

TIMED AUTOMATA MODEL OF PREEMPTIVE MULTITASKING APPLICATIONS

Libor Waszniowski, Zdenek Hanzalek

Czech Technical University
Centre for Applied Cybernetics, Department of Control Engineering

Karlovo nám. 13, 121 35 Prague 2, Czech Republic
{xwasznio, hanzalek}@fel.cvut.cz

Abstract: The aim of this article is to show, how a multitasking application running under
a real-time operating system compliant with the OSEK/VDX standard can be modeled by
timed automata. The application under consideration consists of several tasks, it includes
resource sharing and synchronization by events. For such system, model-checking theory
based on timed automata and implemented in model-checking tools can be used to verify
time and logical properties of the proposed model. It is shown that the proposed model is
over-approximation in the case of preemptive scheduling policy. This methodology is
demonstrated on automated gearbox case study. Copyright © 2005 IFAC

Keywords: Verification, Real-Time Operating Systems.

1 INTRODUCTION

This paper deals with modeling of applications
running under a real-time operating system (OS).
Typical application under assumption, shown as a
case study in Section 7, is a controller consisting of
periodic and aperiodic tasks constrained by deadlines
and synchronized via communication primitives.

The model-checking (Larsen, et al., 1995) approach,
shown in this paper, provides timed automata (Alur
and Dill, 1994) model of an operating system,
application tasks and the controlled environment. In
the scheduling theory, the task model usually consists
of its execution time, the blocking time and the inter-
arrival time. Our approach assumes a fine grain
model of the task internal structure consisting of
computations, system calls, selected variables, code
branching and loops. Therefore the model combines
both, logic and timing parameters of a discrete event
system enabling to check rather complex properties
(safety and bounded liveness properties,
schedulability, state reachability) by model-checking

tools (e.g. UPPAAL (Behrmann, et al., 2001) and
Kronos (Daws, et al., 1996)) in finite time.

Even though timed automata and model-checking
(analogous to other formal methods) allows modeling
and verifying almost everything, it is generally
known, that they are susceptible to state space
explosion. This fact restricts the size of verified
application to the small size that seems to be
unusable in praxis (compared with matured
schedulability analysis methods (Liu, 2000)).
Therefore we try to show in this paper, how to build
a compromise model of reasonable size on one side
and of reasonable granularity allowing detailed
formal analysis of real-time properties that can not be
done by schedulability analysis on the other side.

Methods for schedulability analysis, e.g. rate
monotonic analysis (RMA) (Liu, 2000) have been
widely used in praxis. However they can lead to
pessimistic results when non-periodic tasks, shared
resources and other features are incorporated (Bailey,
et al., 1995). The schedulability analysis based on
model-checking of the fine grain model provides less
pessimistic results in some cases.

Fersman, et al. in (2002) and (2003) extended timed
automata by asynchronous tasks (i.e. tasks triggered
by events) to provide model for event-driven
systems. This approach provides good results for
aperiodic tasks but it is not suited to model the task
internal structure as follows from results of (Krčál
and Yi, 2004).

Corbet in (1996) provides model of real time Ada
tasking programs based on hybrid automata.
Opposite to timed automata used in our approach,
reachability problem is undecidable for hybrid
automata and the termination of the verification
algorithm is therefore not guarantied in general.

Timed automata are used to model primitives of
Ravenscar run-time kernel for Ada in (Lundqvist and
Asplund, 2003). However, the time in application is
discrete opposite to our approach where the time is
dense.

Preemptive Petri Nets (Bucci, et al., 2004) or
Scheduling Petri Nets (Lime and Roux, 2004) can be
also used to model multitasking application. Both
formalisms are very similar. Their semantics can be
either similar to hybrid automata or to semantic of
timed automata.

This paper is organized as follows: Section 2
describes fine grain model used in this paper.
Sections 3, 4, and 5 presents the main result of this
paper – timed automata models of tasks and OSEK
compliant OS (OSEK, 2003). This model is an over-
approximation from the model-checking point of
view in the case of the preemptive scheduling and
WCET (worst-case execution time) differing from
BCET (best-case execution time) as it is shown in
Section 6. Section 7 presents automated gearbox case
study.

2 MULTITASKING APPLICATION FINE GRAIN
MODEL

The fine grain model treats tasks and interrupt
service routines (ISR) internal structure, the OS
functionality and the controlled environment
behavior. All components are modeled by timed
automata synchronized via channels and by shared
variables. The task model consists of several blocks
of code called computations, calls of OS services,
selected variables, and code branching and loops
(affected by values of selected variables).

When a general property of the fine grain model is
analyzed by exhaustive state space search (done by
model checking tool), the execution time of a
computation must be specified by an interval
covering all possible cases, i.e. 〈BCET, WCET〉. Due
to scheduling anomaly, WCET of computations do
not necessary lead to the worst case finishing time of
the whole task.

The structure of entire model is on Fig. 2.1.
Rectangular blocks represent particular timed

automata. Synchronization is expressed by arcs
labeled by name of the synchronization channel. The
most important data structures are shown in the right
side of the figure. The essential components are
explained in the following sections.

OS Services
(ActivateTask,
Terminatetask,

SetEvent,
WaitEvent, etc.)

OS Services
(ActivateTask,
Terminatetask,

SetEvent,
WaitEvent, etc.)

OS Services
(ActivateTask,
Terminatetask,

SetEvent,
WaitEvent, etc.)

OS Services
(ActivateTask,
Terminatetask,

SetEvent,
WaitEvent, etc.)

Application SW

- ID3 ID1 ID2 - -

rQ wQ

Q

nQReady queue

ISR

PreemptCtrl

SortQueue

Environment Model

TasksTasksTasksTasks

En
dS

ys
Ca

ll

R
et

ur
n

IR
Q

ProlongU
C

h

OS Service Call
(ActivateTaskCh, TerminateTaskCh, SetEventCh, WaitEventCh, etc.)

R
et

ur
n

Shared variables

OS

Controlled Environment

QSorted
SortQ

Priorities

Tasks states State S1 S2 S3 S4 S5

U
L

.........

Tasks
Event
Masks

Event M1 M2 M3 M4 M5

WaitMask M1 M2 M3 M4 M5

ID1 ID2 ID3 ... IDn

P 3 1 5 6 2 7

IsrID

U1 U2 U3 U4 U5

L1 L2 L3 L4 L5

U6

L6Bounds of
finishing
times

Fig. 2.1 Overview of entire timed automata model

3 TASK MODEL

Each task instance is modeled by one timed
automaton that is synchronized with the OS model
via channels depicted in Fig. 2.1. Fig. 3.1 presents an
example of a simple task executing computations
Comp1 and Comp2 and calling OS services
SetEvent(task,event) and TerminateTask.

The UPPAAL notation is used in figures of timed
automata models. The location with double circle
represents initial location. Each location can be
labeled by its name and a time invariant. The
invariant in the form “c<=U”, allows to stay in the
location only when a valuation of the clock variable c
is smaller or equal to integer U. Each transition can
be labeled by a synchronization (channel name with
‘?’ or ‘!’), a guard (comma separated logical terms,
e.g., c>=L[1],State[1]==RUNNING) and an
assignment (comma separated assignments by sign
‘:=’).

Task1()
{
 Comp1;
 SetEvent(ID2,E1);
 Comp2;
 TerminateTask();
}

Comp1
c<=U[ID]

TerminateTask

SetEvent

Comp2
c<=U[ID]

Return[ID]?
c:=0,
L[ID]:=BCET1,
U[ID]:=WCET1

c>=L[ID], State[ID]==RUNNING
SetEventCh!

ParTask:=ID2, ParEvent:=E1

Return[ID]?
c:=0,L[ID]:=BCET2,U[ID]:=WCET2

TerminateTaskCh!
c>=L[ID], State[ID]==RUNNING

a) Pseudo-code b) Task automaton
Fig. 3.1 Simple task example

Each computation is represented by one location of
the same name (e.g. Comp1). The time spent in this
location (measured by clock c) represents
computation’s finishing time (i.e. time necessary to

its execution including preemption) and it is bounded
by values stored in integers L[ID] and U[ID]
(elements of arrays L and U respectively, where
index ID is unique tasks identifier). These bounds are
initialized to BCET and WCET, and they are
increased when the task is preempted (provided by
other timed automaton called PreemptCtrl as it is
expressed later).

OS services calls are modeled by transitions
synchronized by channels of corresponding names
(e.g. SetEventCh!) and by locations of corresponding
names (e.g. SetEvent) where the task is waiting return
from services (channel Return[ID]?). OS service
parameters are delivered through shared variables
ParTask and ParEvent. Notice that OS services can
block the calling task or cause higher-priority task
becoming ready. Therefore return from OS service
can occur after a preemption.

4 OS KERNEL MODEL

The OS kernel model consists of some variables
representing OS objects (e.g. ready queue), timed
automata representing OS services functionality, and
of timed automata managing preemption
(PreemptCtrl) and sorting ready queue according to
priorities (SortQueue). See Fig. 2.1.

4.1 Kernel Variables

A task state and priority are stored in arrays State and
P respectively, at index corresponding to the task ID.
Higher number represents higher priority. The task
state is either SUSPENDED (before activation),
WAITING (after calling WaitEvent), READY (after
activation and before first run), PREEMPTED (after
preemption) or RUNNING.

IDs of all tasks, which are ready for execution
(State[ID] is equal to READY or PREEMPTED), are
stored in the ready queue modeled as a global array
Q representing a circular buffer (see Fig. 2.1). Tasks
are ordered in descending order according to their
priorities in Q (rQ points to the ready task with the
highest priority). The queue ordering is provided by
automaton SortQueue (neglected in this paper). The
reordering mechanism is started by synchronization
channel SortQ after writing new ID.

For inter-task communication purposes, OSEK
operating system provides events represented by one
byte Event[ID] for each task. Each bit in Event[ID]
represents one event that can be set or cleared.
Moreover integer array WaitMask represents events,
which the corresponding task is waiting for.

4.2 OS services

Each OS service is modeled by a timed automaton
representing its functionality defined by OSEK
specification (OSEK, 2003). The automaton is
waiting in its initial state until its function is called

from the task model. Then it manipulates tasks states,
the ready queue (Q) and other operating system
objects (e.g. events) and chooses the highest priority
task to run and store its ID in variable RunID. Then it
invokes PreemptCtrl automaton modeling the context
switch and providing a preemption modeling.

As an example of a service model we introduce
WaitEvent(ParEvent) service that cause the task wait
for events in ParEvent. Fig. 4.1 shows WaitEvent OS
service functionality in a pseudo-code. First the
service checks, if at least one event specified in
ParEvent is already set in the task’s event mask
Event[RunID]. If yes, the service simply returns. If
no, the running task must wait for at least one.
Therefore the task state is set to WAITING, ParEvent
is stored in WaitMask, internal resource is released
and the highest-priority task from ready queue is
assigned to RunID variable. Then the context switch
occurs.
WaitEvent (ParEvent)
{
 if ((Event[RunID] & ParEvent) == 0)
 {
 State[RunID] := WAITING;
 WaitMask[RunID] := ParEvent;
 Release Internal Resource;
 RunID := Extract Top of ReadyQ;
 ContextSwitch; // modeled in PreemptCtrl
 Get Internal Resource;
 State[RunID] := RUNNING; // modeled in PreemptCtrl
 }
 return E_OK;
};
Fig. 4.1 WaitEvent pseudo-code

WaitEvent OS service automaton is depicted in Fig.
4.2. Locations marked by “c“ are so called
committed locations in UPPAAL notation. It must be
left immediately, without any interference of other
automaton that is not in a committed location. Since
all locations in the automaton in Fig. 4.2, except the
initial one, are committed locations, therefore the
whole service seems to be atomic from the point of
view of tasks and controlled environment models.

Wait

(Event[RunID] & ParEvent)==0
State[RunID]:=WAITING, WaitMask[RunID]:=ParEvent,
P[RunID]:=Pstat[RunID]

nQ==0
RunID:=IDLE

(Event[RunID] & ParEvent)!=0
State[RunID]:=READY

EndSysCall!

nQ>0
RunID:=Q[rQ], nQ--, rQ:=(rQ<sizeQ-1 ? rQ+1 :0),
P[RunID]:=IntResCeiling[RunID]

WaitEventCh?

Fig. 4.2 WaitEvent service automaton corresponding

to pseudo-code depicted in Fig. 4.1

The OS service automaton waits in the initial state
until the synchronization by channel WaitEventCh
occurs. The context switch is modeled by
PreemptCtrl automaton invoked by channel
EndSysCall.

4.3 Preemption Modeling

PreemptCtrl automaton, depicted in Fig. 4.3, starts
execution of scheduled task (RunID) and provides
prolongation of finishing time bounds L[i] and U[i]

of all preempted tasks. The automaton introduced
here is simplified by omitting the part corresponding
to interrupt service routines.

ProlongAllPreemptedInQ
Wait ToTask

Return[RunID]!

State[RunID]:=RUNNING,
 i:=rQ

State[RunID]!=PREEMPTED

i==wQ

i!=wQ &&
State[Q[i]]==PREEMPTED
L[Q[i]]:=L[Q[i]]+L[RunID],
U[Q[i]]:=U[Q[i]]+U[RunID],
i:=(i<sizeQ-1 ? i+1 : 0)

RunID==IDLE
EndSysCall?

RunID<TASK_NUM
EndSysCall?

State[RunID]==PREEMPTED

State[RunID]:=RUNNING

i!=wQ &&
State[Q[i]]!=PREEMPTED
i:=(i<sizeQ-1 ? i+1 : 0)

Fig. 4.3 PreemptCtrl automaton

At the end of each OS service, the function of
PreemptCtrl automaton is invoked by
synchronization EndSysCall. If a task should be
scheduled (RunID<TASK_NUM), location ToTask is
reached. If the task that should be scheduled now
(RunID) has been preempted by a task released by an
ISR in the past, its state has been set PREEMPTED
by the ISR model. In this case, the RunID task model
is in the location corresponding to some computation
and its progress must be allowed now by setting its
state RUNNING by PreemptCtrl.

If the RunID task model waits for synchronization
Return[RunID] in a location corresponding to an OS
service call (its state is READY), its state is also set
RUNNING, and the progress in the task model is
allowed by the synchronization via channel
Return[RunID]. Since a new computation is started
in RunID task in this case, bounds L[i] and U[i] of
all PREEMPTED tasks i (i.e. all tasks that are in
location corresponding to a computation) are
moreover increased by bounds of the currently
beginning computation (L[RunID] and U[RunID]).

5 INTERRUPT SERVICE ROUTINE MODEL

The ISR is modeled by timed automaton modeling an
application dependent code in the same way as the
task code. Moreover there is an initialization part that
prevents a rescheduling inside the ISR and a
finalization part that provides the rescheduling at the
end of the ISR (as it is required by OSEK
specification (OSEK, 2003)). An example of the ISR
pseudo-code is in Fig. 7.2.

The state of RunID task is set to PREEMPTED,
RunID content is stored in variable InterruptedID and
an identifier of the ISR (IsrID) is written to variable
RunID in the initialization part. Since the priority of
the ISR is higher than all task priorities, OS services
called from the ISR code, cannot cause a
rescheduling. At the finalization part, the highest
priority ready task ID is written to variable RunID. It
can be either InterruptedID or ID from the top of the
ready queue. In the second case, the InterruptedID is
written to the ready queue.

6 MODEL OVERAPPROXIMATION

When the preemption occurs the finishing time
bounds L[Preempted] and U[Preempted] of the
preempted computation should be prolonged by the

duration of the preemption. Since the right duration
of the preemption cannot be measured in timed
automata (a clock variable cannot be stopped or
stored), the bounds L[Preempted] and U[Preempted]
are increased by bounds of the possible preemption
that are L[Preempting] and U[Preempting], the
finishing time bounds (in this time equal to execution
time bounds) of the preempting task computation.
This introduces an additional non-determinism to the
model since the duration of the preempted task
preemption is not necessary equal to the duration of
the preempting task execution (what holds in the real
system). Therefore the set of real system behaviors is
subset of the modeled behaviors, i.e. the model is an
over-approximation.

To illustrate the over-approximation let us consider
for example low-priority task Tlow with execution
time Clow∈ [1,4] preempted by high-priority task Thigh
with execution time Chigh∈ [2,4]. All possible relative
finishing times of both tasks in the real system and in
the proposed model are depicted in Fig. 6.1.
Finishing time of Thigh is always equal to its
execution time Chigh. Finishing of Tlow is equal to its
execution time Clow plus preemption duration.
Preemption duration is bounded by bounds of Chigh in
the model but it is equal to the actual execution time
of Thigh in the real system.

dlow

dhigh

0 2 4 6 8
0

2

4

Fhigh

Flow

Modelled behaviour
Real behaviour

Chighin [2,4]

Clowin [1,4]

F low
 =

F hig
h

Fig. 6.1 Possible values of relative finishing times F

of preempting task Thigh and preempted task Tlow

Fig. 6.1 shows that not all modeled behaviors can
occur in the real system. It is very important to keep
this fact in mind during the verification process, since
the over-approximation does not preserve a general
property. On the other hand, it is important from the
practical point of view, that over-approximation
preserves safety and bounded liveness properties
(Berard, et al., 2001). A safety property states that,
under certain conditions, an undesirable event never
occurs. A bounded liveness property states that,
under certain condition, some desirable event will
occur within some deadline (see Section 7).

Schedulability is an often verified property, exploring
whether tasks are finished prior to their deadlines
(dhigh and dlow in Fig. 6.1) in all situations. Fig. 6.1
shows that the worst case finishing time of each task
is the same in the model and in the real system. A
result of the schedulability analysis based on this
model is therefore correct and corresponds to reality
(it is not pessimistic).

7 GEAR BOX CASE STUDY

7.1 System description

The proposed modeling methodology is
demonstrated on an automated gearbox control
system in this section. The controlled system consists
of a dry clutch actuated by a servo and five-speed
gearbox.

1 3 5

2 4 R

Odd

Even

Neutral

Rail0 Rail1 Rail2

Shift Rail
Shift Finger
Slot
Gait

ShiftServo

SelectServo

Fig. 7.1 Gear box mechanics

The gearbox mechanics is depicted in Fig. 7.1. It
consists of three shift rails and a shift finger actuated
by SelectServo and ShiftServo. SelectServo can move
the shift finger from a slot of one rail to another.
ShiftServo engages one of two gears (even or odd) or
neutral by moving the selected rail by the shift finger.
A direction of the shift finger movement is limited by
a gait.
ISR() // IRQ sources - TIMER, Clutch, SelectServo, ShiftServo
{
 // Initialization part
 State[RunID]:=PREEMPTED;
 InterruptedID := RunID;
 RunID := IsrID; // OS Services called from ISR returns to ISR
 // and OS services do not schedule any task
 // User code
 while (bTimerInt || bClutchInt || bShiftServoInt || bSelectServoInt)
 {
 Comp;
 if (bTimerInt) {
 bTimerInt:=0;
 clk:=(clk>MAX_CLK ? 1 : clk+1);
 if (clk% SlipCtrlTaskPeriod == 0)
 ActivateTask(SlipCtrlTask);
 if (clk% SelectGearTaskPeriod == 0)
 ActivateTask(SelectGearTask);
 }
 else if (bClutchInt) {
 bClutchInt:=0;
 SetEvet (GearBoxCtrlTask, ClutchEvent);
 }
 else if (bShiftServoInt) {
 bShiftServoInt:=0;
 SetEvet (GearBoxCtrlTask, ShiftServoEvent);
 }
 else if (bSelectServoInt) {
 bSelectServoInt:=0;
 SetEvet (GearBoxCtrlTask, SelectServoEvent);
 }
 }
 // Finalization part - Scheduling point
 if (readyQ.Empty)
 RunID := interruptedID;
 else if (InterruptedID == IDLE) {
 RunID := Extract Top of ReadyQ;
 }
 else if (P[ReadyQ.Top] > P[InterruptedID]) {
 Write InterruptedID to ReadyQ;
 RunID := Extract Top of ReadyQ;
 }
 else
 RunID := InterruptedID;
 InterruptReturn; // modeled by channel EndSysCall
};
Fig. 7.2 Interrupt service routine pseudocode

The gearbox is controlled by a single processor
control unit running an OSEK compliant OS. The
application software consists of tasks (SlipCtrlTask,
SelectGearTask, GearBoxCtrlTask) and one ISR.

The ISR (see pseudocode in Fig. 7.2) is periodically
invoked by a timer (with the period 10) and by the
clutch, ShiftServo or SelectServo when their position
changes. The source of the interrupt is specified by
boolean variables bTimerInt, bClutchInt,
bShiftServoInt and bSelectServoInt.

Task SlipCtrlTask is periodically activated by the
ISR. Its priority is 2 and its period is 10. It provides
slip control and torque tracking. Task
SelectGearTask is periodically activated by ISR. Its
priority is 0 and its period is 200. It selects
appropriate transmission rate, write it to variable
DesiredGear, and if desired gear differs from the
current one, it activates task GearBoxCtrlTask that
controls the gear changing. Since a detailed
functionality of SlipCtrlTask and SelectGearTask is
not necessary for the verification, their models are
very simple (only execution times are considered)
and they are omitted here.

Task GearBoxCtrlTask has priority 1. Its
functionality is described in details in Fig. 7.3. Notice
that the task suspends himself several times, while
waiting on an external event.
GearBoxCtrlTask() // Activated by SelectGearTask
{
 GBReady := 0;
 ClearEvet (ClutchEvet);
 OpenClutch; // Send command
 WaitEvent (ClutchEvent);
 if (CurrentShift != NEUTRAL)
 {
 // Disengage
 ClearEvent (ShiftServoEvent);
 ShiftServo_Goto (NEUTRAL); // Send command
 WaitEvent (ShiftServoEvent);
 }
 if (DesiredGear != NEUTRAL)
 {
 // Select shifting rail
 DesiredRail := (DesiredGear-1)/2; // integer division
 DesiredShift := (DesiredGear–1)%2+1; // modulo operation
 if (DesiredRail != CurrentRail)
 {
 // Select
 ClearEvent (SelectServoEvent);
 SelectServo_Goto (DesiredRail); // Send command
 WaitEvent (SelectServoEvent);
 }
 // Shift
 ClearEvent (ShiftServoEvent);
 ShiftServo_Goto (DesiredShift); // Send command
 WaitEvent (ShiftServoEvent);
 }
 ClearEvet (ClutchEvet);
 CloseClutch; // Send command
 WaitEvent (ClutchEvent);
 GBReady := 1;
 CurrentGear:=DesiredGear;
 TerminateTask();
};
Fig. 7.3 Gear Box Control task pseudocode

7.2 Model

A model of the whole system consists of timed
automata representing the controlled system (Clutch,
SelectServo and ShiftServo), hardware devices

(Timer), the OS (services ActivateTask,
TerminateTask, SetEvent, WaitEvent and automata
PreemptCtrl and SortQueue), the tasks (SlipCtrlTask,
SelectGearTask, GearBoxCtrlTask) and the ISR. An
overview of the whole model is depicted in Fig. 7.4
(automata synchronization via channels) and Fig. 7.5
(shared variables). Except events of
GearBoxCtrlTask, variables and timed automata
modeling the OS are omitted in both figures.

ISR SlipCtrl
Task

SelectGear
Task

GearBoxCtrl
Task

Timer Select
Servo

Shift
ServoClutch

CloseClutchIR
Q IRQIRQ

Sele
ctC

h

S
hi

ftC
h

OpenClutchIRQ

Fig. 7.4 Model overview – synchronizations via

channels

ISR SlipCtrl
Task

SelectGear
Task

GearBoxCtrl
Task

Timer Select
Servo

Shift
ServoClutch

DesiredRail CurrentRail DesiredShift CurrentShift

DesiredGear

CurrentGear

ShiftServoEvent

ClutchState

ClutchEvent
SelectServoEvent

GBReady

bTimerInt bShiftServoIntbClutchInt bSelectServoInt

Fig. 7.5 Model overview – shared variables

Clutch timed automaton is depicted in Fig. 7.6. It is
in location Closed or Opened in steady state. When
the command to open or close the clutch is received
(via channel OpenClutch or CloseClutch
respectively), Clutch becomes Opening or Closing
respectively. After ShiftTime, interrupt request (IRQ)
is generated via channel IRQ.

Closed

Closing
t<=ShiftTime

Opening
t<=ShiftTime

Opened

OpenClutch?

t:=0

CloseClutch?

t:=0

t>=ShiftTime
ClutchState:=OPENED,
bClutchInt:=1, t:=0

IRQ!

t>=ShiftTime
ClutchState:=CLOSED,
bClutchInt:=1

IRQ!

Fig. 7.6 Clutch timed automaton

SelectServo timed automaton is depicted in Fig. 7.7.
Locations Rail0, Rail1 and Rail2 represent steady
states. When the command to select a new rail is
received via channel SelectCh, SelectServo moves to
DesiredRail (BetweenRail0andRail1 and
BetweenRail1andRail2). When DesiredRail is
reached, IRQ is generated via channel IRQ.

ShiftServo timed automaton (not depicted here)
differs from SelectServo timed automaton only in
several details. Locations Rail0, Rail1 and Rail2 are
changed to OddPos, NeutralPos and EvenPos, and

variables and channels related selecting (DesiredRail,
CurrentRail, SelectCh, bSelectServoInt) are changed
to variables and channels related to shifting
(DesiredShift, CurrentShift, ShiftCh, bShiftServoInt).

Rail1

BetweenRail0andRail1
t<=H

Rail0

BetweenRail1andRail2
t<=H

Rail2

DesiredRail==0
SelectCh?

t:=0

t>=L, DesiredRail==0
IRQ!

CurrentRail:=0, bSelectServoInt:=1
DesiredRail!=0

SelectCh?

t:=0

t>=L, DesiredRail==1
IRQ!

CurrentRail:=1,
bSelectServoInt:=1

DesiredRail==2
SelectCh?

t:=0

t>=L, DesiredRail==2
IRQ!

CurrentRail:=2, bSelectServoInt:=1
DesiredRail!=2

SelectCh?

t:=0

t>=L, DesiredRail==1
IRQ!

CurrentRail:=1,
bSelectServoInt:=1

t>=L, DesiredRail==2
t:=0

t>=L, DesiredRail==0
t:=0

Fig. 7.7 SelectServo timed automaton

Tasks and the ISR respectively are translated to the
timed automata models according to the
methodology described in Sections 3 and 5.
GearBoxCtrlTask timed automaton is in Fig. 7.8;
SlipCtrlTask, SelectGearTask and ISR timed
automata are omitted here. Complete model can be
downloaded at: http://dce.felk.cvut.cz/waszniowski/
RTVerif/RTVerif.htm

7.3 Formal verification

The following properties are required for the proper
function of the system:

Safety properties:

P1. Shifting is not allowed when the clutch is closed

P2. Selecting is allowed only when ShiftServo is in
neutral

P3. Shifting is allowed only when a rail is selected

P4. The clutch cannot be opened longer than 310
time units

Bounded liveness:

P5 – P11. When a new desired gear is chosen, it is
engaged in 260 time units

Listed properties have been formalized in UPPAAL
requirement specification language as follow:

P1. A[] Clutch.Closed imply (ShiftServo.OddPos or
ShiftServo.NeutralPos or ShiftServo.EvenPos)

P2. A[] not (SelectServo.Rail0 or SelectServo.Rail1
or SelectServo.Rail2) imply
ShiftServo.NeutralPos

P3. A[] not ShiftServo.NeutralPos imply
(SelectServo.Rail0 or SelectServo.Rail1 or
SelectServo.Rail2)

P4. A[] Clutch.Opened imply Clutch.t<=310

P5. (DesiredGear==0 and
SelectGearTask.ActivateTask) -->
(ShiftServo.NeutralPos and rt<=260)

P6. (DesiredGear==1 and
SelectGearTask.ActivateTask) -->
(ShiftServo.OddPos and SelectServo.Rail0 and
rt<=260)

P7 - P11 Similar to P6.

In UPPAAL requirement specification language
syntax A[] f represents the computation tree logic
(CTL) formula ∀ ! f (i.e. “invariantly holds f”). The
syntax p --> q denotes a CTL property
∀ ! (p ⇒ ∀ " q) (i.e. “whenever p holds, eventually
q will hold as well”). Clock rt, measuring the
response time in all bounded liveness properties P5 –
P11, is reset when DesiredGear is changed in
SelectGearTask timed automaton.

Comp1
c<=U[ID]

WaitEvent1

TerminateTask

if1

c<=U[ID]

Comp2
c<=U[ID]

WaitEvent2

if2

c<=U[ID]

if3

Comp3
c<=U[ID]

WaitEvent3

Comp4
c<=U[ID]

Shift

WaitEvent4
Comp5

c<=U[ID]

WaitEvent5

Comp6
c<=U[ID]

End

Return[ID]?

L[ID]:=L1,
U[ID]:=U1,
c:=0

WaitEventCh!
ParEvent:=ClutchEvent

Return[ID]?
L[ID]:=0, U[ID]:=0, c:=0,
DesiredShift:=NEUTRAL

TerminateTaskCh!

c>=L[ID] && State[ID]==RUNNING
OpenClutch!

Event[ID]:=Event[ID]&!ClutchEvent, GBReady:=0

CurrentShift==NEUTRAL &&
c>=L[ID] &&
State[ID]==RUNNING

L[ID]:=0, U[ID]:=0, c:=0

CurrentShift!=NEUTRAL && c>=L[ID] && State[ID]==RUNNING
Event[ID]:=Event[ID]&!ShiftEvent,
L[ID]:=L2, U[ID]:=U2, c:=0

WaitEventCh!
ParEvent:=ShiftEvent

Return[ID]?
L[ID]:=0, U[ID]:=0, c:=0

DesiredGear!=NEUTRAL && c>=L[ID] && State[ID]==RUNNING
DesiredRail:=(DesiredGear-1)/2,
DesiredShift:=(DesiredGear-1)%2+1

DesiredRail!=CurrentRail
Event[ID]:=Event[ID]&!SelectEvent,
L[ID]:=L3, U[ID]:=U3, c:=0

WaitEventCh!
ParEvent:=SelectEvent

Return[ID]?
L[ID]:=L4, U[ID]:=U4, c:=0

DesiredRail==CurrentRail
ProlongCh!

L[ID]:=L4, U[ID]:=U4, c:=0

DesiredGear==NEUTRAL &&
c>=L[ID] &&
State[ID]==RUNNING

L[ID]:=L5, U[ID]:=U5, c:=0

ShiftCh!

Event[ID]:=Event[ID]&!ShiftEvent
c>=L[ID] && State[ID]==RUNNING

WaitEventCh!
ParEvent:=ShiftEvent

Return[ID]?
L[ID]:=L5, U[ID]:=U5, c:=0

CloseClutch!

Event[ID]:=Event[ID]&!ClutchEvent
c>=L[ID] && State[ID]==RUNNING

WaitEventCh!
ParEvent:=ClutchEvent

Return[ID]?
L[ID]:=L6, U[ID]:=U6, c:=0, GBReady:=1, CurrentGear:=DesiredGear

c>=L[ID] && State[ID]==RUNNING

c>=L[ID] && State[ID]==RUNNING
ShiftCh!

c>=L[ID] && State[ID]==RUNNING
SelectCh!

Fig. 7.8 GearBoxCtrlTask timed automaton

All mentioned properties of the system have been
successfully verified by model-checker UPPAAL

3.4.5 running on PC AMD Athlon 1GHz, with 1.3GB
RAM. The time required for verification of all 11
properties has been 4minutes and 14 seconds. The
required memory has been 203MB.

Even though our model is over-approximate (it
contains more behavior than the real system), we can
conclude that all safety and bounded liveness
properties that are satisfied by the model are also
satisfied by the real system (Berard, et al., 2001).

7.4 Response time analysis

The proposed model can be used to analyze the
worst-case response time (WCRT) of
GearBoxCtrlTask by verifying formula: “Always,
when GearBoxCtrlTask is activated, its end is
unavoidably reached in the future and rt<=WCRT in
that time”. The response time is measured by clock rt
that is reset when GearBoxCtrlTask is activated in
SelectGearTask. The verification is done in UPPAAL
for specific value of WCRT. The smallest value can
be found in several experiments. WCRT found by
this method is 312.

There also exist algorithms for parametric model-
checking verifying whether a state is reachable in
model with uncertain parameter (WCRT in observer
automaton). However this problem is undecidable in
general (Alur, et al., 1993).

It is clear from the GearBoxCtrlTask pseudocode that
the task suspends itself several times wile waiting for
external events. Scheduling theory (Klein, et al.,
1993) proposes two ways of analyzing response
times of tasks with self-suspension: (i) treat
suspension time as execution time or (ii) analyze
separately each computation in worst case phasing
and sum all partial results together with suspension
times. Both of these methods are pessimistic however
(Klein, et al., 1993).

The worst-case execution path of GearBoxCtrlTask
consists of six computations separated by five self-
suspensions. WCET of all computations are 1. The
worst-case self-suspension time of one self-
suspension is 100, the other are 50. GearBoxCtrlTask
can be preempted by SlipCtrlTask and by ISR for 1.
WCRT of GearBoxCtrlTask computed by method (ii)
is 321, and by method (i) even 389.

8 CONCLUSION

We have demonstrated in this paper, how timed
automata can be used for the multitasking preemptive
application modeling. Even though the model is an
over-approximation of the real system behavior,
complex time and logical properties considering
application data and controlled system model can be
verified by model-checking tool, since safety and
bounded liveness properties (the most important
groups) are preserved by an over-approximation.

Opposite to hybrid automata allowing precise
modeling of the preemption (Corbet, 1996),
termination of the verification algorithm is
guaranteed for timed automata. Opposite to models
based on timed automata extended by tasks
(Fersman, et al., 2002), the internal structure of the
preemptive task can be modeled. Opposite to models
used in standard response time analysis based on
scheduling theory, an advantage of timed automata
based model is its ability to model the task internal
structure and the controlled environment.
Consequently more general properties can be verifier
an less pessimistic response time analysis is provided
by model-checking approach, especially when the
analyzed application contains features that make the
response time analysis pessimistic.

Off course, an exhaustive analysis of the detailed
timed automata model subjects to a state space
explosion (what is a general property of most formal
methods (Corbet, 1996)). Therefore the proposed
model is abstract as much as possible and contains
only information necessary for a correct verification
of the system specification. The operating system
model use only modest data structures, it does not
use any clock variables (duration of OS services and
context switch is involved in the execution time of
computations), it does not allow any non-
determinism and all locations are committed what
prevents paths interleaving and therefore restricts
explored state space. Notice also that OSEK is one of
the most appropriate operating systems to be
modeled by timed automata since it is static (all
objects are created at the compilation time) and it is
designed for a modest runtime environment of
embedded devices. The model of application tasks
must be designed as a compromise between the
model precision and its state space size. It is
necessary to limit the size of modeled data, non-
determinism and the number of computations to
obtain a model of reasonable size.

In spite of these restrictions, model-checking
approach is applicable for formal verification of
realistic applications whose verification done
manually by human would be hard and error prone.

ACKNOWLEDGEMENT

This work was supported by the Ministry of
Education of the Czech Republic under Project
1M6840770004

REFERENCES

Alur R., T. A. Henzinger and M.Y. Vardi (1993):
Parametric real-time reasoning. Proceedings of the
25th ACM Symposium on Theory of Computing, pp.
592-601.

Alur, R. and D.L. Dill (1994). A theory of timed
automata. Theoretical Computer Science, 126, 183-
235.

Bailey C.M., A. Burns, A.J. Wellings and C.H.
Forsyth (1995). A Performance Analysis of a Hard
Real-Time System. Control Engineering Practice,
3(4), 447-464.

Behrmann, G., A. David, K.G. Larsen, O. Möller, P.
Pettersson and W. Yi (2001). Uppaal - Present and
Future. In: Proceedings of the 40th IEEE
Conference on Decision and Control (CDC'2001).
pp. 2881-2886, Orlando, Florida.

Berard, B., M. Bidoit, A. Finkel, F. Laroussinie, A.
Petit, L. Petrucci, Ph. Schnoebelen and P.
McKenzie (2001). Systems and Software
Verification: Model-Checking Techniques and
Tools. Springer Verlag.

Bucci, G., A. Fedeli, L. Sassoli and E. Vicario
(2004): Timed State Space Analysis of Real-Time
Preemptive Systems. IEEE Transaction on
Software Engineering. 30(2): 97-111

Corbett, J. C. (1996). Timing analysis of Ada tasking
programs. IEEE Transactions on Software
Engineering, 22(7), pp. 461-483.

Daws, C., A. Olivero, S. Tripakis and S. Yovine
(1996). The tool Kronos. In: Proceedings of Hybrid
Systems III, Verification and Control, LNCS 1066,
208-219. Springer-Verlag, New York.

Fersman, E., P. Pettersson, and W. Yi (2002). Timed
Automata with Asynchronous Processes:
Schedulability and Decidability. In: Proceedings of
8th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, TACAS 2002, LNCS 2280, pp.67-82,
Springer-Verlag

Fersman, E., P. Pettersson, and W. Yi (2003).
Schedulability Analysis using two clocks. In:
Proceedings of TACAS’03, LNCS 2619 pp 224-
239. Springer-Verlag.

Klein, M., T. Ralya, B. Pollak, R. Obenza, and M. G.
Harbour (1993). A Practitioner's Handbook for
Real-Time Systems Analysis. Kluwer Academic
Publishers, Boston.

Krčál, P. and W. Yi (2004): Decidable and
Undecidable Problems in Schedulability Analysis
Using Timed Automata. In: Proceedings of
TACAS'04, LNCS 2988, pp 236-250. Springer-
Verlag.

Larsen, K.G., P. Pettersson, and Yi, W. (1995).
Model-Checking for Real-Time Systems. In
Proceedings of the 10th International Conference
on Fundamentals of Computation Theory, LNCS
965, 62-88. Springer Verlag

Lime, D and O.H. Roux. (2004) A translation based
method for the timed analysis of scheduling
extended time Petri nets. In Proceedings of the 25th
IEEE International Real-time Systems Symposium,
187--196, December 2004, Lisbon, Portugal.

Liu, J.W.S. (2000). Real-time systems. Prentice-Hall,
Inc., Upper Saddle River, New Jersey

Lundqvist, K. and L. Asplund (2003). A Ravenscar-
Compliant Run-time Kernel for Safety-Critical
Systems. Real-Time Systems Journal, 24(1): 29-54.

OSEK (2003). OSEK/VDX Operating System
Specification 2.2.1. http://www.osek-vdx.org/

