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Abstract: One new approach for the problem of feature extraction and classification of Fetal 
Heart Rate signal is introduced in this paper. It considers the use of the Discrete Wavelet 
Transformation to extract scale-dependent features of Fetal Heart Rate (FHR) signal and 
the use of Support Vector Machines for classification of FHR. The proposed methodology 
is tested on real data acquired just before delivery. The results proved the viability of the 
approach and its potential for further application by achieving an overall classification 
performance of 90%.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Fetal Heart Rate (FHR) is a physiological signal, 
reflecting the fetus condition and, as that, it has great 
importance, as it is an indication of fetus condition. 
Electronic Fetal Monitoring refers to the continuous 
recording and monitoring of FHR and Uterine 
Activity (UA), also known as cardiotocogram (CTG). 
EFM has been widely used for antepartum and 
intrapartum fetal surveillance. Fig.1 shows a typical 
CTG with the FHR signal in the upper part and the 
UA in the lower part of the figure. During the crucial 
period of labour, CTG is used as the main screening 
test on fetal acid base balance (Geijn, 1996). The 
beat-to-beat variation of FHR reflects the time 
varying influence of the fetus’ autonomic nervous 
system and its components (sympathetic, 
parasympathetic branch) (Parer, 1997) and it is 
thought to be an indicator of the fetal well being.  
 
The conventional use of EFM involves the eye 
inspection of CTG by experienced obstetricians. 
However, the Dublin randomized trial has revealed 
an increase in caesarean sections for cases monitored 
using FHR monitoring during the intrapartum period 
(McDonald, et al., 1985). In addition, studies of FHR 
reliability have shown significant inter-observer and 
intra-observer variation in tracing interpretation 
(Bernardes et al., 1997). 

 
Fig. 1. A typical CTG recording, with the FHR in the 

upper part and the UA in the lower part 
 
This inconsistency in interpretation and the increase 
of false positive diagnosis have driven the 
investigation and the need of developing 
computerized analysis methods for FHR. This 
investigation is helped by the technological advances 
in computers, along with advanced signal processing 
and machine learning methods. Therefore, many 
researches have proposed automated methods and 
systems capable of analyzing the FHR (Arduini, et 
al., 1993; Berdinas, et al., 2002; Bernardes, et al., 



 

1991; Magenes, et al., 2000; Cazares, et al., 2001; 
Chung, et al., 1995; Dawes, et al., 1995; Jezewski, 
and Wrobel, 1993; Krause, 1990; Maeda, et al., 
1990; Mantel, et al., 1990a; Mantel, et al., 1990b; 
Salamelekis, et al., 2002; Skinner, et al., 1999; 
Taylor, et al., 2000). Most of the research efforts 
aimed to propose methodologies, not only to record, 
store and display the FHR, but also to classify FHR 
and produce indices alerting when the fetus is on the 
verge of severe compromise (metabolic acidosis that 
may lead to cerebral palsy or even death). 
 
The current proposed approach is motivated by the 
scientific belief that the FHR signal conveys much 
more information than what is usually interpreted by 
obstetricians. Thus, we propose a novel method to 
detect fetuses suspicious of developing acidemia, 
based on features extracted mathematically from the 
FHR signal.  The core of the proposed method is the 
use of Discrete Wavelet Transform (DWT) for the 
extraction of a suitable set of scale dependant 
features and the use of a Support Vector Machine 
(SVM) classifier, for the categorization of FHR, 
based on the extracted features. 
 
Wavelets are very appealing tools that are used in 
many biomedical applications (Unser and Aldrubi, 
1996), and have been used with considerable success 
for the analysis of the inter-beat intervals of heart rate 
of adults (Thuner et al., 1998;Ivanov et al., 1996). 
Wavelets have also been used for the analysis of 
FHR during the second stage of labour (Salamalekis 
et al., 2002). The most appealing characteristic of 
wavelets is that they can decompose a signal into a 
number of scales, each scale representing a particular 
“coarseness” of the signal under study (Mallat, 
1998).  
 
SVMs are a recently developed learning machine 
method and they have proved highly successful in a 
number of classification studies (Burges, 1998, 
Veropoulos et al., 1999). They are very useful for 
real-life and difficult classification problems due to 
their intrinsic ability to generalize well for unknown 
data even when the training set is quite small. 
 
This paper is structured as follows: In section 2 a 
brief mathematical introduction is given regarding 
the DWT and the SVMs. Section 3 presents the 
overall proposed methodology for FHR 
classification. Section 4 discusses the results of 
applying the proposed methodology to a given data 
set. Section 5 concludes the paper and gives some 
future directions.    
 
 

2. MATHEMATICAL METHODS AND TOOLS  
 
2.1  Wavelet Transform 
 
The wavelet transform has been found to be 
particular useful for analyzing signals that can be 
described as aperiodic, noisy, intermittent, transient 

and so on. As a result, Wavelet introduction and 
utilization as an analysis tool for biomedical signal 
processing came naturally (Unser and Aldrubi 1996). 
 
The wavelet transform can be described in terms of 
(an inner-product) representation of a signal with 
respect to a specific family of (atomic) functions that 
are generated by a single analyzing function, which is 
called the “mother” wavelet ( )tψ . Translations and 
dilations of this “mother” (or analysing) wavelet 
(Equation 1) are used to transform the signal into 
another form (time-scale representation).  
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In the case of discrete wavelet transform, the dilation 
and translation parameters α, b are restricted only to 
discrete values leading to the following expression:  
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For practical purposes the simplest and most efficient 
discretization comes by choosing 0 2a =  and 0 1b =  
(dyadic grid arrangement)  
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The wavelet coefficients for the time-scale 
representation of a continuous signal ( )x t  are:  

,
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If we consider a discrete signal [ ] , 0,..., 1x i i M= − , 
the coefficients are given by:  

( )
1/ 2

, 0
2 [ ] 2

Mm m
m n i

T x i i nψ
−− −

=
= −∑  

(5) 

If the discrete dyadic grid wavelets are chosen to be 
orthonormal, the information stored in a wavelet 
coefficient ,m nT  is not repeated elsewhere. Therefore, 
the information represented at a certain scale m is 
disjoint from the information at other scales. Smaller 
scales correspond to higher frequency components 
(speaking in Fourier terms).  
 
As it is obvious, different mother wavelets give rise 
to different classes of wavelets, and thus the behavior 
of the decomposed signal can be quite different. 
However, according to (Thuner et al., 1998), in their 
work involving the analysis of heartbeat intervals, the 
results obtained were similar experimenting with 
different types of mother wavelets. 
  
In this work we experimented with a variety of 
mother wavelets. As it will be presented in section 4, 
the most satisfactory results were achieved using 
symmlets (Daubecies, 1994) (Fig. 2).  



 

  
Fig. 2. Symmlet mother wavelet with 13 vanishing 

moments   
 
2.2  Support Vector Machines 
 
SVMs are a new family of learning machines. The 
main idea behind SVMs, when dealing with a pattern 
classification problem, is to preprocess the data in 
order to represent patterns in a high dimensional 
space – typically much higher than the original input 
space- via a nonlinear mapping ( )⋅φ and perform the 
categorization in that space. In the case of linear 
separable patterns, the training of a SVM consists of 
finding the “optimal” hyperplane; that is the one with 
the maximum margin of separation between the 
classes. However, real life problems are rarely 
separable and, so, there always exists a number of 
misclassifications.  
 
Formally speaking, given a training set 
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= x , where each point ix is a p -

dimensional vector, the input pattern for the i-th 
example, and { }1,1iy ∈ −  is a label that specifies to 

which one of the classes the point ix  belongs to, the 
goal is to find a discriminating function of the form: 
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mapping from pℜ to the higher dimensional space 
mℜ  ( m p> ). The search for the “optimum” 

hyperplane leads to the following quadratic 
optimization problem: 
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where 0iξ ≥ are called slack variables that measure 
the deviation of a data point from the ideal condition 
of pattern separability. The parameter C  determines 
the influence of training data points that will remain 

on the wrong side of a separating nonlinear 
hyperplane in the feature space. The dual problem, 
which has to be solved, is the maximization of:  
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The discriminating function is finally given by:  
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The points for which ia >0, are called Support 
Vectors. They are the most difficult patterns to 
classify and are a small portion of the training set.  
 
If the nonlinear mapping function is chosen properly, 
the inner product in the feature space can be written 
in the following form:  

( ) ( ) ( , )i j i jK⋅ =φ x φ x x x  (12) 

where K  is a kernel function. A kernel function is a 
function in input space and, therefore, we could not 
perform explicitly the nonlinear mapping ( )⋅φ . This 
means that instead of calculating the inner products 
in the feature space, one can directly calculate it 
using the kernel function ( , )i jK x x  (Burges, 1998). 
 
 
3. FEATURE EXTRACTION,  CLASSIFICATION 

METHODOLOGY AND EXPERIMENTS 
 

The experimental data set consists of 40 FHR signals. 
The FHR signal are divided in two 2 subsets 
depending on whether the fetus has developed 
acidemia or not. Acidemia was determined for this 
study based on the value of umbilical artery pH, 
where the boundary is set to 7.1. Therefore, in the 
first subset, we included those signals that belonged 
to fetuses with umbilical artery blood pH less than 
7.1 and in the second subset, those that belonged to 
fetuses with umbilical artery blood pH more than 7.2. 
In the data set we didn’t include fetuses with 
umbilical artery pH in the range (7.1, 7.2). All 
cardiotocographic records had been acquired during 
the final stage of the labour and, in fact, as close as 
possible to delivery. This means that the data sets 
were time-biased free and a direct association could 
be made between the segment of the signal used and 
the fetal outcome. The recordings had durations 
ranging for 20 minutes to more than 1 hour. 
 
3.1 Artifact removal 
 
FHR is a very noisy signal with a lot of spiky 
artifacts and even periods of missing data due to the 
movement of the baby and the stress induced during 



 

the labour, leading to the displacement of the 
transducer used for its acquisition.  This kind of noise 
cannot be eliminated in the source and it is always 
present in cardiotocographic records. Therefore, 
before any further processing, it is necessary to 
eliminate the noise from FHR so we implemented a 
noise removal algorithm for FHR (Fig. 3) (Bernardes, 
et al., 1991).  
 

 
Fig. 3.  Data before and after the removal of artifacts. 
 
3.2  Data segmentation 
 
In this work we focused on FHR recordings as close 
as possible to delivery and for segments of relative 
small duration because our aim was to use global 
scale dependent statistics, and, in particular, the scale 
dependant standard deviation. Therefore, we used 
time windows ranging from 1 minute to 15 minutes. 
It must be mentioned that in some of the recordings 
the final 1-2 minutes had to be excluded (before the 
artifact removal stage had taken place) because the 
FHR signal was totally obscured by noise.  
 
3.3  Feature extraction 
 
For each FHR signal and for the corresponding time 
segment we carried out discrete wavelet transform up 
to scale 6 (Fig. 4). 

 
Fig.4. FHR signal on the upper part and the plot of 

the six wavelet coefficients at different scales. 
 
For each scale we calculated the corresponding 
standard deviation of the distribution of wavelet 
coefficients, using (eq.13): 
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where N is the number of coefficients at the 
corresponding scale m and ,m n

m
T is the sample 

mean of the wavelet coefficients at scale m. 
Therefore, for each signal we extracted 6 values (the 
scale dependent standard deviation) for each scale of 
decomposition. Those 6 values-features were used as 
inputs to the SVM classifier. 
 
3.4  Classification 
 
As it was explained in subsection 2.2, different 
learning SVM can be constructed with quite different 
non-linear decision surfaces based on how the inner-
product kernel is generated. In these experiments we 
used only RBF learning machines, where the kernel 
function is defined: 
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where the width 2σ  is specified a priori by the user 
and is common for all the kernels. 
  
In (eq.7), the parameter C is a user-defined variable, 
which controls the trade-off between the complexity 
of the machine and the number of non-separable 
points. In order to select the optimal value, different 
combinations of values for the parameters C and σ 
were tested using a training validation procedure, 
meaning that we trained the classifier using a fraction 
of the data (training set) and we employed the 
remaining of the data (validation set) to evaluate the 
performance of the SVM for different configurations.  
  
To evaluate the performance of the classifier we 
divided the 40 cases into 4 (non-overlapping) 
subsets, each one consisting of 5 sets from the 
“normal” and 5 from the “risk” group. The SVM 
classifier was trained on all subsets except for one, 
and the validation performance was assessed on the 
subset left out. We repeated this procedure 5 times, 
each time using a different subset for testing. 

 
 

4. EXPERIMENTAL RESULTS 
 

The best classification performance was achieved 
using symmlet wavelet with 13 vanishing moments 
and a time window for the computation of the 
wavelet coefficients equal to 3 minutes. Fig. 5 
illustrates the classification performance as a 
function of the duration of each FHR signal. 
 
For a second series of experiments, we used sliding 
windows of 3 minutes (with 2 minute overlap) to 
examine how the classification performance changes, 
as we are moving away from the time of delivery. 
Fig. 6 presents the classification performance for 
different signal durations; the best classification 
performance is achieved when we are as close to the 
delivery as possible. This is something that we 



 

expected as the last minutes of the delivery are the 
most stressful for the baby and they are the more 
likely to reflect a potential compromise. 

 
Fig.5 Classification performance for different time 

windows. 

 
Fig.6 Classification performance for a 3-minute 

sliding window. 
 
In this work we experimented with the use of SVMs 
and scale dependant features as an advanced 
automated methodology to discriminate between 
fetuses with “normal” umbilical artery pH values and 
those who have a decreased umbilical artery pH and 
are suspicious of developing metabolic acidosis. We 
achieved classification performance of 90% with a 
very good balance between normal and fetuses at risk 
(90% for both groups and for an RBF kernel with 
σ=1 and C=4). 
 
In a similar work by Thuner (Thuner et al., 1998) it is 
claimed that based on the standard deviation 
corresponding to 16-32 heartbeats, (i.e. using the 
information contained in scales 4 and 5), they 
managed to achieve complete separation between the 
class of healthy adults and adults with cardiac 
pathology. In our experiments no single feature (or 
even combination of features) was found capable to 
completely discriminate the two classes. Moreover, 
in the work of Salamalekis (2002) only scales 2-4 
were used. However, in our experiments we achieved 
the best classification performance using all six 
features. 
 

5. CONCUSIONS 
 

Even though the proposed methodology seems to 
perform quite well, some issues have to be 

considered. First of all, the indices used to 
discriminate normal fetuses from those which may at 
risk is not a gold standard -It is known that babies 
with severe acidosis (pH 7.0 or less) will 
subsequently be normal in a percentage of 90%. 
However, these can be considered immediate 
outcomes that one would prefer to avoid (Parer, 
1997). 
 
Furthermore, there exist certain other capabilities 
offered by the wavelet transform that can be used in 
the future. By using global statistics we exploit only 
the scale property of the wavelet transform and we do 
not take into account the evolution of this non-
stationary phenomenon. In fact, by using a sliding 
window we implicitly investigated the concept of 
time but we still do not investigate the time 
dependencies and possible transitions from a normal 
state to a risk one). 
 
In conclusion, the present results are slightly 
improved compared to previous works (Georgoulas 
et al., 2004a; Georgoulas et al., 2004b). They are 
comparable to those reported by other similar 
approaches (Salamalekis et al., 2002) where they 
achieved an overall classification rate of 95% using a 
cut-off value of 7.2 for the umbilical artery pH but 
this classification was slightly unbalanced since the 
classification rate for fetuses with pH<7.2 was 83.3% 
while the classification rate for fetuses with pH>7.2 
was 97.9%.  However, the fact that we did not 
include cases with umbilical artery pH in the range 
(7.1, 7.2) makes it a bit risky to directly compare our 
approach with the others found in the literature. 
 
In light of all the above findings, however, the 
proposed method is promising and it still has to be 
tested using a bigger data set before safer conclusions 
can be drawn. 
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