

UML-PA AS AN ENGINEERING MODEL FOR DISTRIBUTED PROCESS AUTOMATION

Uwe Katzke
Birgit Vogel-Heuser

Automation and Process Control Engineering
Faculty of Electrical, Information, and Media Engineering, University of Wuppertal

42119 Wuppertal, Germany

Abstract: Common engineering approaches and modeling approaches from software
engineering are brought together. For the domain of process automation an imple-
mentation oriented approach for an object oriented software development for het-
erogeneous distributed systems is introduced. Model elements for control are added
to UML as well as small-scale patterns for plant automation. Besides large-scale
patterns are introduced as well as implementational models. The adoption of UML
regarding applied diagrams and stereotypes for process automation will be intro-
duced and evaluated. Copyright © 2005 IFAC

Keywords: control applications of computer, control system design, modelling, real
time computer systems, programmable logic controllers, programming approaches,
object modelling techniques, object oriented programming

1. INTRODUCTION

Today the development of software in plant industry
is confronted with an increasing complexity of
problems. Traditional engineering procedures, fol-
lowing a centralized cpu concept where software is
developed and coded without modeling are over-
strained by the challenges of growing requirements
and the chances of modern, highly potent hardware.

Within the framework of the research project DisPA
(Distributed Process Automation) we created an
UML based media for describing, modeling and im-
plementing distributed systems. With UML-PA
(UML for process automation) a modeling language
is created, which is not new in every integral part,
but is a mature customization to fit the needs of
automation industry. Although the upcoming stan-
dard UML 2.0 has forged progresses in modeling
real time systems, an UML profile which is adopted
for process automation can improve existing weak-
nesses in this domain. The UML-PA provides im-
provements to give a less ambiguous modeling lan-

guage for several topics. Some of them are already
published elsewhere, but there is still no integrated
UML model.

2. REQUIREMENTS

An overview of requirements of process automation
is listed in table 1 (Vogel-Heuser et al., 2004). The
criteria can be structured regarding process require-
ments, automation system architecture, and project.
In process automation, different kinds of processes
are possible. A process automation system represents
a type of process, e.g. batch, continuous, or discrete.
Sometimes processes are composed of different
process types. They are called hybrid, since they
consist of different process kinds. These process
types require different control strategies and as a
result they require different modeling notation fea-
tures, e.g. block diagrams or state charts.

Moreover overall requirements are real time, the
integration of I/O peripherals directly via a back-
plane bus system or a field bus and interrupts from

the process. Furthermore it is required to describe the
automation architecture and the mapping from soft-
ware to hardware. Multiprocessor systems may be
included as well.

Regarding an automation project, there are typically
different engineers or technicians involved with dif-
ferent qualification levels and subjects. By that fact,
the notation has to be easy applicable to a certain
level for process, mechanical, and electrical engi-
neers as well as for technicians. A more visionary re-
quirement is to support the entire life cycle with one
consistent model, but there should be an appropriate
notation for each phase of the project.

Table 1 Overview of requirements in process auto-
mation

Categories / Criteria
Functionality / Notation
Aspects

batch (continu-
ous)

transfer functions, block
diagrams, differential
equation

discrete status model, flow chart,
continuous function
chart, Petri Net

process

hybrid continuous and discrete
process
distribution, communi-
cation, network / central
unit
different hardware plat-
forms
different software plat-
forms

heterogeneous
or homogene-
ous

HMI, diagnostics, no
screen

time hard and soft real time;
time and event con-
trolled systems
IEC 61131-3 for PLC
(embedded system),

implementation

Proprietary for DCS; C,
C++, Personal Java,
Embedded Java, RT
Java, Ada95

automation
system

level of auto-
mation

In product automation
100%

Qualification Easy to handle for engi-
neers and technicians
Top down design
Modularity, component
base, object orientation

System life
cycle

Reusability

Project

Tool support Along entire life cycle

Today plant manufacturing industry mostly installs
standardized automation devices for automation
systems, e.g. PLCs (Programmable Logic Control-
ler), which are programmed in IEC 61131-3. There-
fore, the transfer of modeling results into IEC 61131-
3 is necessary.

The IEC 61131-3 contains languages, which follow a
function-oriented or procedural-imperative paradigm.
The increasing use of these languages has caused a

growing dependency on the accepted standard, be-
cause existing implemented systems must be ex-
panded and the developers are familiar with the
practice of “accustomed” programming techniques.
The cumulative expertise about home made modules
allows a limited reuse and orientation. Without the
knowledge of the experience from building modules,
the acceptance of reusable modules is very low
(Stützle, 2002).

For special tasks, such as safety related tasks or hard
real time requirements additional automation devices
may be used, such as process control computers with
a real time operating system (RTOS). Furthermore
different technologies for field buses (i.e. Profibus,
Interbus, CANbus) and wide area networks endorse
the heterogeneous structure of automation systems.

For hard real time systems, specific requirements are
need to be realized. A list of implementation oriented
real time requirements is depicted in table 2.

Table 2 Real time requirements (functional /
implementational model)

Useful Language Con-
structs for Real Time
Programming

Useful Description of
Hardware Architecture

task dispatch
transition control be-
tween different states of
a task/ state diagram

connection between pe-
ripheral device and
technical process

Scheduling / EDF
Process peripheral /
modelling of input/ out-
put

synchronization of tasks
/ Semaphores, rendez-
vous

task activation / event
handling (timer/ inter-
rupts)

Architectural descrip-
tion of different process
computer units

communication between
tasks (sent/receive
events)

connection between dif-
ferent computers/ net-
work

The aspects of real time development like reactivity,
multi-threading, time-based behavior and real time
environment are needed to be met. In the past, effi-
cient and machine-intimate but Gordian program-
ming was necessary to fulfill these requirements.
Actual controllers show better performance then
their predecessors.

Prior investigation compared modeling techniques
for distributed process control engineering (table 1).
The research analyzed UML and Idiomatic Control
Language (ICL) regarding cognitive models and user
acceptance (Friedrich et al., 2003).

3. NOTATIONS FOR DISTRIBUTED SYSTEMS
IN PROCESS AUTOMATION

Many existing notations provide solutions for iso-
lated requirements. Indeed no established notation

fits all of them. UML has advantages concerning its
applicability across different development phases or
the degree of familiarity among developers as well as
users, which are also of value in embedded software
engineering. But the main benefit is based on its ex-
tensibility constructs. It is possible to build special-
ized profiles for specific domains.

UML 2.0 specifies a performance and a time specifi-
cation, useful for constructing real-time systems. But
it has no formal semantic as Berkenkötter et al.
(2003) analyzed. Licht (2004) proposed the integra-
tion of timed automata, which seems to be a very
promising approach, regarding comprehensibility for
engineers and formal specification.

Giotto is a programming language for embedded
hard-real time control systems with periodic behavior
(Henzinger et al., 2003). The concepts for scheduling
and timing aspects need to be evaluated. Giotto
worked also on distributed systems, but didn’t focus
on process automation specific requirements or large
scale software for plants.

Ptomely (2004) facilitates functional description by
providing various models of computations and hence
it allows different domains, but up to now process
automation is not included.

The structured analysis offers notations and modes of
operation for a top down design of automation sys-
tems. This concept follows a strategy of successive
refinements. It identifies objects, but it has neither a
mechanism nor a notation for generalization...

For automatic code generation, a prototype has been
developed, which generates IEC 61131-3 code (ST
and SFC) automatically from the UML model mod-
eled in an UML tool. This code generation prototype
allows evaluating the weaknesses of standard UML
by expert rating (Vogel-Heuser et al., 2004)

Within the framework of DisPA we have created an
UML based media for describing, modeling and im-
plementing distributed systems. Based on the
requirements analysis, a specialized profile of the
UML for process automation (UML-PA) has been
accomplished and evaluated for hybrid processes and
heterogeneous control systems.

4. ADAPTING UML FOR PROCESS
AUTOMATION (UML-PA)

The adaption of UML for distributed control sys-
tems, i.e. modeling of controllers handles time con-
straints, dynamic redundancy, time triggered syn-
chronization of distributed systems, communication
structures between encapsulated modules (from the
UML-RT profile) and an enlargement of the deploy-
ment diagram to describe the mapping of software
and hardware architecture. All elements, which ex-
tend the UML to the UML-PA, are based on the ex-
tensibility constructs of the UML. In detail the UML-
PA contains the following enhancements:

� Time constraints on architectural level
� Timed State Machines

� Communication by ports and protocols and
� Mapping between software and hardware.

4.1. Time constraints on architectural level

The UML provides several diagrams for identifying
objects and their collaboration. They provide either
architectural design (i.e. deployment diagrams) or
simple scenarios with real time requirements, i.e. se-
quence diagrams of UML 2.0 (OMG, 2004), MSCs
of the ROOM notation (Fuchs, 1998). During design
many time dependant decisions have to be taken.
Engineers need to determine the power of necessary
devices as well as their number. Each device will ful-
fill requirements of other connected devices and their
contained processes. Concurrently each device has a
limited capacity for fulfilling the claimed require-
ments.

The load of a certain component (i.e. a field bus,
fig. 1) is partly given from each connected neighbor.
Additionally real time requirements raise the charge.
Distributed systems allow parallel execution on dif-
ferent devices.

fieldbus

pressure
sensor

distance
controller pressure

controller operation
mode

controller

distance
sensor valve

closed loop control

(100,8)

(100,16)
pressure
sensor 1

(15)

distance
controller 1 pressure

controller 1
operation

mode
controller 1

distance
sensor 1

(25)
valve 1

closed loop control

(100,8)

(100,16)
pressure
sensor

distance
controller pressure

controller operation
mode

controller

distance
sensor valve

closed loop control

(100,8)

(100,16)
pressure
sensor n

(15)

distance
controller n pressure

controller n operation
mode

controller n

distance
sensor n

(25)
valve n

closed loop control

(100,8)

(100,16) (100,16) (100,16)

...

...

(100,8) (100,8)

Fig. 1 Communication requirements stressing the
 field bus

Most single devices operate only sequentially. The
different requirements have to be organized by
scheduling. The Timing Diagram of the UML 2.0
delivers a scheduled view as a scenario. It is de-
signed from estimated behavior by the experience of
engineers. It gives an advice for the composition of
the necessary devices. A global and traceable view
need to be invariable. This is given by timed state
machines.

4.2. Timed State Machines

The UML provides only fuzzy defined constructs for
the description of state machines. Especially the pre-
defined expressions for real time behavior are poorly
defined. Namely the events when and after are avail-
able in the standard UML to define time demands,
but there is neither common interpretation of these
keywords nor a notation of its parameters available.
There is no language to describe actions and condi-
tions, which can be attached to states and transitions.

Therefore the UML standard for these constructs is
constrained to regular expressions in the UML-PA.
Guard conditions in UML-PA are described by well

defined logical expressions. Actions are either calls
of class operations or assignments of logical, arith-
metic or string expressions. Thus each action and
condition is describable through compositions of
simple elements. Their time behavior can be calcu-
lated quoted through worst case estimators.

The procedure of whole state machine can be inves-
tigated by starting from the intra state behavior Kar-
dos and Rammig (2004) have ascribed the semantic
of inter state behavior of UML state machines to the
SDL. Events for timers are implementations of sig-
nals between SDL agents.

Based on the concepts of timed automata (Licht,
2004), certain predefined events and constraints are
defined to provide a clear notation for formulating a
definite real time behavior.

The UML-PA combines both approaches to timed
state machines which offer a clear media for de-
scribing real single and circular time events.

state 1 state 2
localbetween(min, max) [condition]

state 1 state 2
globalbetween(min, max) [condition]

state 1 state 2
everycycle(time) [condition]

state 1 state 2
statecycle(time) [condition]

Fig. 2 Time events in UML-PA

Fig. 2 shows four different time related events of
UML-PA. The semantic of each event is defined by
mappings to UML state machines with an integrated
timer. The events globalbetween and localbetween
allow the definition of timeframes. Lower and upper
bounds determine the available time for state internal
behavior. The events everycycle and statecycle de-
scribe cyclic occurrences of timer events. The differ-
ence is in the constraint of both events. Whereas
statecycle events expire on occurrence, if the origin
state is not reached, everycycle events cause an error
in this situation.

S1_1
(min,LBS)

SCYC [Condition]S1_1
(min,LBS)

S1_1
(min,LBS)

State 1
exit / Timer.addDelay (time,EVR) State 2

Initial

exit/ Timer.addDelay(time,SCYC)

Initial

exit/ Timer.addDelay(time,SCYC)

Initial

exit/ Timer.addDelay(time,SCYC)

Fig. 3 Mapping of statecycle event to UML state
machine with an additional timer object as an event
source.

The mapping of the statecycle event in fig. 3 gives an
example, how the predefined time events are as-
cribed to signal based events (Kardos 2004). The
timer is added to the state machine without modify-
ing the definition of states and transitions. Each time
event can be substituted by a standard UML notation,

but the uses of these events reduce the complexity of
models by saving states and transitions.

4.3. Communication by ports and protocols

The need of well defined communication is evident
in distributed (automation) systems. The first steps
when designing a distributed system are embossed
by the identification of entities and their interaction.
In a process of refinement new entities are generated
and applied with additional communication links.
These need to be equipped with protocols and the
roles of each participant have to be defined. There-
fore the UML-PA is supplemented with the exten-
sions ports, capsules, protocols and roles from the
UML-RT profile.

Capsules are stereotyped classes which are restricted
by constraints. Each capsule object communicates
only with other objects via its attached ports (Fig. 4).
Ports are communication interfaces of encapsulated
classes. Their instances are added by declaring
public attributes in a capsule. All other attributes and
operations of a capsule class are declared private. A
connector describes the communication relation be-
tween two ports.

frame control

pressure
controller

pressure
setpoint

operation
mode

controller

distance
controller

pressure
sensor

distance
sensor

proportional
valve

distance
setpoint

Fig. 4 First identified entities of the application

Fig. 4 shows a structure diagram for designing the
communication dependencies between several enti-
ties of a single hydraulic cylinder in the application
example. At this point the communication is de-
scribed still incompletely, but the missing parts (i.e.
protocols and the links between hardware and soft-
ware) are modeled in other diagrams. The links be-
tween different controllers, sensors and actuators in
UML- PA conform to the presentation of controller
links in block diagrams.

4.4. Mapping between software and hardware

Deployment diagrams and component diagrams as
the current media for modeling relations between
hardware and software don’t fit the requirements of
process automation. These systems operate with
widely distributed hardware.

Identical hardware is used very often at different
places. It must be possible to instantiate multiple oc-
currences of the same hardware, to provide it with its
unique record of attributes (i.e. addresses for identi-
fication) and to link it to the instance of a connector
of the model.

Therefore a specialized object diagram contains
model external entities (i.e. hardware entities). Pre-
defined classes for typical hardware objects like sen-
sors, actuators or field busses facilitate the mapping
of inputs and outputs to the connectors to the corre-
sponding hardware. The benefits of these UML ex-
tensions are demonstrated by implementing a closed
loop control system which realizes the press of a fi-
ber board plant as a prototype of an industrial appli-
cation.

Classes of the stereotype <<adapter>> are defining
sensors, actuators and other items, whose behavior is
determined outside the application model. They are
represented in the UML-PA model as capsules with-
out operations and attributes.

5. MODELLING WITH UML-PA

The UML-PA offers a self contained model for the
static construction of automation systems and their
behavior. Due to the diversity of notations for differ-
ent aspects within the UML, guidelines are required.
The principles of the structured analysis give an as-
sistance, which can be transferred to the notations of
UML. Starting from a black box system which is ar-
ranged with its peripheral devices in a context dia-
gram this procedure of refinement breaks a system
into small parts by refining external

valve

distance
sensor

pressure
sensor

System

valve

distance
sensor

pressure
sensor

System

valve

distance
sensor

pressure
sensor

System

valve

distance
sensor

pressure
sensor

System

distance
controller

pressure
controller

operation
mode

controller

valve

distance
sensor

pressure
sensor

System

distance
controller

pressure
controller

operation
mode

controller

valve

distance
sensor

pressure
sensor

System

distance
controller

pressure
controller

operation
mode

controller

refine

Fig. 5 Successive refinement of a capsule

communication flows. Using the UML-PA, this pro-
cedure is transferred to the refinement of capsules
(fig. 5). Each capsule represents a system which can
be refined in a subordinate diagram unless it is al-
ready a primitive element.

5.1. Auto reconfiguration

The abstraction level of the object oriented approach
allows the construction of virtual devices. They are
used to establish a service for the online reconfigura-
tion of a system to displace defective hardware (i.e.
sensors).

The reconfiguration service can be used in new or al-
ready existing models to improve the functionality
(i.e. safety) of target systems. A controller pattern

consists usually of a sensor, an actuator and a con-
troller device. The failure of one of these compo-
nents results in failure of the entire control chain.
This safety problem can be prevented by usage of re-
dundant devices. However, the integration of redun-
dant devices into an existing model is one of the
main challenges. Often the model structure and also
already implemented code have to be changed. An
inherited reconfiguration class is designed to solve
this problem. It is a virtual representation of a sub-
stitute device. Any deviation is corrected by an ad-
justment function (fig. 6).

Sensor
Left : Sensor = NULL
Right : Sensor = NULL
DefectFlag : Boolean
Hardware_Relations : Variant

GetValuet() : Double
SetDefectflag(SetFlag : Boolean)
GetNextRight() : Sensor
InsertRight(Sr : Sensor)
InsertLeft(Sr : Sensor)

Virtual_Sensor
Distance : Double

Assign(Sr : Sensor)
SetDistance(NewDistance : Double)
Adjustment(InputValue : Double) : Double
GetValue() : Double

Fig. 6 Virtual_Sensor as an inherited reconfigura-
tion class

As an example we suppose an additional sensor or an
already existing is needed to improve the steadiness
of a system. In this case the reconfiguration class
will simply replace the primary sensor device. The
reconfiguration class Virtual_Sensor instantiates the
physically existing device Sensor_2, but it corrects
the measurement in a way, that the system’s handling
of the substitute is identical to the original device.
Therefore the reconfiguration class uses the mecha-
nisms of inheritance and overriding.

6. EVALUATION

The application of a continuous hydraulic press for
particle board production has been used to evaluate
the UML-PA itself and the developed procedures.
There each hydraulic group is controlled by one dis-
tributed control device with several closed loop con-
trollers. Due to global safety constraints some
higher-ranking global functions require a synchro-
nized controller switch in all hydraulic groups, i.e. in
each distributed system simultaneously.

The closed loop controls, implemented from the
UML-PA model for press control are performed on a
simulated model (Matlab Simulink) of the press and
there they are confronted with a reactive behavior.
Both types of systems, the process model and the
controller are connected via CAN as field bus sys-
tem. To evaluate reconfiguration using dynamic re-
dundancy (to displace defective hardware) the proc-
ess model could simulate faulty sensors, which re-
quire a replacement of sensors using the sensor data
of a neighbor hydraulic system. Bus load is moni-
tored as well as the compliance with timing and the
functionality constraints.

7. SUMMARY

At first we find the successful development of nota-
tion elements for open and closed loop control, in-
terlocking and redundant hardware aspects, which
are part of characteristic aspects of embedded sys-

tems. We designed intuitive applicable elements on
the basis of typical modeling constructs in control
automation. In addition we show a possibility to
bridge the gap between the function oriented para-
digm used in plant automation industry (IEC 61131-
3) and the object oriented approach, which is an im-
portant aspect for adoption in industry. This aspect is
not at least shown by the usage of reusability.

At this point the presented parts of UML-PA may
look fragmental, but the complete UML-PA will
bridge the gap between process automation and
computer science. The composition of these parts is
the result of the detailed requirements analysis,
which was made already in the forefront of the
UML-PA elements’ development. These require-
ments are based on one hand on different interviews
with software developers and users (Katzke et al.,
2004) and on the other hand on the evaluation of
presently offered UML tools.

8. OUTLOOK

Most UML-PA extensions can be realized through
annotations within such tools. Based on the UML
code generator the UML-PA should be interpreted.
By this it will be implemented in such a tool. To de-
velop distributed systems the timing of bus systems
needs to be included in such a model. The integration
of tool simulating bus systems, e.g. Ethernet, should
be coupled with an UML-PA approach.

Outside the scope of this project, but nevertheless an
interesting enhancement of software, that is designed
using UML-PA are the aspects dynamic reloading
during runtime, automatic (re-) configuration and de-
coupling of software fragments. UML-PA offers
promising fundaments to realize such features, due to
its supported characteristics concurrency, structural
independence, and immutability (by a third party).
The challenge to realize the above mentioned abili-
ties is the required communication infrastructure of
the software components. Today, this is usually ac-
complished by communication interfaces, which are
also supported by UML-PA. Reconfigurable soft-
ware would need additional features like the ability
to negotiate with other parties and to dynamically
adapt to given needs. Therefore, continuative meth-
ods for software development are necessary.

9. REFERENCES

Berkenkötter, B., Bisanz, S., Hannemann, U. and
Peleska, J. (2004), HybridUML Profile for
UML 2.0, SVERT., workshop hold in conjunc-
tion with UML 2003, San Francisco.

Friedrich, D., Vogel-Heuser, B. and Bristol, E. (Nov.
2003). Evaluation of Modeling Notations for
Basic Software Engineering in Process Control.
In: 29th Annual Conference of the IEEE Indus-
trial Electronics Society (IECON 03), VA,
USA.

Fuchs, M., et al. BMW-ROOM, An Object-Oriented
Method for ASCET, Society of Automotive
Engineers, Detroit, 1998

Henzinger, T. A., Kirsch, C. M., Sanvido, M. A. A.
and Pree, W. (2003). From Control Models to
Real-Time Code Using Giotto, IEEE Control
System Magazine 23, vol. 1, pp.50-64.

Huber, F. and Schätz, B. (Dec 2001). Integrated De-
velopment of Embedded Systems with Auto-
Focus. Technical Report TUM-I0107, TU
München, Institut für Informatik, Munich

Kardos, M., Rammig, F., J. (2004). Model Based
Formal Verification of Distributed Production
Control Systems. Ehrig et al. (Eds.) Integration
of Software Specification Techniques for Appli-
cations in Engineering, Lecture Notes of Com-
puter Science, Springer, Berlin.

Katzke U., Vogel-Heuser, B. and Fischer, K. (2004).
Analysis and State of the Art of Modules in In-
dustrial Automation. atp international, vol. 1,
pp. 23-31,

Licht, T. (2004). Ein Verfahren zur zeitlichen Ana-
lyse von UML-Modellen beim Entwurf von
Automatisierungssystemen. PhD Thesis, faculty
of computer science and automation, Technical
University of Ilmenau.

Nickel U., Schäfer, W. and Zündorf, A. (2003). Inte-
grative Specification of Distributed Production
Control Systems for Flexible Automated Manu-
facturing. In: M. Nagl, B. Westfechtel (Eds.)
Modelle, Werkzeuge und Infrastrukturen zur
Unterstützung von Entwicklungsprozessen,
Wiley-VCH Verlag, Weinheim.

OMG, UML 2.0 Superstructure Specification,
www.omg.org/cgi-bin/doc?ptc/2004-10-02

Overview of the Ptolemy project, technical memo-
randum UCB/ERL M03/25,
http://ptolemy.eecs.berkeley.edu, 2004-09-29

Stützle, R. (2002). Wiederverwendung ohne Mythos.
Empirisch fundierte Leitlinien für die Entwick-
lung wiederverwendbarer Software, PhD The-
sis, faculty of computer science, University of
Munich.

Vogel-Heuser, B., Friedrich, D., Katzke, U. and
Witsch, D., „Usability and benefits of UML for
plant automation – some research results“ ac-
cepted paper ” in atp international, 3(2005), is-
sue 1, Oldenbourg Verlag, Munich, 2005.

Vogel-Heuser, B., Fischer, K., Göhner, P., Gutbrodt,
F. and Katzke, U. (2004). Conceptual Design of
an Engineering Model for Product and Plant
Automation. In: Ehrig et al. (Eds.) Integration
of Software Specification Techniques for Appli-
cations in Engineering, Lecture Notes of Com-
puter Science, vol. 3147, Springer, Berlin.

