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Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic

P. O. Box 18, 182 08 Prague, Czech Republic
e-mail:guy@ieee.org

Abstract: Paper formulates the problem of multiobjective probabilistic mixture
control design and proposes its general solution with both system model and
target represented by finite probabilistic mixtures. A complete feasible algorithmic
solution for mixtures with components formed by normal auto-regression models
with external variable is provided. Copyright c©2005 IFAC

Keywords: Multiobjective control, probabilistic models, decision making

1. INTRODUCTION

The growing complexity of control problems, ac-
companied by increasing multiple performance
criteria that should be reached simultaneously
makes a multiobjective control problem, being
particular case of multiobjective decision mak-
ing, important. Despite a lot of approaches to
multiobjective control developed (Stadler 1988),
(Toivonen 1989), (Liao & Li 2002), there is still
a lack of systematic methodology guaranteeing
satisfactory solution of the problem. Creating ef-
ficient numerical algorithms of general structure
is much complicated by the high dimensionality
and uncertainty of the modern processes to be
controlled.

The approach advocated here belongs to multi-
model framework with the controlled system de-
scribed by dynamic probabilistic mixture model
(Kárný, et al. 2003). Historical process data,
fully describing the closed-loop system behaviour
are processed by quasi-Bayes algorithm (Kárný,
et al. 2005) to build the mixture model. The
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model obtained reflects all significant operational
modes of the system, each associated with so-
called mixture component, while their weights in-
dicate the probability of occurrence of a partic-
ular mode component. The mixture description
of a system is especially useful in complex, large-
scale systems, when the system behaviour exhibits
several different modes and cannot be described
by a linear model with fixed parameters. The
underlying probabilistic extraction of information
from process data does not require a detailed
knowledge of system dynamics and thus supports
the approach’s generality.

The adopted fully probabilistic design methodol-
ogy gives interesting insight into the probabilistic
decision making problem. The approach designs
a strategy that minimises the distance of the
joint probability density function (pdf) describing
closed-loop system behaviour to a joint pdf de-
scribing desired closed-loop behaviour. Kullback-
Liebler divergence serves as a measure of the close-
ness and thus as universal quality criterion.

Algorithmic solution proposed has been obtained
for the system model and the user ideal in the
form of finite mixtures of uni-modal pdfs. This



corresponds to the situations frequently met in
practice, when there exist: i) several requirements
imposed on single data item; ii) different ideals
given by different users.

2. PRELIMINARIES

Throughout the text, x(t) stands for (x1, . . . , xt),
x∗ denotes set of possible values of a variable x
and x̊ is the number of entries in x∗. The symbol
f(xi;t), t ∈ t∗, denotes probability (density) func-
tion (p(d)f) of the ith entry of x at discrete time
t ∈ t∗ ≡ {1, . . . , t̊}, t̊ ≤ ∞. Time index follows the
semicolon in the subscript when multiple indices
are used. The symbol x′ means transposition of x.

Kullback-Leibler (KL) divergence is used as a
measure of proximity of a pair of pdfs f, g acting
on a common set x∗. Their KL divergence D(f ||g),
with the basic property D(f ||g) ≥ 0, D(f ||g) = 0
iff f = g almost everywhere, is defined by:

D(f ||g) ≡
∫

f(x) ln
(

f(x)
g(x)

)
dx. (1)

2.1 Probabilistic mixture modelling

The used probabilistic modelling operates with
joint pdf on uncertain system quantities consid-
ered. They are supposed to consist of: the ob-
served controlled system output yt; the directly
manipulated system input ut; unobserved un-
known time-invariant parameter Θ ∈ Θ∗ and a
random pointer to the active mixture component
ct ∈ c∗ ≡ {1, . . . , c̊}, c̊ < ∞.

The relation between the quantities involved is
assumed to be (approximately) described by the
mixture in the component form

f(d(̊t), c(̊t), Θ)≡Diα(κ0)
∏
t∈t∗

f(dt|φct;t−1,Θct , ct)

× αct

∏
c∈c∗

f(Θc), where (2)

f(dt|φct;t−1, Θct , ct) is parameterised component,
usually represented by uni-modal pdf of data
item dt = [yt, ut]′; the number of components c̊
is assumed to be finite and fixed;

φct;t−1 is observable state of ct-th component; the
phase form φc;t−1 ≡ [d′t−1, . . . , d

′
t−∂c

, 1]′ of the
state is considered; finite fixed orders ∂c are
assumed;

αct is constant probability of the pointer ct,
called component weight; their collection forms
probabilistic vector α ∈ α∗ ≡ {αc ≥ 0,

∑
αc = 1};

Θ is mixture parameter parameterising the model;
it is formed of the component parameters and
weights, i.e. Θ = {Θc, αc}c∈c∗ ;

f(Θc) are prior pdfs of unknown Θc ∈ Θ∗c
parameterising individual components c ∈ c∗;

Diα(κ0) ∝
∏

c∈c∗ α
κc;0−1
c is prior Dirichlet pdf

(Fergusson 1973) of the component weights,
determined by the vector statistic κ0 with non-
negative entries κc;0; α∗ is its support; the
symbol ∝ means that right hand side has to be
normalised to the unit integral to get equality.

In the closed-loop, the data items dt ≡ (d1;t, . . . , dd̊;t)
are multivariate, i.e. d̊ > 1. Using the chain rule,
the individual components can be decomposed
into parameterised factors

f(dt | φct;t−1, Θct
, ct) = (3)

=
d̊∏

i=1

f(di;t|di+1;t, . . . , dd̊;t, φct;t−1,Θct
, ct)

≡
d̊∏

i=1

f(di;t|ψict;t, Θict
, ct) with

regression vectors ψict;t = [di+1;t, . . . , dd̊;t, φ
′
ct;t−1]

′.
The decomposition allows to model jointly scalar
entries di;t, called factor outputs, and to param-
eterise factors individually. Moreover, only some
parameters Θic from Θc may be needed to de-
scribe the i-th factor in (3). The factorised de-
scription allows to treat factor outputs of a differ-
ent nature, for instance, this enables joint mod-
elling of mixed continuous and discrete data. To
simplify the presentation, the model description
at component level (2) is used below.

The model introduced is the mixture model. This
becomes obvious when the unobserved pointers to
components are excluded by marginalisation

f(dt|d(t− 1),Θ) = f(dt|φ1;t−1, . . . , φc̊;t−1,Θ) (4)

=
∑

ct∈c∗
αctf(dt|φct;t−1,Θct , ct).

The expression (4) extends usual finite mixtures
as it consists of dynamic components. It is, how-
ever, still restricted to have constant component
weights, i.e. f(ct = c|d(t − 1),Θ) = αc. The
assumption is used to get a feasible recursive esti-
mation and can be weakened so that slow changes
are admitted by employing stabilised forgetting.
The approximate recursive quasi-Bayes mixture
estimation (Kárný et al. 2005) is used. Subsequent
control design adopts certainty-equivalence strat-
egy and is based on recursively estimated model.
Thus, parameter Θ can be dropped in pdfs from
here onwards.

2.2 Mixture probabilistic control

The joint pdf f(d(̊t), c(̊t)) ≡ f(y(̊t), u(̊t), c(̊t))
characterising possible closed-loop behaviours of



the system and an input generator can be fac-
torised in the following way:

f(d(̊t), c(̊t)) =
∏
t∈t∗

f(yt|ut, d(t− 1), ct) (5)

×
∏
t∈t∗

f(ct|d(t− 1), ut)
∏
t∈t∗

f(ut|d(t− 1)).

The factors {f(yt|ut, d(t− 1), ct)}t∈t∗ are learned
during the estimation and describe observable sys-
tem reactions on the control actions ut under the
available experience reflected in the data d(t −
1) and for the fixed ct. Pdfs {f(ut|d(t− 1))}t∈t∗

describe models of the considered randomised con-
trol strategy. The factors {f(ct|ut, dt−1)}t∈t∗ rep-
resent probabilities of pointers ct to the particular
components that determine component weights of
the mixture model (2).

Control strategy designed is intended to make the
closed-loop behaviour as close as possible to a
desired one, when respecting given restrictions.
Under the adopted probabilistic modelling, a con-
trol strategy can be searched as minimiser of the
KL divergence of the joint pdf (5) from its pre-
specified ideal counterpart If(d(̊t), c(̊t)). The last
pdf is called user’s ideal or ideal and describes the
desired closed-loop behaviour and given restric-
tions. The methodology providing the solution of
the problem is known as fully probabilistic design
(Kárný et al. 2005) and is recalled in the following
Agreement.

Agreement 1. (Fully probabilistic design). The fully
probabilistic design specifies its target through an
ideal pdf

If(d(̊t), c(̊t)) = (6)∏
t∈t∗

If(yt|ut, ct, d(t− 1)) If(ut, ct|d(t− 1)).

The optimal strategy is selected among causal,
randomised, strategies {f(ut, ct|d(t− 1)}t∈t∗ . It is
defined as a minimiser of the KL divergence (1)
of f(d(̊t), c(̊t)) from If(d(̊t), c(̊t))

D (
f || If) ≡ (7)

∫
f(d(̊t), c(̊t)) ln

(
f(d(̊t), c(̊t))

If(d(̊t), c(̊t))

)
d(d(̊t), c(̊t)).

The general formulation of fully probabilistic de-
sign guarantees its applicability to a wide class of
problems.

While components, f(yt|ut, d(t−1), ct) (5), are ob-
tained from the estimation and should be consid-
ered as given, the remaining two factors in (5) can
be optimised and, by this, influence the closed-
loop behaviour. Dependently on which factor is
chosen for optimisation, there exist three types of

the design: academic, industrial and simultaneous.
Academic design optimises probabilities of point-
ers to particular components ct.
Industrial design optimises randomised control
strategy f(ut|d(t−1)) without changing the prob-
abilities of components. This type of design has to
be used whenever the component weights have an
objective meaning that cannot be influenced by
the optional controllers used.
Simultaneous design (Kárný et al. 2003) combines
features both academic and industrial designs.
This type of the design optimises the joint pdf
f(ut, ct|d(t− 1)) ≡ f(ct|ut, d(t− 1))f(ut|d(t− 1)).
It takes the model (4) as an approximation of a
non-linear dynamic model and searches for the
proper system inputs while respecting possible
changes of operation mode.

3. MULTIOBJECTIVE CONTROL DESIGN

Probabilistic control for the described types of
design was elaborated only for the case of uni-
modal user’s ideal (Kárný et al. 2003). The paper
extends the technique to the case when desired
closed-loop behaviour is described by a mixture.
The mixture form of user’s ideal allows to respect
different user’s demands expressed via particular
components of the ideal mixture. The designed op-
timal strategy provides the compromise between
these demands.
The simultaneous design selects the optimal pdf
within the set of causal randomised strategies:

{f(ct|ut, d(t− 1))f(ut|d(t− 1))}t∈t∗ . (8)

The optimal pdf defines such probabilities of par-
ticular components that make the resulting mix-
ture closest to the user’s ideal. Unlike uni-modal
ideal case, the suggested mixture form of user’s
ideal needs evaluation the KL divergence between
two mixtures. As this evaluation is difficult, the
divergence between two joint pdfs describing op-
timised and desired closed-loop behaviour is used
in minimisation.
The behaviour of the optimised closed-loop is de-
scribed by the joint pdf

f(d(̊t), c(̊t)) =
∏
t∈t∗

f(dt, ct|d(t− 1)) = (9)

∏
t∈t∗

f(yt|ut, d(t− 1), ct)f(ut, ct|d(t− 1)),

where f(yt|ut, d(t−1), ct) are learned components
of the system model and f(ct|ut, d(t − 1)) is a
strategy from (8).
The ideal pdf, describing the desired behaviour
of the closed-loop, is expressed through the finite
mixture of ˚̃c components:
If(d(̊t), c̃(̊t)) =

∏
t∈t∗

If(yt|d(t−1), c̃t) If(ut, c̃t|d(t−1))

(10)



with their supports nested in the following way:

supp [f(dt|d(t− 1), ct)] ⊆ supp
[

If(dt|d(t− 1), c̃t)
]
.

(11)
The first factor in (10) describes user’s wishes
and restrictions on particular components c̃ ∈ c̃∗

with respect to the system data. The number of
components ˚̃c in the ideal mixture can generally
be different from the number of components c̊
learned (2). The minimisation of KL divergence
of two joint pdfs D(f(d(̊t), c(̊t))|| If(d(̊t), c̃(̊t))) is
simplified when the numbers of components equal,
i.e. c̊ =˚̃c. To get this, Agreement 2 is used.

Agreement 2. (Extension of components number).
Let mixtures f1 and f2 have different number of
the components c̊2 > c̊1 and m = c̊2−c̊1 is missing
number of components of the mixture f1.

Then, the amount of components c̊1 of the mixture
f1 can be extended on missing number m by:

(1) ”virtual” duplication of any m components of
f1, such that the probability of each original
component is equally distributed among two
”virtually” created components;

(2) ”artificial” creation of a m new components
of mixture f1, such that each of new compo-
nents is described by a flat prior pdf with a
small weight.

A possible variant of the first way can be m-times
duplication only one of the original components.
The second choice guarantees that the inclusion
(11) holds also for the joint pdfs on (dt, ct)∗. The
first way cannot be applied to the extension of
ideal mixtures as it causes decreasing the weights
of those m components chosen for duplication.
Besides, the components of both ideal and learned
mixtures can be ordered arbitrarily, so the design
(Agreement 1) should take into account all pos-
sible permutations of the components. It means
an optimal strategy from (8) for a permutation of
components optπt̊(c(̊t)) minimising the KL diver-
gence between optimised and desired closed-loop
behaviour, will be searched for:

optf( optπt̊(c(̊t))) = min
{πt̊(c(̊t))}

(12)

arg min
{f(πt(ct|d(t−1))}

D(f(d(̊t), πt̊(c(̊t))|| If(d(̊t), c(̊t))).

Assuming a fixed, time-invariant permutation of
the components πt+1(ct) = πt(ct) = π(ct), the
solution of the addressed fully probabilistic design
(Agreement 1) is described by the proposition:

Proposition 1. Solution fully probabilistic de-
sign with multimodal target and fixed π(ct)
The optimal strategy minimising the KL diver-
gence (1) has the following form (γ(d(̊t)) = 1):

f(π(ct), ut|(t− 1)) = If(ct|ut, d(t− 1))

× If(ut|d(t− 1))
exp[−ωγ(π(ct), ut, d(t− 1))]

γ(d(t− 1))
,

γ(d(t− 1)) ≡
∑

ct∈c∗

If(ct|ut, d(t− 1)) If(ut|d(t− 1))

× exp[− ωγ(π(ct), ut, d(t− 1))]

ωγ(π(ct), ut, d(t− 1)) ≡
∫

f(yt|ut, π(ct), d(t− 1))

× ln
(

f(yt|ut, π(ct), d(t− 1))
γ(d(t)) If(yt|ct, d(t− 1))

)
dyt

The solution is performed against the time course,
starting at t = t̊.
Proof: is similar to that for the uni-modal target,
see (Kárný et al. 2005).♦

Time-invariant permutation of components corre-
sponds to a frequently met real situation, when
particular components describe known operation
modes or physical states of the system consid-
ered. Then the permutation is defined by physical
properties of the system and should be taken as
given. If the permutation varies with time, an
additional minimisation over possible component
permutations is to be performed, see (12).
The exact evaluation of the KL divergence and
thus, direct practical application of Proposition
1, is problematic as the reached minimum has the
mixture form. The feasible variant of the design
is then obtained when Jensen upper bound of
it is used (Rao 1987) and the upper bound KL
divergence is minimised.

4. CONTROL DESIGN FOR MIXTURES OF
NORMAL ARX MODELS

The solution is applied to the mixtures of normal
auto-regression models with exogenous variables
(ARX). Models from this class can be easily
identified (Peterka 1981), (Kárný et al. 2005) and
they represent one of a few classes suitable for a
numerical solution of large dimensional problems.
The system is modelled by a mixture with normal
components

f(dt|d(t− 1), Θc, c) = Ndt(θ
′
cφc;t−1, rc), (13)

where Nx(x̄, r) ≡ |2πr|−0.5 exp
[−0.5(x− x̄)′r−1

(x− x̄)]; parameters Θc = [θc, rc]′ consist of
matrix regression coefficients θc and covariance
matrix rc. The state vector φc;t−1 contains the
delayed data items φc;t−1 = [d′(t−1) (t−∂c)

, 1]′, ∂c ≥
0. The regression coefficients are complemented
by zeros so that all factors within a single compo-
nent have a common state vector. The regression
vectors of individual factors are nested in the
following way:

ψi;t ≡ [d′
i+1 d̊;t

, φ′t−1]
′ ≡ [di+1;t; ψ′i+1;t]

′



ψd̊;t ≡ φt−1 ≡ [d′(t−1) (t−∂), 1]′, ∂ ≥ 0, (14)

ψ0;t ≡Ψt ≡ [d′t (t−∂), 1]′, i = 1, . . . , d̊− 1.

The closed-loop model in the factor form is

f(d(̊t), c(̊t)) =
∏
t∈t∗

d̊∏

i=1

Ndic;t(θ
′
icψic;t, ric)f(ct|ut, d(t−1)).

The parameterised factors of the ideal mixture
are also supposed to be normal with parameters
IΘc = [ Iθc,

Irc]′ consisting of matrix regression
coefficients Iθc and covariance matrix Irc:

If(dt|d(t− 1), IΘc, c) = Ndt
( Iθ

′
cφc;t−1,

Irc),
(15)

then the desired closed-loop behaviour reads:
If(d(̊t), c(̊t)) =

∏
t∈t∗

d̊∏
1

Ndic;t(
Iθ′icψic;t,

Iric) If(ct|ut, d(t− 1)).

The algorithmic realisation of the solution is based
on factorised form of the components. Detailed
description and proofs for the case of uni-modal
target are given in (Kárný et al. 2005). An al-
gorithmic solution of the simultaneous design for
the normal mixtures and for a fixed permutation
of the components is summarised in the following
algorithm.

Algorithm 1. Simultaneous fully probabilis-
tic design with multimodal user’s ideal ap-
plied to ARX mixtures.
The optimal strategy minimising upper bound
of KL divergence with models (13) and (15) is
described by the pdfs

If(ct, ut|φt−1) ∝ Uf(ct) exp [−0.5ωγ(ct, φt−1)]

× If(ut|φt−1, ct)
ωγ(ct, φt−1) ≡kct;t−1+

φ′t−1Lct;t−1Dct;t−1L
′
ct;t−1φt−1

If(ut|φt−1, ct) ≡
d̊∏

i=ẙ+1

Nu(i−ẙ);t

(
Iθ′ict;t−1ψi;t,

Irict;t−1

)
.

The solution is performed against time course,
starting at Lγ ;̊t = Iφ̊, Dγ ;̊t = 0, kγ ;̊t = 0.

For t = t̊, . . ., 1

Ld̊ = Id̊, Dd̊ = 0

For c = 1, . . ., c̊

k0c = −d̊c + kγ;t,

L0c =




ψ0Lγ;t 0 0
0 Ld̊;t 0

ψkLγ;t 0 1




D0c = diag
[

ψ0Dγ;t, Dd̊;t,
ψkDγ;t

]

nor = 0

For i = 1, . . ., ẙ

LicDicL
′
ic = ψi−1L(i−1)c

ψi−1D(i−1)c
ψi−1

L′(i−1)c +
(
θic + dψL(i−1)c

)
dD(i−1)c

(
θic + dψL(i−1)c

)′
+

(
θic − Iθic

) (
θic − Iθic

)′
Iric

kic = k(i−1)c + dD(i−1)cric

+
[
ln

(
Iric

ric

)
+

ric

Iric

]

end of the cycle over i

For i = ẙ + 1, . . ., d̊

LicDicL
′
ic = ψi−1L(i−1)c

ψi−1D(i−1)c

ψi−1L′(i−1)c +
(
θic + dψL(i−1)c

)
dD(i−1)c

(
θic + dψL(i−1)c

)′

Lic =
[

1 0
− Iθic;t−1 L(i+1)c

]

D̃ic = diag
[

Ir−1
ic;t−1, Dic

]
, Iric;t−1 is scalar,

kic = k(i−1)c + dD(i−1)cric +
[
ln

(
Iric

ric

)

+
ric

Iric

]

end of the cycle over i

kc;t−1 = kd̊c

Lc;t−1Dc;t−1L
′
c;t−1 = Ld̊cDd̊cL

′
d̊c

βc = If(c) exp[−0.5kc;t−1], nor = nor + βc

end of the cycle over c

Lγ;t−1 = Iφ̊, Dγ;t−1 = 0, kγ;t−1 = 0

For c = 1, . . ., c̊

Lγ;t−1Dγ;t−1L
′
γ;t−1 = Lγ;t−1Dγ;t−1L

′
γ;t−1 +

βc

nor
Lc;t−1Dc;t−1L

′
c;t−1

kγ;t−1 = kγ;t−1 +
βc

nor
kc;t−1

end of the cycle over c

end of the cycle over t.

Remarks 1:
• For a known state vector φt−1, it is possible to
evaluate the achieved minimum asD(f(c)|| If(c))+
exp

[−0.5
(
kγ;t + φ′t−1Lγ;t−1Dγ;t−1L

′
γ;t−1φt−1

)]
and

compare quality of various permutations. It is
always possible for static systems with φt−1 = 1.
Otherwise approximation of the future unknown
states by the current known one is possible.
• The total number of such permutations is c̊!.
• Usually, the number of components is not very
high. In rare cases when c̊ is big enough, the
incomplete search for the maximum should be
performed.
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Fig. 1. Projections of mixtures.

5. ILLUSTRATIVE EXAMPLE

The data describing system with two data items
dt = (d1;t, d2;t) have been simulated. Mixture with
three normal components (13) served as system
model. The factors fi, i = {1, . . . , 6} entering
components and corresponding to the particular
data items are also normal Ndi

(x̄, r) with mean
values x̄ and variances r, see Table 1.

Table 1. System mixture

ci first factor second factor

1 f1 ∝ N (1.0 ∗ d2;t, 0.12) f4 ∝ N (0.0, 0.12)
2 f2 ∝ N (0.5 ∗ d2;t, 0.07) f5 ∝ N (0.0, 0.15)
3 f3 ∝ N (0.7 ∗ d2;t, 0.20) f6 ∝ N (1.0, 0.07)

Probabilities of pointers to the particular compo-
nents are set to be equal f(c) = [1/3, 1/3, 1/3], for
the components ordering c = {1 2 3}. The user’s
ideal has been chosen also in a mixture form but
with different components ordering, see Table 2.

Table 2. User’s ideal mixture

ci first factor second factor

1 If3 ∝ N (2.0, 0.15) If6 ∝ N (0, 1000.0)
2 If1 ∝ N (1.0, 0.10) If4 ∝ N (0, 1000.0)
3 If2 ∝ N (1.5, 0.05) If5 ∝ N (0, 1000.0)

Probabilities of pointers to the particular com-
ponents of the user’s ideal (Table 2) are set to
If(c̃) = [1/6, 1/2, 1/3], with components ordering
c̃ = {1 2 3}. The equiprobability curves of the
system model (Table 1) and ideal mixture (Table
2) are shown on the first plot, Fig. 1. The user’s
ideal is extremely prolonged at the direction of the
second data item (note vertical lines on the plot),
which means that no value of d2 is preferred. Thus,
the designed optimised mixture (Table 3) respects
wishes and restrictions on d1, mainly.

Table 3. Optimised mixture

ci first factor second factor

1 of1 ∝ N (1.9997, .12) of4 ∝ N (1.9997, .1999)
2 of2 ∝ N (1.4990, .07) of5 ∝ N (2.9990, .1999)
3 of3 ∝ N (0.9996, .20) of6 ∝ N (1.4280, .2040)

Resulting optimised weights are: [0.1588 0.3585
0.4827], which is close to the user ideal ones
with the permutation of component [1 3 2]; The
strategy designed gives the mixture, shown on the
second plot, Fig. 1, which describes the optimised
closed-loop behaviour. The last plot contains pro-
jections of all three mixtures.

6. CONCLUDING REMARKS

The paper proposes an efficient solution of multi-
objective control design problem. The probabilis-
tic mixture modelling complemented by the fully
probabilistic control adopting certainty equiva-
lence strategy is used. To express the multi-
ple control objectives, the mixture modelling is
employed, where particular objectives are repre-
sented by uni-modal mixture components.
The solution of simultaneous design that opti-
mises joint pdfs of the system inputs and pointers
to particular components is presented. The ob-
tained solution has been transformed into com-
putationally feasible algorithm for mixtures with
components formed by normal auto-regression
models with external variable. Comparing to the
case when user ideal is described by uni-modal
pdf, this solution became more complicated both
theoretically and computationally, however, it
substantially broads the applicability of the whole
approach.
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