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Abstract: In this paper, a survey of approaches to interval simulation of uncertain 

systems is presented. The kind of uncertain systems considered are those described 

by a model with parameters bounded in intervals. These last years the research of 

algorithms for simulating these type of systems has been a very active. Many 

researchers coming from different research areas and using different types of 

approaches have developed different algorithms. In this paper, the main problems 

and approaches when performing this kind of simulation are presented. The main 

goal of the paper is to present for the first time all existent approaches together 

emphasising that since all researchers face the same problem but in different 
contexts, they are finding the same kind of problems in spite of their different 

formalisms and methodologies. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
When modelling a physical dynamic system with a 

mathematical model there is always some mismatch 

between the model and the reality because of the 

modelling errors or  the tolerance of the components. 

This mismatch is called uncertainty or tolerance. 

The uncertainty can be located in the parameters, in 

this case it is called structured or parametric, or in 

the structure of the model, then it is called 

unstructured. Uncertainties in the parameters can 

appear in the model of the actual system because of 

one or several of the following reasons: nominal 
values of system parameters are the result of the 

system design step, but their actual value is often 

different from the nominal one; parameters whose 

value is estimated, thus resulting in some confidence 

interval within which they lie.; real parameters can 

vary in time becuase of drifting, non-linearities, etc.; 

low-order or simplified models are used to model 

complex systems. In the case of structured 

uncertainty, the exact value of the parameters is 

unknown but bounded in an interval. A system 

modelled using this type of model uncertainty is 

called an interval dynamic system. The aim of this 
paper is to review existing approaches to interval 

simulation coming from the different research 

communities signalling the main features and 

identifying common problems. In Section 2, interval 

simulation is introduced and the main approaches are 

enumerated. In Section 3,  the main problems 

associated with interval simulation are described. In 
Section 4, algorithms coming from the solution of 

validated initial value problems are presented. In 

Section 5, algorithms coming automatic control and 

fault detection fields are presented. In Section 6, 

algorithms coming for circuit analysis community are 

presented. In Section 7, algorithms coming from 

artificial intelligence communities are presented.  

Finally, in Section 8 the conclusions of this survey 

are introduced. 

 

2. INTERVAL SIMULATION 

 
2.1 Statement of the problem 

 

Considering a non-linear dynamic system in 

continuous time (or discrete-time1) and the modelling 

uncertainty that affect the behaviour of the system, 

the state-space relationship can be written as 

 

)),t(),t(()t( θuxfx =ɺ        (1) 

                                                
1 In case of a discrete-time sytem (1) should be substituted by 

 

)),k(),k(()1k( θuxfx =+  



 

where: x∈ ℜnx, u∈ ℜ nu and y∈ ℜny are state, input 
and output vectors of dimension nx, nu and ny 

respectively; g is the state space function; θθθθ is the 
vector of uncertain parameters of dimension p with 

their values bounded by a compact set Θθ ∈ of box 

type, i.e., }|{
p

θθθθΘ ≤≤ℜ∈= ; ox  is the 

vector of uncertain initial conditions of dimension nx 
with their values bounded also by a box type compact 

set oo X∈x , i.e, 

}|{X ooo
nx

oo xxxx ≤≤ℜ∈=  . 

 

Definition 1. The solution set of a system, whose 

model is described by (1) for the time interval [0,tf] 

consists of  

 

[ ]{ }oofof ,,t,0t:),,,t()t,0X( XxΘθθxux ∈∈∈= , (2) 

 

where ),,,t( oxθux  denotes the solution of (1) at 

time t for some vector of parameters Θθ ∈  and 

some initial condition oo X∈x  at time t=0. The set 

of values for a fixed time interval [0,tf] will be 
referred to as the reachability set at time t and 

denoted by 

 

{ }ooo ,:),,,t()t(X XxΘθθxux ∈∈= .     (3) 

 

Herein, it will be assumed that the uncertain system 

is stable for all Θθ ∈ . This assumption will allow 

X(t) to be a bounded region for each ),0[t ∞∈ . 

 

Definition 2. The interval simulation of a system, 

whose model is described by (1), for the time interval 

[0,tf] consists in computing the interval hull of the 

reachability set X(t), i.e., the smallest interval vector 
containing it: 

 

□X(t) [ ])t(),t( xx= ,      (4) 

 

where □ is used to denote the interval hull of X, for 

all t∈ [0,tf].  The sequence of interval vectors □X(t) 
with t∈ [0,tf] will be called the interval solution or 
envelopes of (1) (Fig. 1). 

 

From the definition of interval hull, □X(k) can be 

determined by solving the following optimisation 

problems: 

),,,t(min)t(

and

),,,t(max)t(

o

o

θxuxx

θxuxx

=

=
    

subject to:  

Θθ ∈   

oo X∈x     (5) 
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Fig. 1 Envelopes produced by the interval simulation 

of a system described by (1) 

 

 
This is a dynamic optimisation problem that can be 

solved using the classical tools that have been used 

for optimal control of dynamics systems. However, 

in general optimization problems (5) are non-convex. 

Then, traditional numerical optimisation techniques 

based on derivatives and the method of the steepest 

descent  could not guarantee the global optimum, so 

they are not suitable to solve these optimisation 

problems. Instead,  global optimisation techniques 

that can rigorously guarantee the global optimum 

must be used (Papamichail, 2002; 2004). Since the 

exact computation of the interval simulation in 
general needs a lot of time, some approximate 

solutions have been introduced in the literature 

(Armengol, 2001) through the introduction of the 

inner  [ ])t(x
⌣

and outer [ ])t(x
⌢

 solutions. 

 

Definition 3. The interval vector [ ])t(x
⌣

is called the 

inner solution for the time  t of the interval 

simulation problem if and only if )t(x)t(x ii ≥⌣
and 

)t(x)t(x ii ≤⌣
, i=1,..,n where □X(t) [ ])t(),t( xx= is 

the interval hull of the solution set. 

 
According to Kolev (1993), the following 

approximate solution to the interval simulation 

problem for the time interval [0,tf] that provide an 

inner solution can be obtained by determining the 

interval vector [ ] [ ])t(),t()t(x xx
⌣⌣⌣ =  by solving the 

following global optimisation problems: 

 

),,t(min)t(

and

),,,t(max)t( o

uθxxx

uθxxx

o,=

=

⌣

⌣

 

 
subject to:      
 

)(V Θθ ∈   

)X(V oo ∈x    (6) 



  

where )(V Θ and )X(V o denotes the set of 

vertices of the uncertain parameters and initial states 

sets, respectively.  This interval simulation algorithm 

is known as the vertices algorithm. 

 

According to Walter (1970), if the state space 

function f  in (1) is quasi-isotone2, i.e., the kth 

component of state vector function f is monotone 

increasing with respect the kth component of state 

vector x. Then, approximate solution provided by 

vertices algorithm (6) provide the exact solution to 

the interval simulation problem. Such a systems are 

known also as positive (Luenberger, 1979) or 
cooperative (Gouzé, 2000). 
 

Definition 4. The interval vector [ ])t(x
⌢

is called the 

outer solution for the time t of the interval simulation 

problem if and only if )t(x)t(x ii ≤⌢
and 

)t(x)t(x ii ≥⌢
, i=1,..,n where □X(t) [ ])t(),t( xx= is 

the interval hull of the solution set. 

 

Interval simulation algorithms based on interval 

methods provide outer solutions of the exact interval  

simulation since the range evaluation of a function 

)(f x  with [ ]xx ∈  using the interval natural 

extension [ ])(F x  satisfies the following inclusion: 

[ ])(F)(f xx ⊆  with [ ]xx ∈ . 

 
2.2 Existing approaches 

 

When implementing algorithms for interval 

simulation of continuous time systems such as (1), 
usually some kind of discretisation should be 

introduced. For these reason most of the existent 

algorithms consider directly the model in discrete-

time. However, some approaches that initially 

consider the model in continuous time when 

discretising the model in order to numerically 

simulate it, even consider the errors of discretisation 

as is the case of approaches coming from the solution 

validated initial value problems. In the literature, 

several algorithms for the interval simulation of 

systems described by (1) taken from different 
research areas have been proposed. These approaches 

are taken from:  

 
• Qualitative Reasoning (Kuipers,1994) 

(Vescovi,1995) (Kay,1995) 

• Fuzzy Dynamical Systems (Bonarini, 1994) 
(Hüllermeier, 1997) (Keller,1999) 

                                                
2 In case of a discrete-time system,  the isotone property is 
requiered (Cugueró, 2002). This property is satisfied if the state 

vector function f is monotone increasing with respect all 

component of state vector x  (Cugueró, 2002). 

• Constraint Satisfaction  (Deville, 1998) 

(Janssen,2001)(Jaulin,2001) 

• Validated Initial Value Problems (Moore,1966) 

(Moore,1979) (Neumaier,1993) (Lohner,1987) 

(Berz,1998) (Kühn,1998) (Nedialkov,1999) 

• Automatic Control (Barmish,1979) 

(Chernousko,1994) (Tibken,1993) 

(Kurzhanski,1997) (Norton, 1999) 

(ElGhaoui,1999) (Kieffer,2002) 

• Fault Detection (Horak,1988) (Puig,1999) 

(Armengol,2001)  

• Circuit Tolerance Analysis (Oppenheimer,1988) 

(Kolev,1993) (Femia,1999) (Femia,2000) 

 

All these algorithms can be classified according to if 

they compute the interval hull of the set of estimated 

state □ )k(X̂  using one step-ahead iteration based 

on previous approximations of the reachable set 

(region based approaches), or a set of point-wise 

trajectories generated by selecting particular values 

of Θθ ∈  using heuristics or optimisation (trajectory 

based approaches). In the first case, the set of states 

)t(X  is bounded by its interval hull at each iteration 

and some propagation algorithm is used to produce 

the interval hull of next set of states )tt( ∆+X . This 

approach is affected by several problems, in 

particular, the wrapping effect, range evaluation of an 

interval function (in this case, the state space function 

is )),t(),t(()t( θuxfx =ɺ ) and the uncertain 

parameter time dependency that will be reviewed in 

Section 2. However, in the second case, the interval 

hull of )t(X  is built following real trajectories 

generated by selecting particular values of Θθ ∈ . 

Consequently, this approach overcomes the wrapping 

effect and preserves the uncertain parameter time 

dependency, but the problem of the interval function 

(in this case the trajectory function ),,,t( θxux o ) 

range evaluation still remains. However, region 

based approaches present a lower computationally 

complexity than trajectory based approaches being 

this their main interest. 
 
 

3. PROBLEMS ASSOCIATED TO 

INTERVAL SIMULATION 

 

3.1 Range evaluation of an interval function 
 

When the behaviour of a dynamic system described 

by (1) is interval simulated,  the interval hull of the 

region of system states should be evaluated using 

either the state space function 

)),t(),t(()t( θuxfx =ɺ , or the trajectory function 

),,,t( o θxux . The determination of this interval hull 

at each time step implies the computation of the 

range of previous interval functions. One possibility 

for evaluating this range is to apply directly interval 



arithmetic substituting operations between real 

numbers by operations between intervals (Moore, 

1966). But, although the ranges of basic interval 

arithmetic operations are exactly the ranges of the 

corresponding real operations, this is not the case if 

the operations are composed since multi instances of 

the same variable are not taken into account. For 

instance: let us consider [ ]1,1x −∈ , then the interval 

for xxz −=   should be 0, but when applying 

interval arithmetic is [ ]2,2− . This phenomenon is 

termed as interval dependence or multi-incidence 

problem (Moore,1966). One possibility to avoid this 

problem is to combine the use of interval arithmetic 

with a branch and bound algorithm (Hansen, 1992). 

Another possibility to evaluate the range of an 

interval function is to solve two optimisation 

problems (a minimisation and a maximisation) using 

numerical methods. But, classical numerical 

optimisation algorithms can only guarantee local 

optimums since they are gradient based. Global 

optimums can  only be obtained if the optimisation 
problems associated with the range evaluation are 

convex. However, in general, to guarantee global 

optimums in non-convex optimisation problems, 

global optimisation algorithms based on branch and 

bound should be used (Puig, 1999). 

 

3.2 Wrapping effect 

 

The problem of wrapping is related to the use of a 

crude approximation (its interval hull) of the solution 

set and its iteration using one-step ahead recursion of 

the state space function )),t(),t(()t( θuxfx =ɺ , i.e., 

using region based approaches. This problem does 

not appear if instead the trajectory 

function ),,,t( 0 θxux  is used. When using the one-

step ahead recursion approach, at each iteration, the 

true solution set )t(X  is wrapped into a superset 

feasible to construct and to represent the real region 

on a computer (interval box, ellipsoid, zonotopes).  

Since the overestimation of the wrapped set is 

proportional to its radius, an spurious growth of the 
enclosures can result if the composition of wrapping 

and mapping is iterated (Kühn,1998) as it is shown in 

Fig. 2. This wrapping effect can be completely 

unrelated to the stability properties of the interval 

system, and even stable systems are shown to exhibit 

exponentially fast growing enclosures that are useless 

for practical purposes. Not all the interval systems 

exhibit this problem, as is the case of cooperative (or 

positive) systems introduced in Section 1 . 

 
 

Fig. 2 Wrapping effect 

 

The wrapping effect was first observed with the 

advent of interval methods and its application to the 

validated solution of initial value problems in the 

early 60s (Moore,1966). Since then, several 

approaches have been proposed to avoid it when one 
step-ahead iteration of the interval system is used: 

either rotating the state space of the interval system 

as it was proposed first by Moore (1966) using a 

change of coordinates and then by Lohner (1987) 

using a QR-factorisation, or approximating the state 

space region using a better approximation than 

interval hull (box) approximation, for example, using 

ellipsoids (Neumaier, 1993) or using zonotopes 

(Kühn, 1998). 

 

3.3 Time variation of uncertain parameters 
 

An additional issue should be taken into account 

when an interval model, as (1), is used: uncertain 

parameter time-invariance is not naturally preserved 

using one-step ahead recursion algorithms. If one-

step recursion scheme is used (ElGhaoui,1999), the 

set for system states X(t+∆t) is approximated by a set 
computed using previous sets approximating system 

state region X(t) and the set for uncertain parameters 

ΘΘΘΘ. Then, the relation between parameters and states 
is not preserved since every parameter contained in 

the parameter uncertainty region ΘΘΘΘ is combined with 
every state in the set approximating state region X(t) 

when determining the new set approximating state 

region X(t+∆t).  Thus, recursive schemes based on 
one-step are intrinsically time varying (Adrot, 

2003)(Puig, 2003). Time-invariance in parameters 
can only be guaranteed if the relation between 

parameters and states is preserved at every iteration. 

One possibility to preserve this dependence is to 

derive a functional relation between states and 

parameters at every iteration that will transport the 

system from the initial state to the present state. 

Then, two approaches about the assumption of the 

time-variance of the uncertain parameters are 

possible: 

 

- the time-varying approach which assumes that 

uncertain parameters are unknown but bounded 



in their uncertainty intervals and can vary at each 

time step since one-step ahead recursion (i.e. 

region based approach) algorithms are used. This 

is the approach followed by Barmish (1979), 

ElGhaoui (1999), Norton (1999) and Puig 

(2001), among others. 

 

- the time-invariant approach which assumes that 

uncertain parameters are unknown but bounded 

in their uncertainty intervals and guarantee that 

they can not vary at each time step since a 
functional relation between parameters and 

states is used (i.e. trajectory based approach) 

instead of a one-step ahead recursion. This is the 

approach followed by Tibken (1993), Bonarini 

(1994), Horak (1988) and Puig (1999), among 

others. 

 

Considering one or other assumption about parameter 

time-invariance different algorithms and results are 

obtained. Typically the time varying (region based) 

approach is preferred in the literature because of its 
lower complexity. However, cooperative systems 

since they do exhibit the wrapping effect, a time-

varying interval simulation based on one-step 

recursion will provide the same interval simulation 

than a time-invariant based on vertices algorithm 

described in Section 1 (Cugueró, 2002). This result 

can be interpreted intuitively: states ranges can be 

computed independently from uncertain parameters 

and states since isotonic parameters and states are 

decoupled. In this case, not preserving the relation 

between parameters and states is not important at all. 
 
3.4 Bounding the discretisation error 

 

In case that the uncertain system is described by a 

continuous time model as (1), some discretisation 

should be introduced when computing its numerical 

interval solution. The usual discretisation is based on 

one-step ahead recursion that provide the following 

approximation of the solution at time t starting at 

time t-h being h de discretisation step: 

 

),,,t(

),,,t(),,,t(

ht

ht
a

ht

θxue

θxuxθxux

−

−−

+
=

  (7) 

 

where: ),,,t( ht
a

θxux −  is the approximating 

function and ),,,t( ht θxue −  is the approximating 

error due to discretisation. One the most used 

methods to compute the approximating function 

),,,t( ht
a θxux −  is based on the Taylor series of the 

state function )),t(),t(()t( θuxfx =ɺ  

 

[ ]
),,(h

),,,t(

ht

1k

1i

ht
ii

htht
a

θuxf

xθxux

−

−

=
−

−−

∑

+=
 (8) 

with: [ ]
ff =1  and [ ]

[ ]
f

x

f
f

∂
∂=

−1i
i , 2i ≥ . 

Then, the approximating error is given by 

 
[ ]

),(h),,,t(e
iiii

,
k
i

k
hti θuxfθxu ξξ=−  (9) 

 

evaluated at a given but unknown [ ]t,hti −∈ξ  with 

n,...,1i = .  Then, the interval solution [ ]tx at time t  

using as initial condition the interval solution [ ]ht−x  

at time t-h is based on computing the interval 

extension of the approximating solution (8) and 

discretisation error (9): 

 

[ ] [ ] [ ]ta
tt exx +=    (10) 

 

Interval extensions of (8) are computed by replacing 

each occurrence of ht−x  and θ  by its corresponding 

interval and each standard function by its interval 

evaluation, while to evaluate interval extension of (9) 

the interval for ξx should be obtained such that 

[ ]ht
~

−∈ xxξ  for all [ ]t,ht −∈ξ  using for example 

the Picard-Lindelöf operator (Moore, 1966).   

However, as explained in Section 2.1 using interval 

extensions by replacing real numbers in a function by 

intervals often leads to large overestimations what 

derive in an interval simulation [ ]tx  that always 

increases, even if the true solution contracts. A better 

approach is to apply the mean-value theorem to [ ]i
f  

at some [ ]htht
ˆ −− ∈ xx , we have: 

 
[ ] [ ]

[ ]( ) )ˆ(ˆ,;

)ˆ()(

hthththt
i

ht
i

ht
i

−−−−

−−

−+

=

xxxxfJ

xfxf
    (11) 

 

where: [ ]( )htht
i ˆ,; −− xxfJ  is the Jacobian of  [ ]i

f  

with its jth row evaluated at )ˆ( hthtilht −−− −+ xxx α  

for some [ ] )n,,1j(1,0ij ⋯=∈α . Other classical 

integration methods such as Runge-Kutta can also be 

used in discretisation process. However, as the error 

term contains the Taylor error term, these interval 
methods do not usually provide better enclosures. 

 

4. APPROACHES COMING FROM ODE 

VALIDATED SOLUTION AND 

CONSTRAINT SATISFACTION 

COMMUNITIES 

 

This group of approaches come from the field of 

Numerical Analysis and Applied Mathematics, and in 

particular, from the Interval Analysis community. 

Interval Analysis was introduced by Moore in the 
sixties (Moore, 1966). The problem of interval 

system simulation was first formulated by Moore in 

the context of the validated solution of ordinary 



differential equations (ODE) (Moore, 

1966)(Moore,1979). He proposed an algorithm based 

on Taylor series and interval arithmetic.  He 

discovered the wrapping effect and proposed an 

algorithm to avoid this problem using a 

transformation of the state space. Since then, many 

algorithms for  ODE validated solution have been 

proposed. All the approaches presented in this 

section are region based except the Berz’s algorithm. 

 

4.1 Moore’s algorithm 

 
Moore’s algorithm is based on the Taylor series 

expansion described in Section 3.4.  Then, the 

following one-step ahead formula to the interval 

solution [ ]tx at time t  using as initial condition the 

interval solution [ ]ht−x  at time t-h  is obtained 

combining (10) and (11) 

 

[ ] [ ] [ ]( ) [ ]thththttt
ˆˆ exxSxx +−+= −−−  (12) 

 
where3: 

[ ] [ ] [ ] [ ]),;(h
1k

1i

ht
ii

ht θxfJIS ∑
−

=
−− +=  

[ ]∑
−

=
−− +=

1k

1i

ht
i

i

htt )ˆ,ˆ(
!i

h
ˆˆ θxfxx  

[ ] [ ] [ ] ),~(h ht
kk

t θxfe −=  

with tx̂ , ht
ˆ −x  and θ̂  being the mid-points 

respectively of intervals [ ]tx , [ ]ht−x  and [ ]θ . 

 
If the previous formula is evaluated using interval 
arithmetic, the obtained enclosures are smaller than 

the obtained applying the formula (10) corresponding 

directly to the Taylor series expansion, but still  this 

evaluation could be seriously affected by the 

wrapping effect (Moore,1966). 

 
4.2 Lohner’s algorithm 
 

One of the most successful approaches to reduce the 

problem due to wrapping effect was proposed by 

Rudolf Lohner (Lohner,1987). This approach is 

based on transforming the space state following its 

rotation avoiding the overestimation that produces a 

crude approximation of the region of system states 

just computing for each variable the maximum and 

the minimum. Lohner’s algorithm is an evolution of 

Moore’s algorithm presented in (12) according to 

 

                                                
3 In case that the uncertain system (1) is in discrete-time formula 
(12) should be modified taking into account that there is no 

discretisation error, [ ] [ ] [ ] [ ]),;( ht
i

ht θxfJS −− =  and 

)ˆ,,ˆ(ˆ
htt θuxfx −=  

[ ] [ ] [ ] [ ]thththttt
ˆ erASxx ++= −−−  (13) 

 

where: [ ] [ ] [ ] [ ] )ˆ())(( tt
1

thththt
1

tt eeArASAr −+= −
−−−

−  

being [ ] [ ] 000 x̂xr −= and IA =0 . A good choice 

for tA  is the   Q-factor from the QR-factorisation of 

the mid-point of [ ] htht −− AS . Lohner’s algorithm 

works very well in many systems but Kühn (1998) 

has discovered some cases where this approach fails. 

To avoid the problems of Lohner’s algorithm, Kühn 

has proposed a new algorithm based on 

approximating the region of system states of the 

interval system using zonotopes. 

 

4.3. Neumaier’s algorithm  
 

Instead of using an interval hull of the reachable set 

)t(X , Neumaier (1993) proposes to use the smallest 

ellipsoid containing it and a new method for reducing 

the wrapping effect based on an interval ellipsoid 

arithmetic. In this paper, only the algorithm for the 

linear case will be presented. The extension for the 
non-linear case is a very simple task, since the non-

linear system will be linearized around the estimated 

trajectory (Neumaier, 1993). An ellipsoid is the set of 

the form: 

 

{ }0r,r,),,( n >≤ℜ∈+= ξξLξzrLzE  (14) 

where nℜ∈z  is the centre, nn×ℜ∈L  is the axis 

matrix and ℜ∈r is the radius. This algorithm 

generalise for an uncertain system described as (3), 

the property that for a linear certain system given the 

ellipsoid enclosing the set of possible states at time t-

h such that  )r,,(ˆ
hththt −−− ∈ Lzx E , then the 

enclosing ellipsoid at time t such that 

)r,,(ˆ
ttt Lzx E∈  can be constructed by propagating 

separately the centre and axis matrix according to: 
 

htt

hthtt

−

−−

=
+=

ALL

BuAzz
 (15) 

 
being implicitly relative. The interval simulation then 

can be generated by computing the interval hull of 

the ellipsoid ),,( kk rLzE  at each time instant 

according to 

 

[ ] [ ] •−+= titt r,rˆ Lzx     (16) 

 

where i •  represent the ith row of the matrix Lt. The 

advantage of using ellipsoids instead of 

parallelepipeds as in Moore’s and Lohner’s algorithm 

is that the rotation of the state space of the interval 

system is implicit being not necessary to make 
additionally computations.  The disadvantage is that 

the algorithm for computing with ellipsoids is more 

complicated than those of parallelepipeds and in 



general the wrapping effect when uncertain 

parameters are considered is not avoided (Neumaier, 

1993).  

 

4.4 Kühn’s algorithm 

 
Kühn’s algorithm (1998) is based on approximating 

the region of system states using zonotopes. A 

zonotope Z of order m is the Minkowski sum 

 
m1

PP ++= ⋯Z  (17) 

 

of m parallelepipeds i
P  (Fig. 3). The order m is a 

measure for the geometrical complexity of the 

zonotopes. It can be chosen freely and is a 
performance parameter for the Kuhn’s algorithm. 

Given the zonotope ht−Z  enclosing the reachable set  

)ht( −X , then the reachable set )t(X is enclosed by 

the following zonotope 

 

)( htttt −+= ZRZ TE    (18) 

where tT are square matrices and tE are intervals 

such that 

htttht )(f −− +⊆ ZZ TE    (19) 

and the reduction operator R is defined in the 

following way: let m1
PPP

0 +++= ⋯Z be a m+1 

zonotope and m1 ≤≤ ℓ be the largest integer such 

that: 

)(diam)diam( 11 ℓℓ
⋯ PPPP

0 ≥+++ −    (20) 

or 1=ℓ otherwise, then: 

 

=:)(ZR □ m11 ) PPPP(P
0 ++++++ +

⋯⋯
ℓℓ    (21) 

 

According Adrot (2003), the reachable set X(t) when 

the state function f is linear and only uncertainty in 

initial conditions is considered is a zonotope. Then, 

Kühn’s algorithm provides a good solution to the 

enclosure of X(t). However, considering only 
uncertainty in parameters, the reachable set  X(t) 

becomes a more complex than a zonotope. In this 

case even approximating this set using subpavings 

and algorithms to propagate them (Jaulin, 2001), the 

wrapping effect could not be avoided at a reasonable 

computing time. 
 

4.5 Berz’s algorithm  
 

Berz’s algorithm (1998) for interval simulation 

proposes formulating the differential equation that 
describes system dynamics as an integral equation: 

τττ d)),(,)((f)0()t(

t

0

θuxxx ∫+=  (22) 

and solving it using high-order Taylor series 

expansions in both time and initial conditions. Then, 

using interval arithmetic validates existence and 

uniqueness and also computes tight bounds on the 

solution at each time iteration in one phase. This 

algorithm has been implemented in COSY 

INFINITY simulator (Berz,1997). This algorithm 

avoids the wrapping problem because it computes 

actual interval hull for the reachable set states based 

on the initial interval for system states, preserving the 

functional relation between initial and final state 

values a not approximating and propagating the state 

uncertainty using one step ahead iterations. 

 
4.6 Recent improvements 

 

Recently, Nedialkov (1999) has developed a new 

algorithm based on an interval Hermite-Obreschkoff 

method. It is an interval Taylor series method that 

consists of two phases: a predictor and a corrector. 

The predictor computes an initial enclosure of the 

solution and from that the corrector computes a 

tighter enclosure. The corrector applies a Newton-

like step to tighten the initial enclosure. Comparing 

with traditional Taylor series methods based on 
Lohner’s algorithm for the same order and step size, 

Nedialkov’s algorithm provides smaller local error, 

better stability and fewer Jacobian evaluations. The 

extra cost introduced by the use of the Newton step is 

one matrix inversion and a few matrix 

multiplications. On the other hand, from the Artificial 

Intelligence field, particularly from the Constraint 

Satisfaction community, new approaches have 

appeared that move in the same direction that 

Nedialkov’s algorithm, but using consistency 

techniques. Deville (1998 has presented, for the first 

time, the idea of applying consistency techniques for 
the generation and for the reduction of solution 

enclosures. The idea of this approach consists in 

generalising classical methods for validated solution 

of ODEs into a two-step process: a forward process 

that computes an initial enclosure and a backward 

process that reduces this enclosure. Consistency 

techniques apply naturally to the backward (pruning) 

step but can also be applied to the forward step. 

 
5. APPROACHES COMING FROM AUTOMATIC 

CONTROL AND FAULT DETECTION 

COMMUNITIES 

 
The group of approaches described in this section 

come from the field of Automatic Control and Fault 

Detection. These approaches have considered 

explicitly the problem of parameter uncertainty, 

while approaches described in previous section do 

not address directly this problem. They can be 

classified in two groups depending on the assumption 

about the temporal variance of uncertainty. 

 

5.1 Time-varying approaches 

 
Time-varying approaches assume, as it has been 

described in Section 2, that uncertain parameters are 



only known to belong to their corresponding 

uncertainty intervals but from iteration to iteration 

the value can change because a one-step ahead 

recursion is used. The first time-variant approach was 

proposed by Barmish (1979) considering linear 

uncertain systems. This approach is based on 

propagating recursively the state space region using 

polytopes. Recently, El Ghaoui (1999) proposed one 

approach based on approximating the state space 

region using ellipsoids also considering linear 

uncertain systems. The ellipsoids are propagated 
recursively solving convex optimization problems 

using LMI. This approach has been extended by 

Calafiore (2003) to quadratic uncertain systems. On 

the other hand, Puig (2001) has proposed an 

approach based on approximating the state space 

region using zonotopes and Kuhn’s algorithm 

presented in Section 3 of this paper. Uncertain 

parameters are considered as extra states, as in 

extended Kalman Filter. Finally, Adrot (2003) has 

proposed an algorithm based on the use of 

subpavings (Jaulin, 2001) to propagate an enclosure 
of the reachable set at each iteration. At the same 

time, Cherrier (2003) has proposed an algorithm 

based on propagating independently each bound of 

the interval enclosing the reachable set by 

formulating an augmented system where the new 

state vector is composed by the upper and lower 

bounds of the state. Additionally conditions of the 

stability of such scheme based on Lyapunov theory 

have been introduced. 

 

5.2 Time-invariant approaches 

 
Time-invariant approaches assume, as it has been 

described in Section 2, that uncertain parameters are 

only known to belong to their corresponding 

uncertainty intervals and from iteration to iteration 

the value can not change. Time-invariance in 

parameters can only be guaranteed if the relation 

between parameters and states could be preserved at 

every iteration. One possibility to preserve this 

dependence is to derive a functional relation between 

states and parameters at every iteration that will 

transport the system from the initial state to the 
present state. In the case of a discrete time-invariant 

linear system in state space, this relation is the 

solution of (1) for a particular values of the system 

matrices A and B: 

∑
−

=

−−+=
1k

0j

)j1k(k )j()0()k( BuAxAx     (23) 

In deriving (5), it  has been assumed time-invariant 

parameters, i.e., )k()1k( AA =+  and 

)k()1k( BB =+ . At the same time that time 

invariance is preserved the wrapping effect is 

avoided because state uncertainty is not propagated 

from step to step but instead always from the initial 

state as in the case of Berz’s algorithm presented in 

previous section. The first-time invariant approach 

was proposed by Horak (1988) in the fault detection 

community. He proposed to formulate the interval 

simulation as an optimisation problem using the 

maximum principle. The optimisation problem is 

then solved approximately using dynamic 

optimisation algorithms. Later, Tibken (1993,1995) 

proposed formulating the time invariant interval 

simulation for non-linear uncertain systems in 

discrete-time formulating an optimisation problem 

that has as objective function the functional relation 

between the initial state and the present by 

optimising directly the state trajectory ),,,k( o θxux  

subject to the uncertainty on the initial state and 

parameters. The optimisation problems associated 

with this approach are solved using global 

optimisation algorithms based on branch and bound 

and interval arithmetic proposed by Hansen 

(Hansen,1992). A global optimisation algorithm is 
needed as justified in Section 2 when optimising 

directly the state trajectory. Danes (1995) using tools 

from optimal control reformulates the problem of 

interval simulation as a dynamic optimisation 

problem. The problem is nicely reformulated but it 

does not provide a feasible computation algorithm. 

Finally, another algorithm for simulating an interval 

linear system coming the fault detection community 

was proposed by Puig (1999,2003). This algorithm is 

based on formulating the interval simulation as a 

global optimisation problem as was proposed by 
Tibken but exploiting the fact that the system is 

linear. In this case the objective function is  

describing the state trajectory is (23). The main 

drawbacks of this approach and of Tibken’s 

approach, besides its high computational complexity, 

is that since computations are referred to the initial 

state the optimization problem grows with time. In 

case of Puig’s approach the objective function is a 

polynomial with degree increasing by one at every 

iteration since the uncertain systems considered are 

linear. Theferore, the amount of computation needed 

is increasing with time being impossible to operate 
over a large time interval. Then, some kind of 

approximation should be introduced to make the 

approach more tractable. Assuming that the uncertain 

system is asymptotically stable, any transients in the 

system settle to negligible values in a finite-time, 

more precisely in ts/T samples, being ts is  the system 

settling time and T the sample time. This assumption 

implies that the outputs of the system at time k 

depend only on the inputs that occurred during the 

last ts/T samples with an accuracy selectable by the 

choice of the length L of a time sliding window. 
Typically this length is of the order of the settling 

time measured in number of samples. Therefore, for 

any time k, it is possible to approximate (23) using a 

sliding window, starting at time k-L and ending at k: 
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Of course, the parameter time-invariance is only 

guaranteed inside the sliding window. This is why 

this approach is knows as almost time-invariant 

(Puig, 2003). It also can be easily extended to deal 

with the problem of interval observation (2002). 

In Armengol (2001), it is proposed a similar 

approach than in Puig (1999.2003). The main 

difference is that optimisation problem is solved 

using a global optimisation algorithm based on 

branch and bound and modal interval arithmetic. This 

interval arithmetic in some cases can handle multi-
incidences very efficiently and provide directly inner 

and outer solutions. 

 

6. APPROACHES COMING FROM CIRCUIT 

THEORY COMMUNITY 

 

In the field of circuit theory, interval simulation is 

related to the problem to the problem of analysing the 

effect of tolerances in components on the transient 

response. First studies of this problem are due to 

Oppenheimer (1988). He proposed an algorithm 
which enables to generate estimates for solution 

bounds of initial-value problems described by 

systems of linear, autonomous, first-order ordinary 

differential equations with a parameter which 

belongs to an interval and which enter linearly into 

the system description. This algorithm is based on a 

method of constructing augmented partial sums 

which approximate interval matrix exponential 

function as closely as desired, using interval 

arithmetic tools. Later, Kolev (1993) has proposed 

two methods that provide approximate solutions for 

interval simulation of linear circuits with constant 
input. The first method is based on computing only 

the solutions taking the vertices of the space of 

uncertainty defined by parameters and states. This 

method only provide an inner solution. The second 

method is based on the previous method and the 

implicit Euler method for integrating ordinary 

differential equations. It uses some interval analysis 

techniques and proves to be more computationally 

efficient than the first method. Recently, Femia 

(1999; 2000) has proposed the combined use of 

genetic algorithms and affine arithmetic, a modified 
interval arithmetic that takes into account 

dependencies of first order, that provides an inner 

and an outer solution. Genetic algorithms are used to 

improve pure Monte Carlo simulation providing the 

inner solution and affine arithmetic provides an outer 

solution. However, because the wrapping effect is not 

correctly handled, in many cases simulation derive in 

unstable interval simulations.   

 

7. APPROACHES COMING FROM ARTIFICIAL 

INTELLIGENCE COMMUNITY 

 
The approaches presented in this section come from 

the field of Artificial Intelligence, in particular, from 

the Qualitative Reasoning community leaded by 

Kuipers (Kuipers,1994). In particular these 

approaches are an evolution of qualitative simulation. 

A deep survey of such approaches when applied to 

fault detection can be found in Armengol (2000). 

 

7.1 Qualitative simulation 

 

Qualitative simulation allows the simulation of 

systems which are incompletely specified by 

transforming the system into a related system in a 

more abstract space of qualitative values where 
model imprecision can be dealt with by rules of 

qualitative mathematics. A qualitative description of 

a model (or QDE for Qualitative Differential 

Equation) is composed of the set of model variables 

whose domains are defined in terms of quantity 

spaces, the structural constraints that describes the 

relationship between variables in terms of arithmetic 

operators and functions, and shape constraints on the 

functional relations. The structural level of the model 

is known as SDE (for Structural Differential 

Equation). Using QSIM algorithm developed by 
Kuipers (Kuipers, 1986), it is possible to simulate the 

behaviour of a qualitative model. QSIM simulates the 

qualitative model by tracking the magnitude and 

direction of change of each variable, where the 

magnitude is defined as being at or between two 

landmarks in the variable’s quantity space and the 

direction of change is either increasing, steady, or 

decreasing starting from a user-specified initial state. 

By applying the rules of qualitative arithmetic, QSIM 

generates a set of variable descriptions consistent 

with the model constraints at the initial state. It 

models time as a sequence of alternating points and 
intervals in time. QSIM produces a set of alternating 

time-point and time-interval qualitative descriptions 

of the system. Such a set of state is called a 

qualitative behaviour. Normally, there will be 

multiple qualitative behaviours for a given model 

because the qualitative model represents a family of 

ODE systems and since qualitative mathematics is 

inherently ambiguous. Therefore, some behaviours 

generated by this method will be spurious. However, 

one property of QSIM is that all real behaviours of 

the qualitative model are predicted. But, one 
weakness of QSIM is that some spurious behaviours 

may also be predicted.  

 

7.2 Semiquantitative simulation 

 

Since QSIM ignores information at the quantitative 

level, it generates the set all possible qualitative 

behaviours of ODEs entailed by the qualitative 

model, but it may also include behaviours of systems 

that are not part of the family. To bridge the gap 

between qualitative and quantitative simulation, this 

qualitative reasoning community has proposed an 
approach known as semiquantitative simulation. 

This approach is based on semiquantitative models. 

Semiquantitative models (or SQDE for 



Semiquantitative Differential Equation) reduce 

model imprecision by adding numerical knowledge 

to the purely qualitative representation, and in some 

cases refuting qualitative behaviours predicted by a 

pure qualitative simulation because they are 

inconsistent with the quantitative information. 

Predictions from semiquantitative models are more 

precise (i.e. more tightly bounded), while still 

retaining the accuracy (i.e. all possible behaviours are 

found) provided by purely qualitative methods. The 

Q2 algorithm proposed by Kuipers and Berleant 
(Kuipers, 1988) produces semiquantitative inferences 

from a SQDE. At each qualitative time-point, QSIM 

defines events for each variable. An event is the 

magnitude of a variable with the magnitude of the 

time variable at the time-point. Since an event 

represents the instantaneous snapshot of a particular 

variable at a particular time, the portion of the 

structural differential equation of the 

semiquantitative model can be viewed as a set of 

equations relating the model variables, and the events 

must satisfy these equations. Recording the events 
with the range information described in the 

semiquantitative model, the process end up with a set 

of interval equations that must be hold at each time-

point. This system of equations can be solved using 

propagation of intervals through model constraints 

using interval arithmetic (Moore,1966). Whenever an 

equation that computes the value of a model variable 

is found, an intersection of its existing range with the 

computed one is performed. If their intersection 

reduces the range, the updated range is asserted and 

the consequences of this new range are followed. If 

the intersection is null, the behaviour is refuted since 
the interval equations are inconsistent with the 

qualitative behaviour. This process is continued until 

either the state is refuted or a fixed-point is reached 

with respect to the ranges of all variables. The 

propagation algorithm can be extended across time-

intervals by suing the mean-value theorem to relate 

the derivative of each state variable to the bounds of 

the state variable and the bound on the difference 

between the two time-points. This type of inference 

reduces the width of the interval associated with the 

magnitude of the time value at each time-point. Thus 
Q2 refines the behaviour description produced by 

QSIM by generating numeric bounds for both events 

and time-intervals. While Q2 is a powerful inference 

method for reducing the ambiguity in the qualitative 

behaviour description, it may still permit spurious 

behaviours and overly wide dynamic trajectory 

envelopes. In Q3 (Berleant,1992), an adaptive 

interpolation of landmarks to refine step-size is 

provided. It can be proved that it converges to 

numerical behavior as uncertainty tends to zero. Kay 

(1993)(1996) proposes the use of dynamic envelopes 

that more fully exploits the semiquantitative 
representation that existing methods as Q2 (Kuipers, 

1988) or Q3 (Berleant,1992), because they use a 

simulation time-step determined by qualitative 

distinctions. The problem is that the precision of a 

numerical simulation is directly related to the number 

and density of the time-points in the simulation and a 

simulation whose time-step is based solely on the 

qualitative distinctions can not adequately control 

these quantities. The approach proposed by Kay 

works by numerically simulating a set of differential 

equations whose solutions are guaranteed to bound 

all behaviours of the semiquantitative model. This 

approach solves the problem presented before by 

using a standard numerical method (such as Euler, 
Runge-Kutta,...) which chooses time-points based on 

local simulation error estimated, resulting in a much 

smaller time-step, and hence a more precise 

simulation. The remaining imprecision more closely 

reflects the incomplete knowledge in the model itself. 

To numerically simulate de bounds of the 

semiquantitative model, Kay proposed to find a set of 

extremal equations for a system. An extremal 

equation is a bound on the derivative of a state 

variable, as opposed to a bound on the value of the 

state variable. It may be either minimal or maximal. 
The extremal ODE system is computed using an a 

lower and upper translation for each equation of the 

semiquantitative model. Thus, the original 

imprecisely defined system is replaced with a precise 

ODE system of twice the order that is guaranteed to 

bound the original semiquantitative model. Since the 

new system is an ODE system, it can be simulated 

using conventional simulation methods. The 

simulator developed by Kay that uses this idea is 

called NSIM. While NSIM produces tighter bounds 

than Q2 in many cases, it can also generate spurious 

behaviours in the form of overly-wide dynamic 
envelopes. Another approach born in the QR 

community is the proposed by Martinez Gasca 

(1998). It is based on following the uncertainty state 

region centre and on computing using a 

transformation matrix the uncertainty region but 

always relatively to the uncertainty state region 

centre. The transformation matrix is derived using a 

linear approximation of the uncertain system around 

the uncertainty state region.  

 

7.2 Fuzzy Semiquantitative Simulation 
 

In parallel, several researchers have proposed to 

represent the uncertainty in parameters and states by 

fuzzy sets instead of intervals. Firsts approaches 

come from Bonarini and Bontempi (1994). They 

proposed extending interval simulation to fuzzy 

simulation by means of α-cuts. But the underlying 
simulation is interval based. The interval-based 

simulation algorithm is based on mixing a classical 

optimisation algorithm with a classical differential 

equation algorithm formulating the simulation 

problem always from the initial condition to avoid 

the wrapping effect (Bontempi, 1996) as in Berz’s 
algorithm (1998). They implemented these 

algorithms in a series of simulators called QuaSI I, II 



and III. Later, Hüllermeier (1997)(1999) proposed a 

method for fuzzy simulation based on three kind of 

discretisation: with respect to the fuzzy problem by a 

finite number of crisp problems using α-cuts, with 
respect to time and with respect to space 

approximating reachable sets by geometrical bodies 

and replacing such bodies by a finite number of 

points. This method provides an outer approximation 

or even exact results in the limit. Finally, Keller 

proposes an algorithm for fuzzy simulation also 

based in α-cuts that uses vertices algorithm approach 
(Kolev, 1993) to generate an envelope that it is 

improved using splines interpolation. 

 
8.  CONCLUSIONS 

 

In this paper, simulation of uncertain dynamic 

systems described by interval models is presented 

using different group of approaches coming from 

several research areas: ODE validated solution, 

constraint  satisfaction, automatic control, fault 

detection, circuit theory and qualitative reasoning. 

All these approaches can be classified in region or 

trajectory based. Typically region based approaches 

present a lower computationally complexity than 
trajectory based approaches being this their main 

interest. However, region based approaches when 

applied to even linear systems but with uncertain 

parameters still present instability problems because 

of the wrapping effect. The main problems that each 

approach should face in order to produce a good 

interval simulation, namely the range evaluation of 

interval functions, the wrapping effect, the parameter 

time-invariance and the discretisation errors (in case 

of continuous time systems) are presented and 

discussed. All these approaches have never been 

presented together establishing a connection between 
them. In many cases, each research community 

worked without knowing many about the research 

developed by the others.  The problems described in 

Section 2 appear recurrently in all the approaches, but 

even in some approaches they are not considered. 

The aim of this paper is to remark that the field of 

interval simulation is very wide when it is considered 

from several points of view and when developing 

new interval simulation algorithms in each field of 

application all existent results and solutions to the 

presented problems coming from the other fields 
should be considered.  

 
REFERENCES 

 
Adrot, O., Flaus, J.M. (2003) “Trajectory Computation of 

Dynamic Uncertain Systems”.  In Proceedings of Conference 

on Decision and Control, CDC’03. Hawaii. USA.  

Armengol, J., Travé-Massuyès, L., Vehí, J., De la Rosa, J. (2000) 

“A survey of interval model simulators and their properties 

related to fault detection”. Annual Reviews in Control, Vol. 

24, No. 1, pp. 31-39. Elsevier. 

Armengol, J., Travé-Massuyès, L., Sainz M.A. (2001) 

“Application of modal intervals to the generation of error-

bounded envelopes”. Reliable Computing, Vol. 7, No. 2. 

Kluwer Academic Press. 

Barsmish, B.R., Sankaran, J. (1979) “The Propagation of 

Parametric Uncertainty Via Politopes”. IEEE Transactions on 

Automatic Control, Vol 24, No 2. 

Berleant, D., Kuipers, B. (1992) “Combined qualitative and 

numerical simulation with Q3”. In Boi Faltings and Peter 

Struss, Eds. of Recent Adavances in Qualitative Physics. MIT 

Press. 

Berz, M. (1997) “COSY INFINITY version 8 reference manual”. 

Technical Report MSUCL-1088, National Superconducting 

Cyclotron. Lab. Michigan State University, East Lansing, 

Michigan. 

Berz, M., Makino, K. (1998). “Verified integration of ODEs and 

flows using differential algebraic methods on high-order 

Taylor models”. Reliable Computing, 4, pp. 361-369. 

Bonarini, A. & Bontempi, G. (1994) “A qualitative simulation 

approach to fuzzy dynamical  models”. ACM Transactions on 

Modeling and Computer Simulation (TOMACS) 4, no.4, 258-

313. 

Bontempi, G. & Bonarini, G. (1996) “QuaSi III: a software tool for 

simulation of fuzzy dynamical systems”. Proceedings of the 

European Simulation Multiconference (ESM’96). Ghent., 

Belgium, pp. 615-619. 

Calafiore, G. (2003) “Set simulation for quadratic systems”. IEEE 

Transactions on Automatic Control, 48 (5), pp. 800-805. 

Chernousko, F.L. “State Estimation of Dynamic Systems”. CRC 

Press. Boca Raton. Florida.  

Cherrier, E., Boutayeb, M., Ragot, J.  (2003). “Evaluation des 

bornes de l’état d’un système uncertain”. JESA, 37, pp. 1181-

1192. 

Cugueró, P., Puig, V., Saludes, J., Escobet, T. (2001) “Avoiding 

Possible Unstability in Robust Simulation of Stable 

Parametric Uncertain Time-Invariant Systems”.  In 

Proceedings of Conference on Decision and Control, CDC’01. 

Florida. USA.  

Cugueró, P., Puig, V., Saludes, J., Escobet, T. (2002) “A Class of 

Uncertain Linear Interval Models for which a Set Based 

Robust Simulation can be Reduced to Few Pointwise 

Simulations”. In Proceedings of Conference on Decision and 

Control 2002 (CDC’02). Las Vegas. USA. 

Corliss, G.F. (1989) “Survey of Interval Algorithms for Ordinary 

Differential Equations”. Applied Mathematics and 

Computations, 31, pp. 112-120. 

Danes, P. (1995) “Interfaçage symbolique-numérique dans la 

simulation qualitative des systèmes dynamiques”. PhD 

Dissertation. LAAS-CNRS. Toulose. 

Deville, Y., Jansen, M. and Van Hentenryck (1998) “Consistency 

Techniques in Ordinary Differential Equations”. In Maher and 

Puget eds: Principles and Practice of Constraint Programming 

(CP98), pp. 162-176. Springer-Verlag. 

Eijgenraam, P. (1981) “The Solution of Initial Value Problems 

Using Interval Arithmetic”. Mathematical Center Tracts No. 

144. Stichting Mathematisch Centrum.. Amsterdam. 

ElGhaoui, L., Calafiore, G. (1999) “Worst-Case Simulation of 

Uncertain Systems”. Robustness in Identification and Control. 

A. Garulli, A. Tesi & A. Vicino Eds. Springer. 

El Ghaoui, L., Calafiore, G. (2001) “Robust filtering for discrete-

time systems with bounded noise and parametric uncertainty”. 

IEEE Transactions on Automatic Control, Vol. 46, No 7, pp. 

1084-1089. 

Femia, N. (1999) “Genetic Optimization of Interval-Arithmetic 

based Worst-Case Circuit Tolerance Analysis”. IEEE 

Transactions on Circuits and Systems I. Vol. 46, pp. 1441-

1456. 1999. 

Femia, N., Spagnuolo, G. (2000) “True worst-case circuit 

tolerance analysis using genetic algorithms and affine 

arithmetic”. IEEE Transactions on Circuits and Systems I: 

Fundamental Theory and Applications, Vol. 47, No 9, pp. 

1285-1296. 

Gouzé, J.L., Rapaport, A, Hadj-Sadok, M.Z. (2000) “Interval 

observers for uncertain biological systems”. Ecological 

Modelling, No. 133, pp. 45-56. 

Hansen, E. (1992) “Global Optimization using Interval Analysis”. 

Marcel Dekker, New York. 



Hüllermeier, E.  (1997) “An Approach to Modelling and 

Simulation of Uncertain Dynamical Systems”. International 

Journal of Uncertainty, Fuzziness and Knowledge-Based 

Systems. Vol. 5, No. 2, pp. 117-137. 

Hüllermeier, E. (1999) “Numerical Methods for Fuzzy Initial 

Value Problems”. International Journal of Uncertainty, 

Fuzziness and Knowledge-Based Systems. Vol. 7, No. 5, pp. 

439-461. 

Jackson, K.R., Nedialkov, N.S. (2001) “Some recent advances in 

validated methods for IVPs for ODEs”. Applied Numerical 

Mathematics, 42, pp. 269-284. 

Jansenn, M., Van Hentenryck, P., Deville Y. (2001). "A Constraint 

Satisfaction Approach to Parametric Differential Equations" 

IJCAI-01,  Proceedings of the 22th International Joint 

Conference on Artificial Intelligence. Seattle. August. Morgan 

Kaufmann Publishers.  

Jaulin, L., M. Kieffer, O. Didrit and E. Walter (2001). Applied 

Interval Analysis, with Examples in Parameter and State 

Estimation, Robust Control and Robotics. Springer-Verlag. 

London. 

Horak, D.T. (1988) “Failure detection in dynamic systems with 

modelling errors” J. Guidance, Control and Dynamics, 11 (6), 

508-516.  

Kay, H. & Kuipers, B. (1993) “Numerical behaviour envelopes for 

qualitative models”. Proceedings of the Eleventh National 

Conference on Artificial Intelligence. American Association 

for Artificial Intelligence. 

Kay, H. (1995) “Semiquantitative simulation: successes, failures 

and future directions”. Proceedings of the IJCAI-95. 

Workshop on Engineering Problems for Qualitative 

Reasoning. Montreal. Canada. 

Kay, H. (1996) “Refining imprecise model and their behaviours”. 

PhD thesis. University of Texas at Austin.  

Kolev, L.V. (1993) “Interval Methods for Circuit Analysis”. 

Singapore. World Scientific. 

Keller, U., Wyatt, T., Leitch, R. (1999)  “FrenSI – A fuzzy 

qualitative simulation method”. In Proceedings of Workshop 

on Applications of Interval Analysis to Systems and Control 

(MISC'99). Girona. Spain.  

Kühn, W. (1998) “Rigorously computed orbits of dynamical 

systems vithout the wrapping effect”.  Computing, 61(1), pp. 

47-67. 

Kurzhanski, A., Vályi, I. “Ellipsoidal Calculus for Estimation and 

Control”. Birkhäuser. Boston.  

Kuipers, B. (1986) “Qualitative simulation”. Artificial 

Intelligence, 29, pages 289-338. 

Kuipers, B., Berleant, D. (1988). “Using incomplete quantitative 

knowledge in qualitative reasoning”. AAAI 88, pages, 324-

329.  

Kuipers, B. (1994) “Qualitative Reasoning – Modelling and 

Simulation with Incomplete Knowledge”. MIT Press. 

Cambridge, MA.  

Lohner, R.J. (1987) “Enclosing the Solution of Ordinary Initial 

and Boundary Value Problems”, in Kaucher, E., Kulisch, U. & 

Ullrich, Ch. (eds.): Computerarithmetic: Scientific 

Computation and Programming Languages. B.G. Teubner, 

pages 255-286. Stuttgart. 

Luenberger, D.G. (1979) “Introduction to Dynamic Systems: 

Theory, Models and Applications. Wiley. 

Martinez Gasca, R. (1998) “Razonamiento y simulación en 

sistemas que integran conocimiento cuantitativo y 

cualitativo”. PhD Thesis. Universidad de Sevilla. 

Moore, R.E. (1966) “Interval analysis”. Prentice Hall. 

Moore, R.E. (1979) “Methods and applications of interval 

analysis”. SIAM. Philadelphia. 

Nedialkov, N.S., Jackson, K.R. and G.F. Corliss.  (1999) 

“Validated Solutions of Initial Value Problems for Ordinary 

Differential Equations”. Applied Mathematics and 

Computation, 105(1), pp. 21-68. 

Nedialkov, N.S. and Jackson, K.R. (1999)  “An interval Hermite-

Obreschkoff method for computing rigorous bounds on the 

solution of an initial value problem for an ordinary differential 

equation”. Reliable Computing, 5(3), pp. 289-310. 

Nedialkov, N.S., Jackson, K.R. (2001) “A New Perspective of the 

Wrapping Effect in Interval Methods for Initial Value 

Problems for Ordinary Differential Equations”. In Kulisch, 

Lohner and Facius Eds. “Perspectives on Enclosure Methods”, 

pp. 219-264. Springer-Verlag. 

Neumaier, A. (1993) “The wrapping effect, ellipsoid arithmetic, 

stability and confidence regions”. Computing Supplementum, 

9, pp. 175-190. 

Nickel, K. (1985) “How to fight the wrapping effect”. In K. Nickel 

ed. “Interval Analysis 1985”. Lecture Notes in Computer 

Science, No. 212, pp. 121-132. Springer-Verlag.  

Nickel, K..(1986) “Using Interval Methods for the Numerical 

Solution of ODEs”. Z. Angew. Math. Mech. 66, 1986, 513-

523. 

Norton, J.P. (1999) “Modal robust state estimator with 

deterministic specification of uncertainty”. In: Robustness in 

Identification and Control. A. Garulli, A. Tesi & A. Vicino 

Eds. Springer. 

Oppenheimer, E.P. (1988) “Application of Interval Analysis 

Techniques to Linear Systems: Part III – Initial Value 

Problems”. IEEE Transactions on Circuits and Systems, Vol. 

35, No. 10, pp. 1243-1256. 

Papamichail, I., Adjiman, C.S. (2002) “A Rigorous Global 

Optimization Algorithm for Problems with Ordinary 

Differential Equations”. Journal of Global Optimization, 24  

pp. 1–33.  

Papamichail, I., Adjiman, C.S. (2004) “Global Optimization of 

Dynamic Systems”. Computers and Chemical Engineering, 

28, pp. 403–415. 

Puig, V., Saludes, J.,  Quevedo, J. (1999). “A new algorithm for 

adaptive threshold generation in robust fault detection based 

on a sliding window and global optimisation". In Proceedings 

of European Control Conference 1999, ECC'99. Germany, 

September. 

Puig, V., Cugueró, P.,  Quevedo, J. (2001) “Worst-case estimation 

and simulation of uncertain discrete-time systems using 

zonotopes”. In Proceedings of European Control Conference 

2001, ECC'01. Portugal, September. 

Puig, V., Cugueró, P.,  Quevedo, J. (2002) “Time-invariant 

approach to set-membership simulation and state observation 

for discrete linear time-invariant systems with parametric 

uncertainty”. In Proceedings of Conference on Decision and 

Control 2002 (CDC’02). Las Vegas. USA. 

Puig, V., Saludes, J.,  Quevedo, J. (2003) “Worst-Case Simulation 

of Discrete Linear Time-Invariant Interval Dynamic Systems”. 

Reliable Computing, 9(4), pp. 251-290. 

Rihm, R. (1994) “Interval Methods for Initial Value Problems in 

ODEs”. In Topics in Validated Computations. J. Hezberger 

(Editor). Elsevier Science.  

Tibken, B., Hofer, E.P. (1993).  “A New Simulation Tool for 

Uncertain Discrete Time Systems”. In Proceedings of 

European Control Conference 1993, ECC'93. Holland, 

September. 

Tibken, B., Hofer, E.P. (1995). “Simulation of Controlled 

Uncertain Nonlinear Systems”. Applied Mathematics and 

Computation, 70, pp. 329-338. Holland, September. 

Vescovi, M., Farquar, A. & Iwasaki, Y.  (19959 “Numerical 

interval simulation: bounding behaviours of non monotonic 

systems”. In Proceedings of the Eleventh International Joint 

Conference on Artificial Intelligence, pp. 1806-1812.  

Walter,W. (1970) “Differential and integral inequalities”. 

Springer. 

 

 


