 0.1 0.4 
0.6 31.412 0 0.4 0.1 0.2 
0.7 80.063 0 0.3 0.1 0.1 

 
Furthermore, if it is desired to improve the overshoot 
behavior in the response of the system, it can be 
achieved by first constructing an objective function 

that gives weight to the overshoot in addition to the 
settling time. This objective function is then evaluated 
over the whole space of admissible gain parameters. 
Minimum value of this objective function will provide 
the optimal gain parameters while satisfying the 
performance requirements. 
 

 
Fig. 6. Linearization of the additional gain parameters, 

GainK1 is shown here, with a delay of 0 to 0.7 
seconds. 

 
The following expression is used as the objective 
function to be minimized 

 ( , )s OS s OSf t tθ α β θ= ⋅ + ⋅ , (16) 

where st  and OSθ  are settling-time and overshoot 
respectively. α  and β  are weighting factors. 
 

If the desired function gives 75% weight to settling 
time and 25% to overshoot then α = 0.75 and  
β  = 0.25. Applying this performance requirement to 
the case where τ = 0.4, τ being the time delay, and 
conducting a search over admissible controls, one gets 
new values for the settling time and the overshoot 

st  = 6.7292 ( ,s oldt  = 6.1138) 

OSθ  = 0.0125 ( ,OS oldθ  = 0.0302) 
These values indicate that a 10% increase in settling-
time can be traded-off against a 58.75% decrease in 
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Fig. 5. Elevation angle system response example 
with minimal settling time for a constant delay 
of τ = 0.4 seconds 
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overshoot. Previous and new gains obtained through 
the weighted objective function in (16) are given 
below: 

 
[ ]
[ ]

new

old

K = 1.0 0.4 1.0
K = 1.2 0.6 1.3

 (17) 

A plot of the objective function vs. gains is shown in 
Fig. 7. 
 
 

7 CONCLUSIONS 
 
In this work, the Lyapunov-Razumikhin approach is 
used to identify sub-optimal controller parameters for 
a nonlinear delayed input system while maximizing 
the time-delay and ensuring the stability. These 
controller parameters are then optimized using a 
combination based on 3D search in order to achieve 
certain performance requirements like settling time 
and overshoot. The delay bounds given by 
Razumikhin theorem are extended using our approach 
in the sense of practical stability. 
 
An approach based on weighted objective function is 
further used to achieve a performance balance 
between minimum settling time and maximum 
overshoot allowed.  
 
The search algorithm presented uses combinations of 
parameter values to find the optimal values with an 
increment of 0.1 in the space of admissible gains. Fig. 
7 show that we are able to find the global minimum in 
terms of settling times. At the same time, it can be 
concluded that even more accurate parameters can be 
obtained if the incremental step size is reduced, which 
becomes demanding in terms of computational 
requirements. For future work, it is therefore 
suggested to use different heuristic approaches like 
genetic algorithm and simulated annealing to optimize 
the search for controller parameters.  
 
For a practical usage, the above presented procedure 
for the derivation of a controller must be automated in 
some way. For example, by specifying the transfer 
function and the maximum time delay (which could 
occur in the system), a control engineer could directly 
get the controller. Of course it is not known a priori if 
a stable controller for the specified maximum time 
delay can be found by the presented algorithm as it 
depends on the plant and the maximum delay of the 
system. The function for approximation of gain 
parameters based on input delay (see Fig. 6) is only a 
linear function. Experimental results show that it can 
further be improved by using a higher order function. 
The approach described in this work, makes the 
following assumption for signal RTT (Round Trip 
time), as is generally done in network control systems 
literature RTT = delay1 + delay2 (see Fig. 1).  
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