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Abstract: This paper proves that a certain class of nonconvex matrix inequalities is
equivalent to linear matrix inequalities (LMIs) plus a nonconvex rank constraint. From the
equivalence, this paper proposes two heuristic algorithms, that is extended linearization
algorithms, to solve LMIs with a rank constraint using LMI-based approach. Reliability
and efficiency of the algorithms are investigated statistically, and then extensive numerical
experiments will indicate that the algorithms have decent performances from the view-
point of computation in comparison with the existing method: the standard alternating
projection method. It is also important that our approachescan be applied to a large
number of other rank-minimization problems over LMIs, for example, the robust well-
posedness problem which is an extension of general robust control problems.Copyright
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1. INTRODUCTION

In the last decade, the usefulness of linear matrix
inequalities (LMIs) for control systems analysis and
synthesis has been recognized with the aid of pow-
erful computational algorithms to solve optimiza-
tion/feasibility problems involving LMIs. Moreover,
not only problems in terms of LMIs but those of
LMIs plus a nonconvex rank constraint can be solved
to some level via LMI-based approaches (Grigori-
adis and Skelton 1996, Ghaouiet al. 1997, Iwasaki
1999, Apkarian and Tuan 2000, Fazelet al. 2003,
Kiyama and Nishio 2004). Among these, the lineariza-
tion (Ghaouiet al. 1997) and the dual iteration al-
gorithm (Iwasaki 1999) produce excellent results for
the problems with a rank constraint. Unfortunately,
these approaches restrict the structures of the matrix
with the rank constraint, equivalently control prob-
lems and the concave minimization algorithm (Apkar-
ian and Tuan 2000) requires the linearizing change of
variable, and then the general case of the structures
remains open problem for these three approaches. On
the other hand, there exist the standard alternating pro-
jection method (Grigoriadis and Skelton 1996), Log-
det heuristics method (Fazelet al. 2003), the aug-

mented Lagrangian method (Fareset al.2001) and so
on which do not restrict the matrix structures, how-
ever, these approaches require more computational
complexity and new adding variables for the compu-
tations.

First, this paper proves that a certain larger class of
nonconvex matrix inequalities is equivalent to LMIs
plus a nonconvex rank constraint than that of (Ghaoui
et al. 1997, Iwasaki 1999). Two types of the convex
relaxation conditions without the rank constraints lead
to our algorithms, and then this paper proposes two
heuristic algorithms: an extension of the linearization
algorithm to solve LMIs plus a rank constraint using
LMI-based approaches. Note that it is the exclusive
point in our approaches that the adding variables like
(Fazel et al. 2003, Fareset al. 2001) and the lin-
earizing change of variable like (Apkarian and Tuan
2000, Fareset al.2001) are not necessary.

Next, this paper derives new solvability conditions
of the robust well-posedness problem (Skeltonet al.
1997, Iwasaki and Hara 1998): an extension of general
robust control problems in order that our approaches
can be applied to a large number of other problems.



Finally, reliability and efficiency of our algorithms are
investigated statistically. That is, by numerical experi-
ments, we show how likely it is for our algorithms to
stabilize the systems via PI controllers that are known
to be stabilizable, with how much computational bur-
den. The extensive numerical experiments will indi-
cate that our algorithms have a decent performance
from the viewpoint of computation in comparison with
the existing method: the standard alternating projec-
tion method (Grigoriadis and Skelton 1996). More-
over, we will clarify comparative merits and demerits
of our proposed algorithms and the other one through
the extensive numerical experiments.

Notation: The sets ofn � mreal and complex matrices
are denoted by IRn� m and Cln� m. The n � n-identity
matrix is denoted byIn. For a matrixM � �mi j � , mi j
denotes the element of� i 	 j 
 , M � denotes the trans-
pose andσmin �M 
 denotes the smallest singular value.
M � 
 IR � n� r � � n satisfiesr � rank ofM 	 M � M � 0 and
M � M � � � 0. For a symmetric matrixX, X � 0 (X � 0)
means thatX is positive (semi)definite.� � � � �M1 	 M2 

means a block diagonal matrix composed of a matrix
M1 and a matrixM2.

2. BASIC RESULT

We first prove the following basic lemma (Kiyama and
Nishio 2004) which will be used to derive extended
linearization algorithms in this paper.

Lemma 1.A real symmetric matrixΠ is given by

Π :� �
R S
S� Q � 	

whereQ � 0. Then the following four statements are
equivalent.

(i) R � SQ� 1S� � 0 �
(ii) � S� Q� � � � Π � S� Q� � � � � � 0.
(iii) There exists a real symmetric matrixW satisfy-

ing

Π � W	 W � 0 	 rank�W 
 � rank�Q
 � (1)

(iv) There exists a real symmetric matrixU satisfying

ϒ :� �
R� U S

S� Q � � 0 	 U � 0 	
rank�ϒ
 � rank�Q
 � (2)

Proof. First, we prove that statement (i)� statement
(ii). From Q � 0, there existsQ� 1. Then

R� SQ� 1S� � � � I SQ� 1 � Π � � I SQ� 1 � �� � S� Q� � � � Π � S� Q� � � � � � 0 �
Next, we prove that statement (ii) statement (iii).
Suppose statement (ii) holds. From the equivalence of
statement (i) and statement (ii), and Finsler’s theorem
(Skeltonet al.1997),

R� SQ� 1S� � 0 �!
µ � 0 s�t � Π � µ � S� Q� � � � S� Q� � 	

W :� µ � S� Q� � � � S� Q� � � 0 �
Then statement (iii) holds. Conversely, we prove that
statement (iii) statement (ii). Suppose statement
(iii) holds. If there existsW satisfying statement (iii),
then, from the following full-column-rank decom-
posed representation ofW:

W � : � F � J� � � � F � J� � � 0 	 JJ� � Q � 0

and Finsler’s theorem,� � I FJ � 1 � Π � � I FJ � 1 � �� R� SQ� 1S�� �SQ� 1 � FJ� 1
 Q�SQ� 1 � FJ� 1
 � � 0 R � SQ� 1S� � 0	
and then statement (i), equivalently, statement (ii)
holds. Finally, we prove that statement (iv)� state-
ment (i). Suppose statement (iv) holds. If there exists
U � 0 satisfying statement (iv), then

ϒ � �
R� U S

S� Q � � �
I SQ� 1

0 I �� �
R� U � SQ� 1S� 0

0 Q � �
I 0

Q� 1S� I � � 0

holds, and then, from the rank constraint (2),

R� U � SQ� 1S� � 0 	
R � SQ� 1S� � � U � 0

and statement (i) hold. Similarly, from the above re-
verse operation, statement (i) statement (iv). "
When we utilize the following condition:

Π � W	 W � 0

except for the rank constraint from (1), statement (iii)
becomes a convex relaxation condition of statement
(i), equivalently, statement (ii). Similarly, when we
utilize the following condition:

ϒ � �
R� U S

S� Q � � 0	 U � 0

except for the rank constraint (2), statement (iv) be-
comes a convex relaxation condition of statement (i),
equivalently, statement (ii).

3. GENERAL PROBLEM AND ALGORITHMS

In this section, we describe two simple and effective
algorithms in order to solve the conditions in Lemma
1, the robust well-posedness problem (Skeltonet al.
1997, Iwasaki and Hara 1998) and so on.



3.1 General Problem

Here we clarify the above problem in order to solve
the conditions in Lemma 1 as follows:

Original Problem: Find a scalarµ � 0, a
real symmetric matrixRand a real matrix
Ssatisfying

R� S�µIn 
 � 1S� � 0 �
This original problem is transformed to the following
two equivalent ones: Problem 1 and Problem 2 from
Lemma 1.

Problem 1: Find a scalarµ � 0, real
symmetric matricesW � 0 andR, and a
real matrixSsatisfying

Π̃ :� �
R S
S� µIn � � W :� �

W11 W12
W�12 wIn � 	

(3)
rank �W 
 � rank �µIn 
 � n � (4)

Problem 2: Find a scalarµ � 0, real
symmetric matricesU � 0 andR, and a
real matrixSsatisfying

ϒ̃ :� �
R� U S

S� µIn � � 0 	 (5)

rank � ϒ̃
 � rank �µIn 
 � n � (6)

3.2 Extended linearization algorithms

Two algorithms are described below. These approaches
are extensions of the linearization algorithm in the
reference (Ghaouiet al.1997). Hence, we call the each
approach an extended linearization algorithm.

Algorithm 1

1. SolveΠ̃, W s.t.Π̃ � W, W � 0 andµ � 0.
2. W0

11 :� W11, W0
12 :� W12, w0 :� w and let j � 1.

3. Fix # 11 :� W j � 1
11 , # 12 :� W j � 1

12 , w̃ :� w j � 1.
Solveλ j :� min

µ $ 0%W& 0%R%S' ( ) � � w̃W11 � w# 11 � w̃# 11
� �W12# �12 � # 12W �12 � # 12# �12
 � s�t � �3

and letW j

11 :� W11, W j
12 :� W12, w j :� w.

4. If *** λ j � λ j + 1
λ j

*** , τ for sufficiently smallτ � 0, then

stop. Otherwise letj - j � 1 and go to3..

This algorithm is based on a convex relaxation ap-
proach which satisfies the rank constraint (4) step by
step from the convex relaxation condition without the
rank constraint. Refer to (Kiyama and Nishio 2004)
for further information.

This paper proposes another convex relaxation ap-
proach to compare with Algorithm 1 as follows.

Algorithm 2

1. Solveϒ̃ s.t.ϒ̃ � 0,U � 0 andµ � 0.
2. R0 :� R, S0 :� S, U0 :� U , µ0 :� µ and let j � 1.

3. Fix . :� Rj � 1, / :� Sj � 1, 0 :� U j � 1, µ̃ :�
µ j � 1. Solveλ j :� min

U $ 0% µ $ 0%R%S' ( ) � µ̃ �R� U 
 � µ � . � 0 
 � µ̃ � . � 0 
� �S/ � � / S� � / / � 
 � (7)

s�t � �5

and letRj :� R, Sj :� S, U j :� U , µ j :� µ.

4. If *** λ j � λ j + 1
λ j

*** , τ for sufficiently smallτ � 0, then

stop. Otherwise letj - j � 1 and go to3..

We explain Algorithm 2 in the following explanation
1 and 2 similar to (Kiyama and Nishio 2004). First, we
explain the numerical computational method to satisfy
the rank constraint (6) step by step from the convex
relaxation condition without the rank constraint.

Explanation 1 of Algorithm 2

The following equation

ϒ � �
I S1 µ
0 In � �

R� U � SS� 1 µ 0
0 µIn �� �

I 0
S� 1 µ In �

holds. IfR� U � SS� 1 µ � 0, then the rank constraint
(6) holds. We can choose( ) �µ �R� U 
 � SS� � (8)

as the objective function to be approached to 0 subject
to LMIs and

( ) �µ �R� U 
 � SS� � � 0 due toϒ � 0 and
µ � 0. This is a simple and effective key idea of our
method.

Explanation 2 of Algorithm 2

Next, a linear approximated function of a trace func-
tion of a matrix product termF �X 	Y 
 � ( ) �XY� defined
by real matricesX andY is considered as the following
lemma.

Lemma 2.Let a trace function of a matrix product
term F �X 	Y
 � ( ) �XY� defined by real matricesX ��xi j � 
 IRp� q andY � �yi j � 
 IRq� p, and a fixed point�X0 	Y0
 � � �x0

i j � 	 �y0
i j � 
 on the matrices�X 	Y 
 be given.

Then a linear approximated function ofF �X 	Y
 �( ) �XY� on the point�X 	Y 
 � �X0 	Y0
 is

p

∑
i 2 1

q

∑
j 2 1 3 ∂

∂ xi j
xi j y ji 4

yji 5 y0
ji

�xi j � x0
i j 
� ∂

∂ y ji
xi j y ji 4

xi j 5 x0
i j

�y ji � y0
ji 
 � x0

i j y
0
ji 6� ( ) �XY0 � X0Y � X0Y0� � (9)

Proof. A linear approximated function of a function
xi j y ji on a fixed point�xi j 	 y ji 
 � �x0

i j 	 y0
ji 
 is



∂
∂ xi j

xi j y ji 4
yji 5 y0

ji

�xi j � x0
i j 
� ∂

∂ y ji
xi j y ji 4

xi j 5 x0
i j

�y ji � y0
ji 
 � x0

i j y
0
ji �

From
( ) �XY� � ∑p

i 2 1∑q
j 2 1xi j y ji , we can see that (9)

becomes the linear approximated function ofF �X 	Y

on the point�X 	Y
 � �X0 	Y0
 . "
Consequently, from the above lemma , we can under-
stand that (7) is the linear approximated function of
(8) at the fixed point�µ 	 R	 S	U 
 � � µ̃ 	 . 	 / 	 0 
 .

4. ROBUST WELL-POSEDNESS PROBLEM

This section is concerned with the robust well-posedn-
ess problem (Skeltonet al. 1997, Iwasaki and Hara
1998) which is an extension of the7 ∞ control prob-
lem with constant scaling matrices and various control
system synthesis problems.

Here we consider the feedback control system consists
of constant matrices which are connected each other as
shown in Fig. 1, where8 is a given real matrix and∇
is an element of matrices in a known complex subset9

. This uncertain system is robustly stable if and only
if there exists a real numberε satisfying

σmin : I � 8� ∇ I ; � ε � 0	 < ∇ 
 9 �
We call this characterization of the feedback system
in Fig. 1 the robust well-posedness (Skeltonet al.
1997, Iwasaki and Hara 1998).

∇M

∇K

M

K => ==
> >

>

> >

8 =

∇

Fig. 1. Uncertain system.

Then we can define the robust well-posedness problem
based on the robust well-posedness. We consider the
feedback control system depicted in Fig. 1, whereM
is a given real matrix and∇M and ∇K are elements
of matrices in a known complex subset

9
. That is

∇ :� � � � � �∇M 	 ∇K 
 . We are now ready to define the
robust well-posedness problem.

Robust well-posedness problem: When
let a real matrixM and a complex subset9

be given, find a real matrixK such that
a feedback system becomes well posed.

Here we divide the matrixM from 2 inputs to 2 outputs
in Fig. 1 andM is represented by

M :� �
M11 M12
M21 M22 � �

Moreover, a matrixL is defined by

L :� �
L11 L12
L21 L22 � :� ?@A M11 0 M12 0

0 0 0 I
M21 0 M22 0
0 I 0 0

BCD 	 (10)

where, for technical simplicity, we assumeM22 � 0
and choose an appropriate size of the matrixL such
that 8 � L11 � L12KL21

holds.

Using Lemma 1, we have the following theorem sim-
ilar to (Kiyamaet al.2002):

Theorem 1.Let a real matrixM and a complex subset9
be given.L11, L12 andL21 are defined by (10), and

a real symmetric matrixΘ is defined by

Θ :� � . // � E � �
Then the robust well-posedness problem is solvable if
and only if there exist matricesE � 0, Θ, K, # and a
real numberµ � 0 satisfyingF . / 8/ � E � I8 � � I µIk G � # 	 # � 0 	 rank� # 
 � k 	

� ∇ I � Θ � ∇ I � � � 0 	 < � � � � �∇M 	 ∇K 
 
 9 	
equivalently, if and only if there exist matricesE � 0,
Θ, K, U and a real numberµ � 0 satisfying

ϒ :� F . � U11 / � U12 8/ � � U �12 E � U22 � I8 � I µIk G � 0 	
U :� �

U11 U12
U �12 U22 � � 0 	 rank�ϒ 
 � k 	� ∇ I � Θ � ∇ I � � � 0 	 < � � � � �∇M 	 ∇K 
 
 9 �

Proof. The proof is straightforward from Lemma
1. "
It is well known that the existing solvability conditions
(Skeltonet al. 1997, Scherer 1996, Fareset al. 2001)
include both the matrix variableΘ and Θ� 1 for the
robust well-posedness problem. On the other hand,
Theorem 1 does not includeΘ� 1 in the conditions.
At the sacrifice withoutΘ� 1, the rank constraints ap-
pear in Theorem 1 and they cause the nonconvexity in
the solvability conditions. However, we can easily see
that these new nonconvex conditions can be checked
approximately with our extended linearization algo-
rithms, the alternating projection method and so on.
This is contrast with the existing results, where we
introduce a new variableX which corresponds toΘ� 1,



a nonconvex constraint ofΘX � I is added to the orig-
inal solvability conditions, and these conditions with
the constraint ofΘX � I must be checked by a numer-
ical method. In this meaning of easy computation, our
result of solvability conditions is very important.

5. NUMERICAL EXPERIMENTS

We will investigate reliability and efficiency of the two
extended linearization algorithms through numerical
experiments. For simplicity, this section considers the
following stabilization problem in the special case of
the robust well-posedness problem.

5.1 Stabilization problem

Consider the feedback system depicted in Fig. 2

P�s
 =� K �s
> uy

Fig. 2. Feedback system.

where P�s
 is a given single-input, single-output
(SISO) linear time-invariant (LTI) nominal plant rep-
resented by �

ẋp
y � � �

A B
C D � �

xp
u � 	 (11)

andK �s
 is SISO PI controller given by�
ẋc
u � � �

0 1
c0 c1 � �

xc
y � �

Then the closed loop system in Fig. 2 is denoted by�
ẋp
ẋc � � �

A � BDcC B� I � DcD
� AcC � AcD � �
xp
xc �� :

� H
11

H
12H

21

H
22 � �

xp
xc � � :

H �
xp
xc � 	

Ac :� c0

1 � c1D
	 Dc :� c1

1 � c1D
�

Hence the stabilization problem can be recast as the
following problem:

Problem: Find scalarsµ � 0,Ac, Dc, and
a matrixP � 0 satisfying�

0 P
P 0 � � � H �� I � �µI 
 � 1

� H �� I � �� 0 � (12)

Note that the class of this problem is equivalent to
that of Original Problem in Subsection 3.1. After
solving the above problem, the controller parameters
are obtained as follows:

c0 � Ac

1 � DcD
	 c1 � Dc

1 � DcD
�

5.1.1. Random systemReliability and efficiency of
the two extended linearization algorithms are investi-
gated statistically. That is, by numerical experiments,
we show how likely it is for the two extended lin-
earization algorithms to stabilize the systems that are
known to be stabilizable, with how much computa-
tional burden.

A number of systems, stabilizable via SISO PI con-
troller, are randomly generated where the systems
have one unstable pole and zero at least. The proce-
dure is as follows:

Procedure for I �s

1. Scalarsc0, c1 and ε � 0, and a matrixJ are

randomly generated.
2. If J is stable, then

H
:� J . Otherwise

H
:� J �

λ I � εI whereλ means the maximum real part
of eigenvalues ofJ .

3. If c0 � c1

H
22 � 0, then go to1.. Otherwise com-

pute the state-space matrices of the plant transfer
functionP�s
 in (11):

A :� H
11 � H

12

H
21c1 1 �c0 � c1

H
22
 	

B :� H
12c01 �c0 � c1

H
22
 	

C :� � H
211 �c0 � c1

H
22
 	

D :� � H
221 �c0 � c1

H
22
 �

4. If P�s
 has one unstable pole and zero at least,
then stop. Otherwise go to1..

5.2 Results

This subsection describes results of numerical experi-
ments. First, the two extended linearization algorithms
are applied for the 2-nd order 600 systems thus gen-
erated by the procedure forP�s
 . The algorithms are
stopped when the matrix inequality (12) becomes neg-
ative definite. That is, we do not optimize the stability
degree but just try to stabilize the system. If the num-
ber of iteration exceeds 2000 while the matrix inequal-
ity (12) is non-negative definite, then the algorithm is
stopped and we conclude that the algorithm fails to
stabilize the system.

For the same 600 systems, another typical existing
method, for example, the standard alternating projec-
tion method (APM) (Grigoriadis and Skelton 1996)
for output feedback stabilization via PI controller is
also applied for comparison.

Table 1. Comparison with algorithms.

Algorithm 1 Algorithm 2 APM
number

of successful times 585 500 489
success rate [%] 97.5 83.3 81.5

average
CPU time 5.4 39.9 670.0
average
iteration 7.6 83.1 438.5

Table 1 summarizes the results of comparison with the
algorithms. The success rate is computed by dividing
the number of successfully stabilized systems by the
number of sample systems (= 600), while the average
CPU time is the average of those for the 600 sample



systems. The success rate for the extended lineariza-
tion algorithm 1 is 97.5% (=585/600), while those for
the extended linearization algorithm 2 and APM de-
crease. The computational complexity (measured by
the CPU time and the iteration) of the extended lin-
earization algorithm 1 seems to be always most rapid
extremely.

Next, for each different number (1,� � �, 10) of the
system order, 50 random systems are generated by
the procedure forP�s
 . The two extended linearization
algorithms (replacingP � 0 with P � 0 �1 for a numer-
ical standardization) are applied for output feedback
stabilization via PI controller for comparison.

Table 2. Results of Algorithm 1.

plant number average
order of successful times CPU time

1 50 1.0
2 50 4.1
3 48 16.6
4 50 49.5
5 48 57.8
6 50 193.1
7 49 345.4
8 50 1112.4
9 49 1582.1
10 50 1060.4

Table 3. Results of Algorithm 2.

plant number average
order of successful times CPU time

1 50 2.1
2 50 17.3
3 48 41.3
4 46 89.4
5 46 160.6
6 46 243.0
7 42 494.0
8 41 124.6
9 45 229.0
10 47 866.2

The numbers of successful times and the required
CPU times of Algorithm 1 and 2 are summarized in
Table 2 and 3, respectively. The computational com-
plexity (measured by the CPU time) of the two ex-
tended linearization algorithms seems to grow rapidly
(exponentially) with the system order, equivalently,
the matrix inequality sizes of (3) and (5). It should be
noted that the success rates for the extended lineariza-
tion algorithm 1 are always higher than those for the
extended linearization algorithm 2. Correspondingly,
the required CPU times are always shorter for Al-
gorithm 2, respectively. However, there are the cases
where the required average CPU time is not shorter
for Algorithm 2 since the calculation of the average
CPU time does not include the unsuccessful cases.
The point is that Algorithm 1 obtains better solutions
with less computation than Algorithm 2 and APM.

6. CONCLUSION

First, we have proved that a certain class of noncon-
vex matrix inequalities is equivalent to LMIs with a
rank constraint. Two computational algorithms: the
two extended linearization algorithms based on the
basic lemma: Lemma 1 and two LMI optimization
approaches have been proposed to solve the problems

of LMIs with a rank constraint. Since reliability and
efficiency of the two extended linearization algorithms
are investigated statistically, this paper has considered
the stabilization problems via PI controller having
the restriction of order and structure. As a result, it
is pointed out that Algorithm 1 obtains better solu-
tions with less computation than Algorithm 2 and
APM. Our approaches can be applied to a large num-
ber of other rank-minimization problems over LMIs
that arise in control theory, for example, the well-
posedness problem of feedback control systems. In
this meaning, our approaches are very important. At
present, more intensive investigation is being devel-
oped to compare with other existing methods.
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