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Abstract: This paper is concerned with the control of power systems. We design
a control approach for a class of nonlinear systems, closely related to sliding
modes but without switching. Simulations results performed on the basis of two
versions of the sliding-mode controller and applied to a multi-machine model
have demonstrated better performances when compared to an Hamiltonian passive
controller design. Copyright c©2005 IFAC.
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1. INTRODUCTION

The transient stability of an electrical power sys-
tem (EPS) can be defined as the ability of an
EPS to remain in synchronism after being sub-
jected to a major system disturbance (see (De
Mello, 1969; Pai, 1989)). The use of advanced
control techniques for power system control has
been one of the more promising application ar-
eas of automatic control, see (Chapman, 1993;
Chow, 1995; Mielczarski, 1994). Compared with
the use of traditional linear control theory where
the operating domain of the controlled system is
restricted to a small operation domain, or the
structural properties of the system are lost or par-
tially used, the design of excitation controls with
nonlinear techniques allows the controlled system
to face large disturbances and to recover a steady-
state post-fault situation (see (Bergen, 1986)).

Nonlinear feedback linearizing controller design
based on differential geometric techniques has
been well investigated for power systems. The
key feature of this controller design is that the
control law can cancel the system nonlinear dy-
namics so that the resulting closed loop system
behaves as an equivalent linear system. However,
due to the presence of parametric uncertainties,
unpredictable disturbances and faults occurring
in the system, it follows that it is impossible
to guarantee the exact cancellation of nonlin-
earities of the system. Recently, port-controlled
Hamiltonian systems have been introduced (see
(Maschke, 1998)). For this class of systems the
Hamiltonian function is considered as the total
energy and play the role of Lyapunov function
for the system. The key of this technique is to
express the electrical power system into a port-



controlled Hamiltonian system. This method was
applied for improving the transient stability of a
multi-machine power system by means of decen-
tralized nonlinear excitation control (Xi, 2002).
Another technique for improving robustness under
parameter uncertainties and external disturbances
is sliding-mode control design which has attracted
a number of research (see (Utkin, 1986)). The
implementation of discontinuous controllers yields
the chattering phenomenon which can be avoided
by approximating the discontinuous control law
by a continuous one.

2. DYNAMICAL MODEL OF A
MULTI-MACHINE POWER SYSTEM

Under some standard assumptions, the dynamics
of n interconnected generators can be described
by classical model with flux decay dynamics. The
network has been reduced to internal bus rep-
resentation. Furthermore, in practical power sys-
tems, line conductances Gij can be neglected with
respect to line susceptances Bij (Gij << Bij).
The dynamical model of the i-th machine is rep-
resented by (Bergen, 1986; Pai, 1989; Xi, 2002))

δ̇i = ωi − ω0 (1)

ω̇i =
1

2Hi
(−Di (ωi − ω0) + ω0 (Pmi − Pei))

Ė′
qi

=
1

T ′di

(Efi − Eqi)

where

Pei = E′
qi

n∑

j=1

E′
qj

Bijsin (δi − δj) ,

Eqi = E′
qi
− (

Xdi −X ′
di

) n∑

j=1

E′
qj

Bij cos (δi − δj)

Qei =−E′
qi

n∑

j=1

E′
qj

Bij cos (δi − δj) ,

Iqi =
n∑

j=1

E′
qj

Bijsin (δi − δj)

Idi =−
n∑

j=1

E′
qj

Bijcos (δi − δj) ,

Eqi = E′
qi

+
(
Xdi −X ′

di

)
Iqi ,

Eqi = Vti +
QeiXdi

Vti

and δi(t) is the power angle of the i-th generator,
in p.u.; ωi(t) represents the relative speed, in p.u.;
ω0 = 2πf0, is the synchronous machine speed,
Pmi the mechanical input power, in p.u.; Pei(t) is
the active power, in p.u.; Di is the damping con-
stant, in p.u.; Hi represents the inertia constant,
in seconds; E′

qi
(t) is the transient EMF in the

quadrature axis, in p.u.; Eqi(t) is the EMF in the

quadrature axis, in p.u.; Efi(t) is the equivalent
EMF in the excitation coil, in p.u.; T ′di

is the
direct axis transient short circuit time constant,
in seconds; Xdi is the direct axis reactance of
the i-th generator, in p.u.; X ′

di
is the direct axis

transient reactance of the i-th generator, in p.u.;
Bij is the i-th row and j-th column element of the
nodal susceptance matrix, symmetric matrix; at
the internal nodes after eliminating all physical
buses, in p.u.; Qei(t) the reactive power, in p.u.;
Iqi(t) the direct axis current, in p.u.. We consider
that Efi

(t) is the input of the system. Then, the
state representation of the multi-machine power
system is of the following form:

ẋi1 = xi2 (2)

ẋi2 =−aixi2 + bi − cixi3

n∑

j=1

xj3Bij sin(xi1 − xj1)

ẋi3 =−eixi3 + di

n∑

j=1

xj3Bij cos(xi1 − xj1) + ui

where ai = Di/2Hi, bi = (ωo/2Hi)Pmi , ci =
(ωo/2Hi), di = (Xdi − X ′

di
)/T ′di

, ei = 1/T ′di
,

are the systems parameters, [xi1, xi2, xi3]
T =[

δi(t), ωi(t), E′
qi(t)

]T represents the state vec-
tor, and the control input is given by ui =
(1/T ′di

)kciufi(t).

3. CONTINUOUS SLIDING-MODE
CONTROLLER DESIGN

We consider the class of nonlinear systems de-
scribed in the state space by

ẋ = f(x) + g(x)u, x(t0) = x0, (3)

where t0 ≥ 0, x ∈ Bx ⊂ Rn is the state vector,
u ∈ Rr is the control input vector , f and g are
assumed to be bounded with their components
being smooth functions of x. Bx denotes a closed
and bounded subset centered at the origin. We
consider the following (r)-dimensional nonlinear
surface defined by

σ(x− x∗) = (σ1(x− x∗), ..., σr (x− x∗))T

= 0 (4)

where x∗ is equilibrium point of the system and
each function σi : Bx × Bx → R , i = 1, ..., r, is
a C1 function such that σi(0) = 0. The equivalent
control method (see (Utkin, 1986)) is used to
determine the system motion restricted to the
sliding surface σ(x − x∗) = 0, which leads to the
so-called equivalent control

ue = −
[
∂σ

∂x
g(x)

]−1 [
∂σ

∂x
f(x)

]
(5)



where the matrix [∂σ/∂x]g(x) is assumed to be
nonsingular for all x, x∗ ∈ Bx. In order to com-
plete the control design one sets

u = ue + uN (6)

where ue is the equivalent control (5), which acts
when the system is restricted to σ(x − x∗) = 0,
while uN acts when σ(x − x∗) 6= 0. The control
uN is selected as

uN = −[
∂σ

∂x
g(x)]−1L(x)σ(x− x∗) (7)

where L(x) is an r × r positive definite matrix
whose components are C0 bounded nonlinear real
functions of x, such that ‖L(x)‖ ≤ ρ, ∀ x ∈
Bx with a constant ρ > 0. The equation that
describes the projection of the system motion
outside σ(x− x∗) = 0 is given by

σ̇(x− x∗) = −L(x)σ(x− x∗). (8)

Based on the sliding-mode control described
above, the resulting the composite control is given
by

u = −
[
∂σ

∂x
g(x)

]−1 [
∂σ

∂x
f(x)

+L(x)σ(x− x∗)] (9)

Stability of the subsystem (8) is not sufficient for
guaranteeing asymptotic stability of the overall
system since (n − r) states have been rendered
unobservable. The (n − r)-dimensional zero dy-
namics has to be stable (to get a minimum phase
nonlinear system). The problem of choosing σ in
order to ensure that the system is minimum phase
is the main design issue.

4. HAMILTONIAN CONTROLLER DESIGN

We consider the multi-variable nonlinear system
ΣNL expressed by the equations:

ẋ = f(x) + g(x)u
y = h(x) (10)

where x ∈ IRn is the state vector of the system,
u ∈ IRm is the control vector and y ∈ IRp

is the output vector. In this paper we will be
interested in the class of systems that can be
equivalently represented in a Hamiltonian form
with dissipative terms in the following way

ẋ = (J (x)−R(x))
∂HT

∂x
+ g(x)u (11)

y = gT (x)
∂HT

∂x

where x , u, y are the energy variables, H(x1, ..., xn) :
Rn → R represents the total stored energy and

the interconnection structure is captured in the
n × n matrix J (x) and the n × m matrix g(x).
The matrix J (x) is skew-symmetric, i.e.

J (x) = −J T (x), ∀x ∈ IRn

and R(x) is a non-negative symmetric matrix
depending on x, i.e.

R(x) = RT (x) ≥ 0, ∀x ∈ IRn.

If a system can be described by an Hamiltonian
form, then the Hamiltonian function may be used
to guarantee stability of the system. Moreover,
from (11), we obtain the power-balance equation

dH

dt
= −∂H

∂x
R(x)

∂HT

∂x
+ uT y

with uT y the power externally supplied to the sys-
tem and −∂H

∂x R(x)∂HT

∂x representing the energy-
dissipation due to the resistive elements. As it
is well known (see (Maschke, 1998)), the above
equality establishes the passivity properties of the
system in the following sense.

Theorem 1: We consider the class of systems de-
fined by (11). We assume that the system is zero-
state detectable and that the generalized Hamilto-
nian has a strict local minimum. Then it follows
that x∗ is a Lyapunov stable equilibrium point of
the unforced dynamics. Moreover, it can be eas-
ily seen that in order to render the equilibrium
point asymptotically stable, the following output
feedback can be considered

u = −y = −gT (x)
∂HT

∂x
(12)

5. APPLICATION TO A MULTI-MACHINE
SYSTEM

A three-machine system (see figure 1) is chosen to
demonstrate the effectiveness of the proposed slid-
ing mode controller. However, the here-proposed
approaches can be easily extended to a n-machine
system without restriction. In this case, the gen-
erator 3 is considered as an infinite bus, then
the generator 3 is used as the reference, i. e.(
E′

q3 = const = 1]0◦
)
.

5.1 Sliding-mode control design

Sliding-Mode Control 1

We consider the following nonlinear switching
surface defined by

σ(x, x∗) = (σ1(x, x∗), σ2(x, x∗))T = 0,



Fig. 1. a 3-machine power system.

where

σ
i
(x, x∗) = si1(xi1 − x∗i1) + si2(xi2 − x∗i2)

+ si3(xi3 − x∗i3), i = 1, 2,

and x∗i = (x∗i1, x
∗
i2, x

∗
i3), for i = 1, 2, is an equi-

librium point. The sij ’s are chosen to guarantee
that the zero dynamics associated to each out-
put yi = σi are asymptotically stable. Then, the
equivalent control is given by

uei =−
[
∂σi

∂xi
gi(x)

]−1 [
∂σi

∂xi
fi(x)

]

=− 1
si3
{si1xi2 + si2(−aixi2 + bi

− cixi3

n∑

j=1

xj3Bij sin(xi1 − xj1))

+ si3(−eixi3 + di

n∑

j=1

xj3Bij cos(xi1 − xj1))},

i = 1, 2

where [∂σi/∂xi]gi = si3 for all xi ∈ Bxi . On the
other hand, the control uNi is selected as

uNi =−[
∂σi

∂xi
gi(x)]−1Li(x)σi(x, x∗)

=− Li

si3
{si1(xi1 − x∗i1) + si2(xi2 − x∗i2)

+ si3(xi3 − x∗i3)}, i = 1, 2,

where Li(x) = Li = constant. Finally, the overall
control design is given by

ui =− 1
si3
{si1xi2 + si2(−aixi2 + bi

− cixi3

n=3∑

j=1

xj3Bij sin(xi1 − xj1))

+si3(−eixi3 + di

n=3∑

j=1

xj3Bij cos(xi1 − xj1))

+ Li(si1(xi1 − x∗i1) + si2(xi2 − x∗i2)

+ si3(xi3 − x∗i3))}

for i = 1, 2. The multi-machine power system
model can be stabilized around a prescribed op-
erational equilibrium point by the following feed-
back

ui =− 1
si3
{si1xi2 + si2(−aixi2 + bi − cixi3Iqi)

+ si3(−eixi3 − diIdi
) + Li(si1(xi1 − x∗i1)

+ si2xi2 + si3(xi3 − x∗i3))}

or equivalently

ui =−{ Li

si3
[si1(xi1 − x∗i1) + si2xi2

+ si3(xi3 − x∗i3)]

+
si1

si3
xi2 +

si2

si3
(−aixi2 + bi − ciPei

)

− ei(Vti +
Qei

Xdi

Vti

)}

where x∗i2 = 0, Pei = xi3

n∑
j=1,i 6=j

xj3Bij sin(xi1 −

xj1), Idi = −
n∑

j=1,i6=j

xj3Bij cos(xi1 − xj1) and

Iqi =
n∑

j=1,i 6=j

xj3Bij sin(xi1 − xj1). We can notice that

the controller is expressed only in terms of local
measurable variables leading to a fully decentral-
ized control scheme.

Sliding-Mode Control 2

We consider now the following nonlinear switching
surface given by

σi(x, x∗) = si1x̃i1 + si2
˙̃xi1 + si3

¨̃xi1, i = 1, 2,

where x̃i1 = xi1 − x∗i1.

The controller can be also expressed in terms of
local measurable variables as

ui =
1

si3ciIqi

{−Lisi1(xi1 − x∗i1)

−Lisi2xi2 − Lisi3(−aixi2 + bi − ciPei)

+ si1 + si3ciQei + (si2 − ai)(−aixi2 + bi − ciPei)

− si3ei(Vti +
QeiXdi

Vti

)}

for i = 1, 2 and for all xi ∈ Bxi .

5.2 Hamiltonian control design

In the Hamiltonian formulation for multi-machine
power systems, the energy function of the overall
system is the sum of the energy function of each



generators (Sun, 2001). We consider system (2)
and the following energy function

H =
n=3∑

j=1

(
1

2ci
x2

i2 −
bi

ci
xi1

− 1
2
xi3

n=3∑

j=1

xj3Bij cos(xi1 − xj1)

+
ei

2di
x2

i3).

(13)

It follows that the system dynamics can be written
as a generalized Hamiltonian control system with
dissipation according to what follows




ẋi1

ẋi2

ẋi3


 =




0 ci 0
−ci −ciai 0
0 0 di


 ∂H

∂xi

+




0
0
1


 ui (14)

where xi = col(xi1, xi2, xi3), Ji(x) =




0 ci 0
−ci 0 0
0 0 0


 ,

Ri(x) =




0 0 0
0 −ciai 0
0 0 di


 , gi(x) =




0
0
1


 . Let

(x∗i1, x∗i2, x
∗
i3) be the equilibrium point of (2),

obtained from the following equations

x∗i2 = 0

−aix
∗
i2 + bi − cix

∗
i3

n=3∑

j=1

x∗j3Bij sin(x∗i1 − x∗j1) = 0

−eix
∗
i3 + di

n∑

j=1

x∗j3Bij cos(x∗i1 − x∗j1) + ũi = 0

(15)

Defining the constant excitation control ũi, it
follows that

ũi = eix
∗
i3 − di

n=3∑

j=1

x∗j3Bij cos(x∗i1 − x∗j1).(16)

Now, defining the energy function which includes
the equilibrium point of the following form

He =
n=3∑

j=1

(
1

2ci
x2

i2 −
bi

ci
(xi1 − x∗i1) +

ei

2di
(xi3 − x∗i3)

2)

+
n=3∑

i=1

(xi3

n∑

j=1

xj3Bij cos(xi1 − xj1)

+ xi3

n∑

j=1

x∗j3Bij cos(x∗i1 − x∗j1)).

Then, system (14) can be represented by the
Hamiltonian system with dissipation as




ẋi1

ẋi2

ẋi3


 =




0 ci 0
−ci −ciai 0
0 0 di


 ∂He

∂xi
+




0
0
1


 vi.

Since He is bounded from below, because of xi1 ∈
[−π, π], and ∀l > 0 the set {x : He(x) ≤
l} is compact. Thus He(x) has a strict local
minimum at (x∗i1, x∗i2, x

∗
i3). Then, a control law

which stabilizes the multi-machine power system
is given by ui = ũi + vi, where

vi =−fig
T
i

∂He

∂xi

=−fi(−
n=3∑

j=1

Bij [xj3 cos(xi1 − xj1)

− x∗j3 cos(x∗i1 − x∗j1)] +
ei

di
(xi3 − x∗i3))

=−fi{Idi +
ei

di
xi3

+
1
di

(di

n=3∑

j=1

Bijx
∗
j3 cos(x∗i1 − x∗j1)− eix

∗
i3)}

=−fi{Idi +
ei

di
xi3 − 1

di
ũi}

where ũi = eix
∗
i3 − di

∑n=3
j=1 x∗j3Bij cos(x∗i1 − x∗j1).

This control law is determined in advance in terms
of the desired operational point. Now, using Eqi =
E′

qi
+ (Xdi −X ′

di
)Iqi , and di = (Xdi −X ′

di
)/T ′di

,

ei = 1/T ′di
, it follows that ei

di
= 1

(Xdi
−X′

di
) . Finally,

the controller can be expressed only in terms of
local measurable signals:

u = ũi − fi{ 1
(Xdi −X ′

di
)
Eqi −

1
di

ũi}

= ũi +
fi

di
ũi − fi

(Xdi −X ′
di

)
(Vti +

QeiXdi

Vti

)

where Eqi = Vti + Qei
Xdi

Vti
. Consequently, the

resulting controller is a decentralized static output
feedback.

6. SIMULATION RESULTS

The numerical values of the generator parameters
(in per unit) were D1 = 5, D2 = 3, X ′

d1
= 0.252,

X ′
d2

= 0.319, Xd1 = 1.863, Xd2 = 2.36, H1 = 1,
H2 = 2, T ′d1

= 6.9, T ′d2
= 7.96, Ef1 = 1.3, Pm1 =

0.35, Pm2 = 0.35 and ωs = 377. B12 = 0.56, B13 =
0.53, B23 = 0.6. With this parameter choice, the
stable equilibrium state of the generator is

x∗11 = 0.6654, x∗12 = 0, x∗13 = 1.03

x∗12 = 0.6425, x∗22 = 0, x∗23 = 1.01.

The initial value of the states variables were:



x11(0) = 0.8, x12(0) = 0.3, x13(0) = 1.5,

x12(0) = 0.5, x22(0) = 0.3, x23(0) = 0.5.

The controller parameters were chosen as: Control
1: s11 = 1, s12 = 2, s13 = 10, L1 = 2. Con-
trol 2: s21 = 1, s22 = 2, s23 = 10, L2 = 2.
The closed-loop responses obtained for the in-
ternal states of generator 1 are shown in figures
2-4 (due to the lack of place, state behavior of
generator 2 is not displayed, but the conclusions
are similar). It can be seen that the sliding mode
controller 2 can provide some better transient
performances than sliding mode controller 1. The
Hamiltonian controller of (Sun, 2001) provides the
less performing responses, regarding both over-
shoot and response time.

7. CONCLUSIONS

A nonlinear control strategy based on a so-called
continuous sliding mode design for a class of non-
linear systems has been developed and success-
fully applied to electrical power system control.
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