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Abstract: The aim of this article is to show, how a multitasking application running under 
a real-time operating system compliant with the OSEK/VDX standard can be modeled by 
timed automata. The application under consideration consists of several tasks, it includes 
resource sharing and synchronization by events. For such system, model-checking theory 
based on timed automata and implemented in model-checking tools can be used to verify 
time and logical properties of the proposed model. It is shown that the proposed model is 
over-approximation in the case of preemptive scheduling policy. This methodology is 
demonstrated on automated gearbox case study.  Copyright © 2005 IFAC 
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1 INTRODUCTION 

This paper deals with modeling of applications 
running under a real-time operating system (OS). 
Typical application under assumption, shown as a 
case study in Section 7, is a controller consisting of 
periodic and aperiodic tasks constrained by deadlines 
and synchronized via communication primitives. 

The model-checking (Larsen, et al., 1995) approach, 
shown in this paper, provides timed automata (Alur 
and Dill, 1994) model of an operating system, 
application tasks and the controlled environment. In 
the scheduling theory, the task model usually consists 
of its execution time, the blocking time and the inter-
arrival time. Our approach assumes a fine grain 
model of the task internal structure consisting of 
computations, system calls, selected variables, code 
branching and loops. Therefore the model combines 
both, logic and timing parameters of a discrete event 
system enabling to check rather complex properties 
(safety and bounded liveness properties, 
schedulability, state reachability) by model-checking 

tools (e.g. UPPAAL (Behrmann, et al., 2001) and 
Kronos (Daws, et al., 1996)) in finite time. 

Even though timed automata and model-checking 
(analogous to other formal methods) allows modeling 
and verifying almost everything, it is generally 
known, that they are susceptible to state space 
explosion. This fact restricts the size of verified 
application to the small size that seems to be 
unusable in praxis (compared with matured 
schedulability analysis methods (Liu, 2000)). 
Therefore we try to show in this paper, how to build 
a compromise model of reasonable size on one side 
and of reasonable granularity allowing detailed 
formal analysis of real-time properties that can not be 
done by schedulability analysis on the other side. 

Methods for schedulability analysis, e.g. rate 
monotonic analysis (RMA) (Liu, 2000) have been 
widely used in praxis. However they can lead to 
pessimistic results when non-periodic tasks, shared 
resources and other features are incorporated (Bailey, 
et al., 1995). The schedulability analysis based on 
model-checking of the fine grain model provides less 
pessimistic results in some cases. 



     

Fersman, et al. in (2002) and (2003) extended timed 
automata by asynchronous tasks (i.e. tasks triggered 
by events) to provide model for event-driven 
systems. This approach provides good results for 
aperiodic tasks but it is not suited to model the task 
internal structure as follows from results of (Krčál 
and Yi, 2004). 

Corbet in (1996) provides model of real time Ada 
tasking programs based on hybrid automata. 
Opposite to timed automata used in our approach, 
reachability problem is undecidable for hybrid 
automata and the termination of the verification 
algorithm is therefore not guarantied in general. 

Timed automata are used to model primitives of 
Ravenscar run-time kernel for Ada in (Lundqvist and 
Asplund, 2003). However, the time in application is 
discrete opposite to our approach where the time is 
dense. 

Preemptive Petri Nets (Bucci, et al., 2004) or 
Scheduling Petri Nets (Lime and Roux, 2004) can be 
also used to model multitasking application. Both 
formalisms are very similar. Their semantics can be 
either similar to hybrid automata or to semantic of 
timed automata. 

This paper is organized as follows: Section 2 
describes fine grain model used in this paper. 
Sections 3, 4, and 5 presents the main result of this 
paper – timed automata models of tasks and OSEK 
compliant OS (OSEK, 2003). This model is an over-
approximation from the model-checking point of 
view in the case of the preemptive scheduling and 
WCET (worst-case execution time) differing from 
BCET (best-case execution time) as it is shown in 
Section 6. Section 7 presents automated gearbox case 
study. 

2 MULTITASKING APPLICATION FINE GRAIN 
MODEL 

The fine grain model treats tasks and interrupt 
service routines (ISR) internal structure, the OS 
functionality and the controlled environment 
behavior. All components are modeled by timed 
automata synchronized via channels and by shared 
variables. The task model consists of several blocks 
of code called computations, calls of OS services, 
selected variables, and code branching and loops 
(affected by values of selected variables). 

When a general property of the fine grain model is 
analyzed by exhaustive state space search (done by 
model checking tool), the execution time of a 
computation must be specified by an interval 
covering all possible cases, i.e. 〈BCET, WCET〉. Due 
to scheduling anomaly, WCET of computations do 
not necessary lead to the worst case finishing time of 
the whole task. 

The structure of entire model is on Fig. 2.1. 
Rectangular blocks represent particular timed 

automata. Synchronization is expressed by arcs 
labeled by name of the synchronization channel. The 
most important data structures are shown in the right 
side of the figure. The essential components are 
explained in the following sections. 
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Fig. 2.1 Overview of entire timed automata model 

3 TASK MODEL 

Each task instance is modeled by one timed 
automaton that is synchronized with the OS model 
via channels depicted in Fig. 2.1. Fig. 3.1 presents an 
example of a simple task executing computations 
Comp1 and Comp2 and calling OS services 
SetEvent(task,event) and TerminateTask. 

The UPPAAL notation is used in figures of timed 
automata models. The location with double circle 
represents initial location. Each location can be 
labeled by its name and a time invariant. The 
invariant in the form “c<=U”, allows to stay in the 
location only when a valuation of the clock variable c 
is smaller or equal to integer U. Each transition can 
be labeled by a synchronization (channel name with 
‘?’ or ‘!’), a guard (comma separated logical terms, 
e.g., c>=L[1],State[1]==RUNNING) and an 
assignment (comma separated assignments by sign 
‘:=’). 

Task1() 
{ 
 Comp1; 
 SetEvent(ID2,E1); 
 Comp2; 
 TerminateTask(); 
} 
 

Comp1
c<=U[ID]

TerminateTask

SetEvent

Comp2
c<=U[ID]

Return[ID]?
c:=0,
L[ID]:=BCET1,
U[ID]:=WCET1

c>=L[ID], State[ID]==RUNNING
SetEventCh!

ParTask:=ID2, ParEvent:=E1

Return[ID]?
c:=0,L[ID]:=BCET2,U[ID]:=WCET2

TerminateTaskCh!
c>=L[ID], State[ID]==RUNNING

a) Pseudo-code b) Task automaton 
Fig. 3.1 Simple task example 

Each computation is represented by one location of 
the same name (e.g. Comp1). The time spent in this 
location (measured by clock c) represents 
computation’s finishing time (i.e. time necessary to 



     

its execution including preemption) and it is bounded 
by values stored in integers L[ID] and U[ID] 
(elements of arrays L and U respectively, where 
index ID is unique tasks identifier). These bounds are 
initialized to BCET and WCET, and they are 
increased when the task is preempted (provided by 
other timed automaton called PreemptCtrl as it is 
expressed later). 

OS services calls are modeled by transitions 
synchronized by channels of corresponding names 
(e.g. SetEventCh!) and by locations of corresponding 
names (e.g. SetEvent) where the task is waiting return 
from services (channel Return[ID]?). OS service 
parameters are delivered through shared variables 
ParTask and ParEvent. Notice that OS services can 
block the calling task or cause higher-priority task 
becoming ready. Therefore return from OS service 
can occur after a preemption. 

4 OS KERNEL MODEL 

The OS kernel model consists of some variables 
representing OS objects (e.g. ready queue), timed 
automata representing OS services functionality, and 
of timed automata managing preemption 
(PreemptCtrl) and sorting ready queue according to 
priorities (SortQueue). See Fig. 2.1. 

4.1 Kernel Variables 

A task state and priority are stored in arrays State and 
P respectively, at index corresponding to the task ID. 
Higher number represents higher priority. The task 
state is either SUSPENDED (before activation), 
WAITING (after calling WaitEvent), READY (after 
activation and before first run), PREEMPTED (after 
preemption) or RUNNING. 

IDs of all tasks, which are ready for execution 
(State[ID] is equal to READY or PREEMPTED), are 
stored in the ready queue modeled as a global array 
Q representing a circular buffer (see Fig. 2.1). Tasks 
are ordered in descending order according to their 
priorities in Q (rQ points to the ready task with the 
highest priority). The queue ordering is provided by 
automaton SortQueue (neglected in this paper). The 
reordering mechanism is started by synchronization 
channel SortQ after writing new ID. 

For inter-task communication purposes, OSEK 
operating system provides events represented by one 
byte Event[ID] for each task. Each bit in Event[ID] 
represents one event that can be set or cleared. 
Moreover integer array WaitMask represents events, 
which the corresponding task is waiting for. 

4.2 OS services 

Each OS service is modeled by a timed automaton 
representing its functionality defined by OSEK 
specification (OSEK, 2003). The automaton is 
waiting in its initial state until its function is called 

from the task model. Then it manipulates tasks states, 
the ready queue (Q) and other operating system 
objects (e.g. events) and chooses the highest priority 
task to run and store its ID in variable RunID. Then it 
invokes PreemptCtrl automaton modeling the context 
switch and providing a preemption modeling. 

As an example of a service model we introduce 
WaitEvent(ParEvent) service that cause the task wait 
for events in ParEvent. Fig. 4.1 shows WaitEvent OS 
service functionality in a pseudo-code. First the 
service checks, if at least one event specified in 
ParEvent is already set in the task’s event mask 
Event[RunID]. If yes, the service simply returns. If 
no, the running task must wait for at least one. 
Therefore the task state is set to WAITING, ParEvent 
is stored in WaitMask, internal resource is released 
and the highest-priority task from ready queue is 
assigned to RunID variable. Then the context switch 
occurs. 
WaitEvent (ParEvent) 
{ 
 if ((Event[RunID] & ParEvent) == 0) 
 { 
  State[RunID] := WAITING; 
  WaitMask[RunID] := ParEvent; 
  Release Internal Resource; 
  RunID := Extract Top of ReadyQ; 
  ContextSwitch;       // modeled in PreemptCtrl 
  Get Internal Resource; 
  State[RunID] := RUNNING;   // modeled in PreemptCtrl 
 } 
 return E_OK; 
}; 
Fig. 4.1 WaitEvent pseudo-code 

WaitEvent OS service automaton is depicted in Fig. 
4.2. Locations marked by “c“ are so called 
committed locations in UPPAAL notation. It must be 
left immediately, without any interference of other 
automaton that is not in a committed location. Since 
all locations in the automaton in Fig. 4.2, except the 
initial one, are committed locations, therefore the 
whole service seems to be atomic from the point of 
view of tasks and controlled environment models. 

Wait

(Event[RunID] & ParEvent)==0
State[RunID]:=WAITING, WaitMask[RunID]:=ParEvent,
P[RunID]:=Pstat[RunID]

nQ==0
RunID:=IDLE

(Event[RunID] & ParEvent)!=0
State[RunID]:=READY

EndSysCall!

nQ>0
RunID:=Q[rQ], nQ--, rQ:=(rQ<sizeQ-1 ? rQ+1 :0),
P[RunID]:=IntResCeiling[RunID]

WaitEventCh?

 
Fig. 4.2 WaitEvent service automaton corresponding 

to pseudo-code depicted in Fig. 4.1 

The OS service automaton waits in the initial state 
until the synchronization by channel WaitEventCh 
occurs. The context switch is modeled by 
PreemptCtrl automaton invoked by channel 
EndSysCall. 

4.3 Preemption Modeling 

PreemptCtrl automaton, depicted in Fig. 4.3, starts 
execution of scheduled task (RunID) and provides 
prolongation of finishing time bounds L[i] and U[i] 



     

of all preempted tasks. The automaton introduced 
here is simplified by omitting the part corresponding 
to interrupt service routines. 

ProlongAllPreemptedInQ
Wait ToTask

Return[RunID]!

State[RunID]:=RUNNING,
                 i:=rQ

State[RunID]!=PREEMPTED

i==wQ

i!=wQ &&
State[Q[i]]==PREEMPTED
L[Q[i]]:=L[Q[i]]+L[RunID],
U[Q[i]]:=U[Q[i]]+U[RunID],
i:=(i<sizeQ-1 ? i+1 : 0)

RunID==IDLE
EndSysCall?

RunID<TASK_NUM
EndSysCall?

State[RunID]==PREEMPTED

State[RunID]:=RUNNING

i!=wQ &&
State[Q[i]]!=PREEMPTED
i:=(i<sizeQ-1 ? i+1 : 0)

 
Fig. 4.3 PreemptCtrl automaton 

At the end of each OS service, the function of 
PreemptCtrl automaton is invoked by 
synchronization EndSysCall. If a task should be 
scheduled (RunID<TASK_NUM), location ToTask is 
reached. If the task that should be scheduled now 
(RunID) has been preempted by a task released by an 
ISR in the past, its state has been set PREEMPTED 
by the ISR model. In this case, the RunID task model 
is in the location corresponding to some computation 
and its progress must be allowed now by setting its 
state RUNNING by PreemptCtrl. 

If the RunID task model waits for synchronization 
Return[RunID] in a location corresponding to an OS 
service call (its state is READY), its state is also set 
RUNNING, and the progress in the task model is 
allowed by the synchronization via channel 
Return[RunID]. Since a new computation is started 
in RunID task in this case, bounds L[i] and U[i] of 
all PREEMPTED tasks i (i.e. all tasks that are in 
location corresponding to a computation) are 
moreover increased by bounds of the currently 
beginning computation (L[RunID] and U[RunID]). 

5 INTERRUPT SERVICE ROUTINE MODEL 

The ISR is modeled by timed automaton modeling an 
application dependent code in the same way as the 
task code. Moreover there is an initialization part that 
prevents a rescheduling inside the ISR and a 
finalization part that provides the rescheduling at the 
end of the ISR (as it is required by OSEK 
specification (OSEK, 2003)). An example of the ISR 
pseudo-code is in Fig. 7.2. 

The state of RunID task is set to PREEMPTED, 
RunID content is stored in variable InterruptedID and 
an identifier of the ISR (IsrID) is written to variable 
RunID in the initialization part. Since the priority of 
the ISR is higher than all task priorities, OS services 
called from the ISR code, cannot cause a 
rescheduling. At the finalization part, the highest 
priority ready task ID is written to variable RunID. It 
can be either InterruptedID or ID from the top of the 
ready queue. In the second case, the InterruptedID is 
written to the ready queue. 

6 MODEL OVERAPPROXIMATION 

When the preemption occurs the finishing time 
bounds L[Preempted] and U[Preempted] of the 
preempted computation should be prolonged by the 

duration of the preemption. Since the right duration 
of the preemption cannot be measured in timed 
automata (a clock variable cannot be stopped or 
stored), the bounds L[Preempted] and U[Preempted] 
are increased by bounds of the possible preemption 
that are L[Preempting] and U[Preempting], the 
finishing time bounds (in this time equal to execution 
time bounds) of the preempting task computation. 
This introduces an additional non-determinism to the 
model since the duration of the preempted task 
preemption is not necessary equal to the duration of 
the preempting task execution (what holds in the real 
system). Therefore the set of real system behaviors is 
subset of the modeled behaviors, i.e. the model is an 
over-approximation. 

To illustrate the over-approximation let us consider 
for example low-priority task Tlow with execution 
time Clow∈ [1,4] preempted by high-priority task Thigh 
with execution time Chigh∈ [2,4]. All possible relative 
finishing times of both tasks in the real system and in 
the proposed model are depicted in Fig. 6.1. 
Finishing time of Thigh is always equal to its 
execution time Chigh. Finishing of Tlow is equal to its 
execution time Clow plus preemption duration. 
Preemption duration is bounded by bounds of Chigh in 
the model but it is equal to the actual execution time 
of Thigh in the real system. 
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Fhigh

Flow
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Chighin [2,4]
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F low
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Fig. 6.1 Possible values of relative finishing times F 

of preempting task Thigh and preempted task Tlow 

Fig. 6.1 shows that not all modeled behaviors can 
occur in the real system. It is very important to keep 
this fact in mind during the verification process, since 
the over-approximation does not preserve a general 
property. On the other hand, it is important from the 
practical point of view, that over-approximation 
preserves safety and bounded liveness properties 
(Berard, et al., 2001). A safety property states that, 
under certain conditions, an undesirable event never 
occurs. A bounded liveness property states that, 
under certain condition, some desirable event will 
occur within some deadline (see Section 7). 

Schedulability is an often verified property, exploring 
whether tasks are finished prior to their deadlines 
(dhigh and dlow in Fig. 6.1) in all situations. Fig. 6.1 
shows that the worst case finishing time of each task 
is the same in the model and in the real system. A 
result of the schedulability analysis based on this 
model is therefore correct and corresponds to reality 
(it is not pessimistic). 



     

7 GEAR BOX CASE STUDY 

7.1 System description 

The proposed modeling methodology is 
demonstrated on an automated gearbox control 
system in this section. The controlled system consists 
of a dry clutch actuated by a servo and five-speed 
gearbox. 

1 3 5

2 4 R

Odd

Even

Neutral

Rail0 Rail1 Rail2

Shift Rail
Shift Finger
Slot
Gait

ShiftServo

SelectServo

 
Fig. 7.1 Gear box mechanics 

The gearbox mechanics is depicted in Fig. 7.1. It 
consists of three shift rails and a shift finger actuated 
by SelectServo and ShiftServo. SelectServo can move 
the shift finger from a slot of one rail to another. 
ShiftServo engages one of two gears (even or odd) or 
neutral by moving the selected rail by the shift finger. 
A direction of the shift finger movement is limited by 
a gait. 
ISR()   // IRQ sources - TIMER, Clutch, SelectServo, ShiftServo 
{ 
 // Initialization part 
 State[RunID]:=PREEMPTED; 
 InterruptedID := RunID; 
 RunID := IsrID;  // OS Services called from ISR returns to ISR 
         // and OS services do not schedule any task 
 // User code 
 while (bTimerInt || bClutchInt || bShiftServoInt || bSelectServoInt) 
 { 
  Comp; 
  if (bTimerInt) { 
   bTimerInt:=0; 
   clk:=(clk>MAX_CLK ? 1 : clk+1); 
   if (clk% SlipCtrlTaskPeriod == 0) 
    ActivateTask(SlipCtrlTask); 
   if (clk% SelectGearTaskPeriod == 0) 
    ActivateTask(SelectGearTask); 
  } 
  else if (bClutchInt) { 
   bClutchInt:=0; 
   SetEvet (GearBoxCtrlTask, ClutchEvent); 
  } 
  else if (bShiftServoInt)  { 
   bShiftServoInt:=0; 
   SetEvet (GearBoxCtrlTask, ShiftServoEvent); 
  } 
  else if (bSelectServoInt) { 
   bSelectServoInt:=0; 
   SetEvet (GearBoxCtrlTask, SelectServoEvent); 
  } 
 } 
 // Finalization part - Scheduling point 
 if (readyQ.Empty) 
  RunID := interruptedID; 
 else if (InterruptedID == IDLE) { 
  RunID := Extract Top of ReadyQ; 
 } 
 else if (P[ReadyQ.Top] > P[InterruptedID]) { 
  Write InterruptedID to ReadyQ; 
  RunID := Extract Top of ReadyQ; 
 } 
 else 
  RunID := InterruptedID; 
 InterruptReturn;    // modeled by channel EndSysCall 
}; 
Fig. 7.2 Interrupt service routine pseudocode 

The gearbox is controlled by a single processor 
control unit running an OSEK compliant OS. The 
application software consists of tasks (SlipCtrlTask, 
SelectGearTask, GearBoxCtrlTask) and one ISR. 

The ISR (see pseudocode in Fig. 7.2) is periodically 
invoked by a timer (with the period 10) and by the 
clutch, ShiftServo or SelectServo when their position 
changes. The source of the interrupt is specified by 
boolean variables bTimerInt, bClutchInt, 
bShiftServoInt and bSelectServoInt. 

Task SlipCtrlTask is periodically activated by the 
ISR. Its priority is 2 and its period is 10. It provides 
slip control and torque tracking. Task 
SelectGearTask is periodically activated by ISR. Its 
priority is 0 and its period is 200. It selects 
appropriate transmission rate, write it to variable 
DesiredGear, and if desired gear differs from the 
current one, it activates task GearBoxCtrlTask that 
controls the gear changing. Since a detailed 
functionality of SlipCtrlTask and SelectGearTask is 
not necessary for the verification, their models are 
very simple (only execution times are considered) 
and they are omitted here. 

Task GearBoxCtrlTask has priority 1. Its 
functionality is described in details in Fig. 7.3. Notice 
that the task suspends himself several times, while 
waiting on an external event. 
GearBoxCtrlTask()  // Activated by SelectGearTask 
{ 
 GBReady := 0; 
 ClearEvet (ClutchEvet); 
 OpenClutch;          // Send command 
 WaitEvent (ClutchEvent); 
 if (CurrentShift != NEUTRAL) 
 { 
  // Disengage 
  ClearEvent (ShiftServoEvent); 
  ShiftServo_Goto (NEUTRAL);   // Send command 
  WaitEvent (ShiftServoEvent); 
 } 
 if (DesiredGear != NEUTRAL) 
 { 
  // Select shifting rail 
  DesiredRail := (DesiredGear-1)/2;   // integer division 
  DesiredShift := (DesiredGear–1)%2+1; // modulo operation 
  if (DesiredRail != CurrentRail) 
  { 
   // Select 
   ClearEvent (SelectServoEvent); 
   SelectServo_Goto (DesiredRail);  // Send command 
   WaitEvent (SelectServoEvent); 
  } 
  // Shift 
  ClearEvent (ShiftServoEvent); 
  ShiftServo_Goto (DesiredShift);   // Send command 
  WaitEvent (ShiftServoEvent); 
 } 
 ClearEvet (ClutchEvet); 
 CloseClutch;           // Send command 
 WaitEvent (ClutchEvent); 
 GBReady := 1; 
 CurrentGear:=DesiredGear; 
 TerminateTask(); 
}; 
Fig. 7.3 Gear Box Control task pseudocode 

7.2 Model 

A model of the whole system consists of timed 
automata representing the controlled system (Clutch, 
SelectServo and ShiftServo), hardware devices 



     

(Timer), the OS (services ActivateTask, 
TerminateTask, SetEvent, WaitEvent and automata 
PreemptCtrl and SortQueue), the tasks (SlipCtrlTask, 
SelectGearTask, GearBoxCtrlTask) and the ISR. An 
overview of the whole model is depicted in Fig. 7.4 
(automata synchronization via channels) and Fig. 7.5 
(shared variables). Except events of 
GearBoxCtrlTask, variables and timed automata 
modeling the OS are omitted in both figures. 

ISR SlipCtrl
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SelectGear
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GearBoxCtrl
Task

Timer Select
Servo
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Fig. 7.4 Model overview – synchronizations via 

channels 
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Fig. 7.5 Model overview – shared variables 

Clutch timed automaton is depicted in Fig. 7.6. It is 
in location Closed or Opened in steady state. When 
the command to open or close the clutch is received 
(via channel OpenClutch or CloseClutch 
respectively), Clutch becomes Opening or Closing 
respectively. After ShiftTime, interrupt request (IRQ) 
is generated via channel IRQ. 

Closed

Closing
t<=ShiftTime

Opening
t<=ShiftTime

Opened

OpenClutch?

t:=0

CloseClutch?

t:=0

t>=ShiftTime
ClutchState:=OPENED,
bClutchInt:=1, t:=0

IRQ!

t>=ShiftTime
ClutchState:=CLOSED,
bClutchInt:=1

IRQ!

 
Fig. 7.6 Clutch timed automaton 

SelectServo timed automaton is depicted in Fig. 7.7. 
Locations Rail0, Rail1 and Rail2 represent steady 
states. When the command to select a new rail is 
received via channel SelectCh, SelectServo moves to 
DesiredRail (BetweenRail0andRail1 and 
BetweenRail1andRail2). When DesiredRail is 
reached, IRQ is generated via channel IRQ. 

ShiftServo timed automaton (not depicted here) 
differs from SelectServo timed automaton only in 
several details. Locations Rail0, Rail1 and Rail2 are 
changed to OddPos, NeutralPos and EvenPos, and 

variables and channels related selecting (DesiredRail, 
CurrentRail, SelectCh, bSelectServoInt) are changed 
to variables and channels related to shifting 
(DesiredShift, CurrentShift, ShiftCh, bShiftServoInt). 
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Fig. 7.7 SelectServo timed automaton 

Tasks and the ISR respectively are translated to the 
timed automata models according to the 
methodology described in Sections 3 and 5. 
GearBoxCtrlTask timed automaton is in Fig. 7.8; 
SlipCtrlTask, SelectGearTask and ISR timed 
automata are omitted here. Complete model can be 
downloaded at: http://dce.felk.cvut.cz/waszniowski/ 
RTVerif/RTVerif.htm 

7.3 Formal verification 

The following properties are required for the proper 
function of the system: 

Safety properties: 

P1. Shifting is not allowed when the clutch is closed 

P2. Selecting is allowed only when ShiftServo is in 
neutral 

P3. Shifting is allowed only when a rail is selected 

P4. The clutch cannot be opened longer than 310 
time units 

Bounded liveness: 

P5 – P11. When a new desired gear is chosen, it is 
engaged in 260 time units 

Listed properties have been formalized in UPPAAL 
requirement specification language as follow: 

P1. A[] Clutch.Closed imply (ShiftServo.OddPos or 
ShiftServo.NeutralPos or ShiftServo.EvenPos) 

P2. A[] not (SelectServo.Rail0 or SelectServo.Rail1 
or SelectServo.Rail2) imply 
ShiftServo.NeutralPos 

P3. A[] not ShiftServo.NeutralPos imply 
(SelectServo.Rail0 or SelectServo.Rail1 or 
SelectServo.Rail2) 



     

P4. A[] Clutch.Opened imply Clutch.t<=310 

P5. (DesiredGear==0 and 
SelectGearTask.ActivateTask) --> 
(ShiftServo.NeutralPos and rt<=260) 

P6. (DesiredGear==1 and 
SelectGearTask.ActivateTask) --> 
(ShiftServo.OddPos and SelectServo.Rail0 and 
rt<=260) 

P7 - P11 Similar to P6. 

In UPPAAL requirement specification language 
syntax A[] f represents the computation tree logic 
(CTL) formula ∀ ! f (i.e. “invariantly holds f”). The 
syntax p --> q denotes a CTL property 
∀ ! (p ⇒ ∀ " q) (i.e. “whenever p holds, eventually 
q will hold as well”). Clock rt, measuring the 
response time in all bounded liveness properties P5 – 
P11, is reset when DesiredGear is changed in 
SelectGearTask timed automaton. 

Comp1
c<=U[ID]

WaitEvent1

TerminateTask

if1

c<=U[ID]

Comp2
c<=U[ID]

WaitEvent2

if2

c<=U[ID]

if3

Comp3
c<=U[ID]

WaitEvent3

Comp4
c<=U[ID]

Shift

WaitEvent4
Comp5

c<=U[ID]

WaitEvent5

Comp6
c<=U[ID]

End

Return[ID]?

L[ID]:=L1,
U[ID]:=U1,
c:=0

WaitEventCh!
ParEvent:=ClutchEvent

Return[ID]?
L[ID]:=0, U[ID]:=0, c:=0,
DesiredShift:=NEUTRAL

TerminateTaskCh!

c>=L[ID] && State[ID]==RUNNING
OpenClutch!

Event[ID]:=Event[ID]&!ClutchEvent, GBReady:=0

CurrentShift==NEUTRAL &&
c>=L[ID] && 
State[ID]==RUNNING

L[ID]:=0, U[ID]:=0, c:=0

CurrentShift!=NEUTRAL && c>=L[ID] && State[ID]==RUNNING
Event[ID]:=Event[ID]&!ShiftEvent,
L[ID]:=L2, U[ID]:=U2, c:=0

WaitEventCh!
ParEvent:=ShiftEvent

Return[ID]?
L[ID]:=0, U[ID]:=0, c:=0

DesiredGear!=NEUTRAL && c>=L[ID] && State[ID]==RUNNING
DesiredRail:=(DesiredGear-1)/2,
DesiredShift:=(DesiredGear-1)%2+1

DesiredRail!=CurrentRail
Event[ID]:=Event[ID]&!SelectEvent,
L[ID]:=L3, U[ID]:=U3, c:=0

WaitEventCh!
ParEvent:=SelectEvent

Return[ID]?
L[ID]:=L4, U[ID]:=U4, c:=0

DesiredRail==CurrentRail
ProlongCh!

L[ID]:=L4, U[ID]:=U4, c:=0

DesiredGear==NEUTRAL &&
c>=L[ID] && 
State[ID]==RUNNING

L[ID]:=L5, U[ID]:=U5, c:=0

ShiftCh!

Event[ID]:=Event[ID]&!ShiftEvent
c>=L[ID] && State[ID]==RUNNING

WaitEventCh!
ParEvent:=ShiftEvent

Return[ID]?
L[ID]:=L5, U[ID]:=U5, c:=0

CloseClutch!

Event[ID]:=Event[ID]&!ClutchEvent
c>=L[ID] && State[ID]==RUNNING

WaitEventCh!
ParEvent:=ClutchEvent

Return[ID]?
L[ID]:=L6, U[ID]:=U6, c:=0, GBReady:=1, CurrentGear:=DesiredGear

c>=L[ID] && State[ID]==RUNNING

c>=L[ID] && State[ID]==RUNNING
ShiftCh!

c>=L[ID] && State[ID]==RUNNING
SelectCh!

 
Fig. 7.8 GearBoxCtrlTask timed automaton 

All mentioned properties of the system have been 
successfully verified by model-checker UPPAAL 

3.4.5 running on PC AMD Athlon 1GHz, with 1.3GB 
RAM. The time required for verification of all 11 
properties has been 4minutes and 14 seconds. The 
required memory has been 203MB. 

Even though our model is over-approximate (it 
contains more behavior than the real system), we can 
conclude that all safety and bounded liveness 
properties that are satisfied by the model are also 
satisfied by the real system (Berard, et al., 2001). 

7.4 Response time analysis 

The proposed model can be used to analyze the 
worst-case response time (WCRT) of 
GearBoxCtrlTask by verifying formula: “Always, 
when GearBoxCtrlTask is activated, its end is 
unavoidably reached in the future and rt<=WCRT in 
that time”. The response time is measured by clock rt 
that is reset when GearBoxCtrlTask is activated in 
SelectGearTask. The verification is done in UPPAAL 
for specific value of WCRT. The smallest value can 
be found in several experiments. WCRT found by 
this method is 312. 

There also exist algorithms for parametric model-
checking verifying whether a state is reachable in 
model with uncertain parameter (WCRT in observer 
automaton). However this problem is undecidable in 
general (Alur, et al., 1993). 

It is clear from the GearBoxCtrlTask pseudocode that 
the task suspends itself several times wile waiting for 
external events. Scheduling theory (Klein, et al., 
1993) proposes two ways of analyzing response 
times of tasks with self-suspension: (i) treat 
suspension time as execution time or (ii) analyze 
separately each computation in worst case phasing 
and sum all partial results together with suspension 
times. Both of these methods are pessimistic however 
(Klein, et al., 1993). 

The worst-case execution path of GearBoxCtrlTask 
consists of six computations separated by five self-
suspensions. WCET of all computations are 1. The 
worst-case self-suspension time of one self-
suspension is 100, the other are 50. GearBoxCtrlTask 
can be preempted by SlipCtrlTask and by ISR for 1. 
WCRT of GearBoxCtrlTask computed by method (ii) 
is 321, and by method (i) even 389. 

8 CONCLUSION 

We have demonstrated in this paper, how timed 
automata can be used for the multitasking preemptive 
application modeling. Even though the model is an 
over-approximation of the real system behavior, 
complex time and logical properties considering 
application data and controlled system model can be 
verified by model-checking tool, since safety and 
bounded liveness properties (the most important 
groups) are preserved by an over-approximation. 



     

Opposite to hybrid automata allowing precise 
modeling of the preemption (Corbet, 1996), 
termination of the verification algorithm is 
guaranteed for timed automata. Opposite to models 
based on timed automata extended by tasks 
(Fersman, et al., 2002), the internal structure of the 
preemptive task can be modeled. Opposite to models 
used in standard response time analysis based on 
scheduling theory, an advantage of timed automata 
based model is its ability to model the task internal 
structure and the controlled environment. 
Consequently more general properties can be verifier 
an less pessimistic response time analysis is provided 
by model-checking approach, especially when the 
analyzed application contains features that make the 
response time analysis pessimistic. 

Off course, an exhaustive analysis of the detailed 
timed automata model subjects to a state space 
explosion (what is a general property of most formal 
methods (Corbet, 1996)). Therefore the proposed 
model is abstract as much as possible and contains 
only information necessary for a correct verification 
of the system specification. The operating system 
model use only modest data structures, it does not 
use any clock variables (duration of OS services and 
context switch is involved in the execution time of 
computations), it does not allow any non-
determinism and all locations are committed what 
prevents paths interleaving and therefore restricts 
explored state space. Notice also that OSEK is one of 
the most appropriate operating systems to be 
modeled by timed automata since it is static (all 
objects are created at the compilation time) and it is 
designed for a modest runtime environment of 
embedded devices. The model of application tasks 
must be designed as a compromise between the 
model precision and its state space size. It is 
necessary to limit the size of modeled data, non-
determinism and the number of computations to 
obtain a model of reasonable size. 

In spite of these restrictions, model-checking 
approach is applicable for formal verification of 
realistic applications whose verification done 
manually by human would be hard and error prone. 
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