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Abstract: Common engineering approaches and modeling approaches from software 
engineering are brought together. For the domain of process automation an imple-
mentation oriented approach for an object oriented software development for het-
erogeneous distributed systems is introduced. Model elements for control are added 
to UML as well as small-scale patterns for plant automation. Besides large-scale 
patterns are introduced as well as implementational models. The adoption of UML 
regarding applied diagrams and stereotypes for process automation will be intro-
duced and evaluated.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

Today the development of software in plant industry 
is confronted with an increasing complexity of 
problems. Traditional engineering procedures, fol-
lowing a centralized cpu concept where software is 
developed and coded without modeling are over-
strained by the challenges of growing requirements 
and the chances of modern, highly potent hardware. 

Within the framework of the research project DisPA 
(Distributed Process Automation) we created an 
UML based media for describing, modeling and im-
plementing distributed systems. With UML-PA 
(UML for process automation) a modeling language 
is created, which is not new in every integral part, 
but is a mature customization to fit the needs of 
automation industry. Although the upcoming stan-
dard UML 2.0 has forged progresses in modeling 
real time systems, an UML profile which is adopted 
for process automation can improve existing weak-
nesses in this domain. The UML-PA provides im-
provements to give a less ambiguous modeling lan-

guage for several topics. Some of them are already 
published elsewhere, but there is still no integrated 
UML model. 

2. REQUIREMENTS 

An overview of requirements of process automation 
is listed in table 1 (Vogel-Heuser et al., 2004). The 
criteria can be structured regarding process require-
ments, automation system architecture, and project. 
In process automation, different kinds of processes 
are possible. A process automation system represents 
a type of process, e.g. batch, continuous, or discrete. 
Sometimes processes are composed of different 
process types. They are called hybrid, since they 
consist of different process kinds. These process 
types require different control strategies and as a 
result they require different modeling notation fea-
tures, e.g. block diagrams or state charts. 

Moreover overall requirements are real time, the 
integration of I/O peripherals directly via a back-
plane bus system or a field bus and interrupts from 



     

the process. Furthermore it is required to describe the 
automation architecture and the mapping from soft-
ware to hardware. Multiprocessor systems may be 
included as well. 

Regarding an automation project, there are typically 
different engineers or technicians involved with dif-
ferent qualification levels and subjects. By that fact, 
the notation has to be easy applicable to a certain 
level for process, mechanical, and electrical engi-
neers as well as for technicians. A more visionary re-
quirement is to support the entire life cycle with one 
consistent model, but there should be an appropriate 
notation for each phase of the project. 

Table 1 Overview of requirements in process auto-
mation 

Categories / Criteria 
Functionality / Notation 
Aspects 

batch (continu-
ous) 

transfer functions, block 
diagrams, differential 
equation 

discrete status model, flow chart, 
continuous function 
chart, Petri Net 

process 

hybrid continuous and discrete 
process 
distribution, communi-
cation, network / central 
unit 
different hardware plat-
forms 
different software plat-
forms 

heterogeneous 
or homogene-
ous 

HMI, diagnostics, no 
screen 

time hard and soft real time; 
time and event con-
trolled systems 
IEC 61131-3 for PLC 
(embedded system),  

implementation 

Proprietary for DCS; C, 
C++, Personal Java, 
Embedded Java, RT 
Java, Ada95 

automation 
system 

level of auto-
mation 

In product automation 
100% 

Qualification Easy to handle for engi-
neers and technicians 
Top down design 
Modularity, component 
base, object orientation 

System life 
cycle 

Reusability 

Project 

Tool support Along entire life cycle 
 

Today plant manufacturing industry mostly installs 
standardized automation devices for automation 
systems, e.g. PLCs (Programmable Logic Control-
ler), which are programmed in IEC 61131-3. There-
fore, the transfer of modeling results into IEC 61131-
3 is necessary. 

The IEC 61131-3 contains languages, which follow a 
function-oriented or procedural-imperative paradigm. 
The increasing use of these languages has caused a 

growing dependency on the accepted standard, be-
cause existing implemented systems must be ex-
panded and the developers are familiar with the 
practice of “accustomed” programming techniques. 
The cumulative expertise about home made modules 
allows a limited reuse and orientation. Without the 
knowledge of the experience from building modules, 
the acceptance of reusable modules is very low 
(Stützle, 2002).  

For special tasks, such as safety related tasks or hard 
real time requirements additional automation devices 
may be used, such as process control computers with 
a real time operating system (RTOS). Furthermore 
different technologies for field buses (i.e. Profibus, 
Interbus, CANbus) and wide area networks endorse 
the heterogeneous structure of automation systems. 

For hard real time systems, specific requirements are 
need to be realized. A list of implementation oriented 
real time requirements is depicted in table 2. 

Table 2 Real time requirements (functional / 
implementational model)  

Useful Language Con-
structs for Real Time 
Programming 

Useful Description of 
Hardware Architecture 

task dispatch 
transition control be-
tween different states of 
a task/ state diagram 

connection between pe-
ripheral device and 
technical process 

Scheduling / EDF 
Process peripheral / 
modelling of input/ out-
put 

synchronization of tasks 
/ Semaphores, rendez-
vous 

task activation / event 
handling  (timer/ inter-
rupts) 

Architectural descrip-
tion of different process 
computer units 

communication between 
tasks (sent/receive 
events) 

connection between dif-
ferent computers/ net-
work 

The aspects of real time development like reactivity, 
multi-threading, time-based behavior and real time 
environment are needed to be met. In the past, effi-
cient and machine-intimate but Gordian program-
ming was necessary to fulfill these requirements. 
Actual controllers show better performance then 
their predecessors. 

Prior investigation compared modeling techniques 
for distributed process control engineering (table 1). 
The research analyzed UML and Idiomatic Control 
Language (ICL) regarding cognitive models and user 
acceptance (Friedrich et al., 2003). 

3. NOTATIONS FOR DISTRIBUTED SYSTEMS 
IN PROCESS AUTOMATION 

Many existing notations provide solutions for iso-
lated requirements. Indeed no established notation 



     

fits all of them. UML has advantages concerning its 
applicability across different development phases or 
the degree of familiarity among developers as well as 
users, which are also of value in embedded software 
engineering. But the main benefit is based on its ex-
tensibility constructs. It is possible to build special-
ized profiles for specific domains. 

UML 2.0 specifies a performance and a time specifi-
cation, useful for constructing real-time systems. But 
it has no formal semantic as Berkenkötter et al. 
(2003) analyzed. Licht (2004) proposed the integra-
tion of timed automata, which seems to be a very 
promising approach, regarding comprehensibility for 
engineers and formal specification. 

Giotto is a programming language for embedded 
hard-real time control systems with periodic behavior 
(Henzinger et al., 2003). The concepts for scheduling 
and timing aspects need to be evaluated. Giotto 
worked also on distributed systems, but didn’t focus 
on process automation specific requirements or large 
scale software for plants. 

Ptomely (2004) facilitates functional description by 
providing various models of computations and hence 
it allows different domains, but up to now process 
automation is not included. 

The structured analysis offers notations and modes of 
operation for a top down design of automation sys-
tems. This concept follows a strategy of successive 
refinements. It identifies objects, but it has neither a 
mechanism nor a notation for generalization... 

For automatic code generation, a prototype has been 
developed, which generates IEC 61131-3 code (ST 
and SFC) automatically from the UML model mod-
eled in an UML tool. This code generation prototype 
allows evaluating the weaknesses of standard UML 
by expert rating (Vogel-Heuser et al., 2004) 

Within the framework of DisPA we have created an 
UML based media for describing, modeling and im-
plementing distributed systems. Based on the 
requirements analysis, a specialized profile of the 
UML for process automation (UML-PA) has been 
accomplished and evaluated for hybrid processes and 
heterogeneous control systems. 

4. ADAPTING UML FOR PROCESS 
AUTOMATION (UML-PA) 

The adaption of UML for distributed control sys-
tems, i.e. modeling of controllers handles time con-
straints, dynamic redundancy, time triggered syn-
chronization of distributed systems, communication 
structures between encapsulated modules (from the 
UML-RT profile) and an enlargement of the deploy-
ment diagram to describe the mapping of software 
and hardware architecture. All elements, which ex-
tend the UML to the UML-PA, are based on the ex-
tensibility constructs of the UML. In detail the UML-
PA contains the following enhancements: 

� Time constraints on architectural level 
� Timed State Machines 

� Communication by ports and protocols and 
� Mapping between software and hardware. 

4.1. Time constraints on architectural level 

The UML provides several diagrams for identifying 
objects and their collaboration. They provide either 
architectural design (i.e. deployment diagrams) or 
simple scenarios with real time requirements, i.e. se-
quence diagrams of UML 2.0 (OMG, 2004), MSCs 
of the ROOM notation (Fuchs, 1998). During design 
many time dependant decisions have to be taken. 
Engineers need to determine the power of necessary 
devices as well as their number. Each device will ful-
fill requirements of other connected devices and their 
contained processes. Concurrently each device has a 
limited capacity for fulfilling the claimed require-
ments. 

The load of a certain component (i.e. a field bus, 
fig. 1) is partly given from each connected neighbor. 
Additionally real time requirements raise the charge. 
Distributed systems allow parallel execution on dif-
ferent devices. 
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Fig. 1 Communication requirements stressing the 
 field bus 

Most single devices operate only sequentially. The 
different requirements have to be organized by 
scheduling. The Timing Diagram of the UML 2.0 
delivers a scheduled view as a scenario. It is de-
signed from estimated behavior by the experience of 
engineers. It gives an advice for the composition of 
the necessary devices. A global and traceable view 
need to be invariable. This is given by timed state 
machines. 

4.2. Timed State Machines 

The UML provides only fuzzy defined constructs for 
the description of state machines. Especially the pre-
defined expressions for real time behavior are poorly 
defined. Namely the events when and after are avail-
able in the standard UML to define time demands, 
but there is neither common interpretation of these 
keywords nor a notation of its parameters available. 
There is no language to describe actions and condi-
tions, which can be attached to states and transitions. 

Therefore the UML standard for these constructs is 
constrained to regular expressions in the UML-PA. 
Guard conditions in UML-PA are described by well 



     

defined logical expressions. Actions are either calls 
of class operations or assignments of logical, arith-
metic or string expressions. Thus each action and 
condition is describable through compositions of 
simple elements. Their time behavior can be calcu-
lated quoted through worst case estimators. 

The procedure of whole state machine can be inves-
tigated by starting from the intra state behavior Kar-
dos and Rammig (2004) have ascribed the semantic 
of inter state behavior of UML state machines to the 
SDL. Events for timers are implementations of sig-
nals between SDL agents.  

Based on the concepts of timed automata (Licht, 
2004), certain predefined events and constraints are 
defined to provide a clear notation for formulating a 
definite real time behavior.  

The UML-PA combines both approaches to timed 
state machines which offer a clear media for de-
scribing real single and circular time events. 

state 1 state 2
localbetween( min, max ) [ condition ]

state 1 state 2
globalbetween( min, max ) [ condition ]

state 1 state 2
everycycle( time ) [ condition ]

state 1 state 2
statecycle( time ) [ condition ]

 

Fig. 2 Time events in UML-PA 

Fig. 2 shows four different time related events of 
UML-PA. The semantic of each event is defined by 
mappings to UML state machines with an integrated 
timer. The events globalbetween and localbetween 
allow the definition of timeframes. Lower and upper 
bounds determine the available time for state internal 
behavior. The events everycycle and statecycle de-
scribe cyclic occurrences of timer events. The differ-
ence is in the constraint of both events. Whereas 
statecycle events expire on occurrence, if the origin 
state is not reached, everycycle events cause an error 
in this situation.   
 

S1_1
(min,LBS)

SCYC [Condition]S1_1
(min,LBS)

S1_1
(min,LBS)

State 1
exit / Timer.addDelay (time,EVR) State 2

Initial

exit/ Timer.addDelay(time,SCYC)

Initial

exit/ Timer.addDelay(time,SCYC)

Initial

exit/ Timer.addDelay(time,SCYC)

 

Fig. 3 Mapping of statecycle event to UML state 
machine with an additional timer object as an event 
source. 

The mapping of the statecycle event in fig. 3 gives an 
example, how the predefined time events are as-
cribed to signal based events (Kardos 2004). The 
timer is added to the state machine without modify-
ing the definition of states and transitions. Each time 
event can be substituted by a standard UML notation, 

but the uses of these events reduce the complexity of 
models by saving states and transitions. 

4.3. Communication by ports and protocols 

The need of well defined communication is evident 
in distributed (automation) systems. The first steps 
when designing a distributed system are embossed 
by the identification of entities and their interaction. 
In a process of refinement new entities are generated 
and applied with additional communication links. 
These need to be equipped with protocols and the 
roles of each participant have to be defined. There-
fore the UML-PA is supplemented with the exten-
sions ports, capsules, protocols and roles from the 
UML-RT profile. 

Capsules are stereotyped classes which are restricted 
by constraints. Each capsule object communicates 
only with other objects via its attached ports (Fig. 4). 
Ports are communication interfaces of encapsulated 
classes. Their instances are added by declaring 
public attributes in a capsule. All other attributes and 
operations of a capsule class are declared private. A 
connector describes the communication relation be-
tween two ports.  
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Fig. 4 First identified entities of the application 

Fig. 4 shows a structure diagram for designing the 
communication dependencies between several enti-
ties of a single hydraulic cylinder in the application 
example. At this point the communication is de-
scribed still incompletely, but the missing parts (i.e. 
protocols and the links between hardware and soft-
ware) are modeled in other diagrams. The links be-
tween different controllers, sensors and actuators in 
UML- PA conform to the presentation of controller 
links in block diagrams. 

4.4. Mapping between software and hardware 

Deployment diagrams and component diagrams as 
the current media for modeling relations between 
hardware and software don’t fit the requirements of 
process automation. These systems operate with 
widely distributed hardware.  



     

Identical hardware is used very often at different 
places. It must be possible to instantiate multiple oc-
currences of the same hardware, to provide it with its 
unique record of attributes (i.e. addresses for identi-
fication) and to link it to the instance of a connector 
of the model. 

Therefore a specialized object diagram contains 
model external entities (i.e. hardware entities). Pre-
defined classes for typical hardware objects like sen-
sors, actuators or field busses facilitate the mapping 
of inputs and outputs to the connectors to the corre-
sponding hardware. The benefits of these UML ex-
tensions are demonstrated by implementing a closed 
loop control system which realizes the press of a fi-
ber board plant as a prototype of an industrial appli-
cation. 

Classes of the stereotype <<adapter>> are defining 
sensors, actuators and other items, whose behavior is 
determined outside the application model. They are 
represented in the UML-PA model as capsules with-
out operations and attributes. 

5. MODELLING WITH UML-PA 

The UML-PA offers a self contained model for the 
static construction of automation systems and their 
behavior. Due to the diversity of notations for differ-
ent aspects within the UML, guidelines are required. 
The principles of the structured analysis give an as-
sistance, which can be transferred to the notations of 
UML. Starting from a black box system which is ar-
ranged with its peripheral devices in a context dia-
gram this procedure of refinement breaks a system 
into small parts by refining external 
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Fig. 5 Successive refinement of a capsule 

communication flows. Using the UML-PA, this pro-
cedure is transferred to the refinement of capsules 
(fig. 5). Each capsule represents a system which can 
be refined in a subordinate diagram unless it is al-
ready a primitive element. 

5.1. Auto reconfiguration 

The abstraction level of the object oriented approach 
allows the construction of virtual devices. They are 
used to establish a service for the online reconfigura-
tion of a system to displace defective hardware (i.e. 
sensors). 

The reconfiguration service can be used in new or al-
ready existing models to improve the functionality 
(i.e. safety) of target systems. A controller pattern 

consists usually of a sensor, an actuator and a con-
troller device. The failure of one of these compo-
nents results in failure of the entire control chain. 
This safety problem can be prevented by usage of re-
dundant devices. However, the integration of redun-
dant devices into an existing model is one of the 
main challenges. Often the model structure and also 
already implemented code have to be changed. An 
inherited reconfiguration class is designed to solve 
this problem. It is a virtual representation of a sub-
stitute device. Any deviation is corrected by an ad-
justment function (fig. 6). 

Sensor
Left : Sensor = NULL
Right : Sensor = NULL
DefectFlag : Boolean
Hardware_Relations : Variant

GetValuet() : Double
SetDefectflag(SetFlag : Boolean)
GetNextRight() : Sensor
InsertRight(Sr : Sensor)
InsertLeft(Sr : Sensor)

Virtual_Sensor
Distance : Double

Assign(Sr : Sensor)
SetDistance(NewDistance : Double)
Adjustment(InputValue : Double) : Double
GetValue() : Double

 

Fig. 6 Virtual_Sensor as an inherited reconfigura-
tion class 

As an example we suppose an additional sensor or an 
already existing is needed to improve the steadiness 
of a system. In this case the reconfiguration class 
will simply replace the primary sensor device. The 
reconfiguration class Virtual_Sensor instantiates the 
physically existing device Sensor_2, but it corrects 
the measurement in a way, that the system’s handling 
of the substitute is identical to the original device. 
Therefore the reconfiguration class uses the mecha-
nisms of inheritance and overriding. 

6. EVALUATION 

The application of a continuous hydraulic press for 
particle board production has been used to evaluate 
the UML-PA itself and the developed procedures. 
There each hydraulic group is controlled by one dis-
tributed control device with several closed loop con-
trollers. Due to global safety constraints some 
higher-ranking global functions require a synchro-
nized controller switch in all hydraulic groups, i.e. in 
each distributed system simultaneously.  

The closed loop controls, implemented from the 
UML-PA model for press control are performed on a 
simulated model (Matlab Simulink) of the press and 
there they are confronted with a reactive behavior. 
Both types of systems, the process model and the 
controller are connected via CAN as field bus sys-
tem. To evaluate reconfiguration using dynamic re-
dundancy (to displace defective hardware) the proc-
ess model could simulate faulty sensors, which re-
quire a replacement of sensors using the sensor data 
of a neighbor hydraulic system. Bus load is moni-
tored as well as the compliance with timing and the 
functionality constraints. 

7. SUMMARY 

At first we find the successful development of nota-
tion elements for open and closed loop control, in-
terlocking and redundant hardware aspects, which 
are part of characteristic aspects of embedded sys-



     

tems. We designed intuitive applicable elements on 
the basis of typical modeling constructs in control 
automation. In addition we show a possibility to 
bridge the gap between the function oriented para-
digm used in plant automation industry (IEC 61131-
3) and the object oriented approach, which is an im-
portant aspect for adoption in industry. This aspect is 
not at least shown by the usage of reusability.  

At this point the presented parts of UML-PA may 
look fragmental, but the complete UML-PA will 
bridge the gap between process automation and 
computer science. The composition of these parts is 
the result of the detailed requirements analysis, 
which was made already in the forefront of the 
UML-PA elements’ development. These require-
ments are based on one hand on different interviews 
with software developers and users (Katzke et al., 
2004) and on the other hand on the evaluation of 
presently offered UML tools. 

8. OUTLOOK 

Most UML-PA extensions can be realized through 
annotations within such tools. Based on the UML 
code generator the UML-PA should be interpreted. 
By this it will be implemented in such a tool. To de-
velop distributed systems the timing of bus systems 
needs to be included in such a model. The integration 
of tool simulating bus systems, e.g. Ethernet, should 
be coupled with an UML-PA approach. 

Outside the scope of this project, but nevertheless an 
interesting enhancement of software, that is designed 
using UML-PA are the aspects dynamic reloading 
during runtime, automatic (re-) configuration and de-
coupling of software fragments. UML-PA offers 
promising fundaments to realize such features, due to 
its supported characteristics concurrency, structural 
independence, and immutability (by a third party). 
The challenge to realize the above mentioned abili-
ties is the required communication infrastructure of 
the software components. Today, this is usually ac-
complished by communication interfaces, which are 
also supported by UML-PA. Reconfigurable soft-
ware would need additional features like the ability 
to negotiate with other parties and to dynamically 
adapt to given needs. Therefore, continuative meth-
ods for software development are necessary. 
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