

ACHIEVING TRADEOFFS BETWEEN FUNCTIONALITY AND SAFETY
IN EARLY SYSTEM DESIGN

Christian Grante1, Yiannis Papadopoulos2

1Volvo Cars, Sweden, cgrante@volvocars.com
2Department of Computer Science, University of Hull, U.K., y.i.papadopoulos@hull.ac.uk

Abstract: In this paper, we propose a novel method that helps designers to form design
concepts that achieve optimal tradeoffs among functionality, cost and safety early in the
design. The method combines genetic algorithms with preliminary risk analysis and is
largely automated thus satisfying the preconditions for application in complex systems. A
Pareto multi-objective optimisation approach helps to generate a set of design concepts
that represent optimal solutions for different levels of expenditure and risk, while the final
decision on which design concepts are most promising is left to humans. Copyright ©
2005 IFAC

Keywords: risk, reliability analysis, safety critical systems, multi-objective optimization,
genetic algorithms

.

1. INTRODUCTION AND BACKGROUND

The design of a new engineering system (e.g. a car)
typically starts at a conceptual level where the
functions to be provided by the system must be
decided in the context of constraints like the cost of
components, the cost of development and the
production capabilities of a company. There are
usually a number of design possibilities that can be
translated to different concepts which could provide
different functions. Issues like potential markets,
volumes, costs, reliability or safety requirements and
ultimately the potential for profit have to be
addressed for a concept to be translated into a
successful design. Typically, satisfaction of most
constraints is required; however the motivation for
proceeding further with a design concept is usually
the potential for profit measured absolutely or more
commonly as return on investment.

There is often a wealth of information from past
experience or competitor products upon which the
decision about the potential of a new design could be
evaluated. Such information typically includes
knowledge of desirable functions, of the value that
customers are prepared to pay for those functions,

the components that are likely to be needed to deliver
such functions and in many case reliability data about
components. In practice, however, it is not always
obvious how this diverse information can be used to
decide which combination of functions and
components should be selected for the new design.
This is especially true when there are a vast number
of viable combinations of functions and components,
because a decision on which combination is best
would require evaluation of all those design options
using, for example, simple or more complex
calculations of profit, cost and perhaps reliability or
risk. Realistically, however, and for pragmatic
designs which may have hundreds of functions and
thousands of components, exhaustive evaluation of
all options is impossible even if the simplest
calculations were adopted. This is especially true in
designs for complex distributed systems where
functions can be allocated in many different ways on
components of the architecture resulting to a plethora
of different design concepts.

To address this problem, in this paper we present a
method that provides automated support to designers
in the difficult task of arriving at an optimal design

concept for a complex system at early stages of the
design. The term design concept is used here to
describe a set of functions delivered by the system
and a set of components that represent the technical
implementations1 of these functions. An optimal
design concept is one that provides maximum
potential for profit and can be achieved within
budget whilst leading to an implementation that
offers acceptable levels of safety. Such design
concepts would clearly be desirable representing
potentially feasible and socially acceptable business
opportunities in which it would be worth investing.

2. OUTLINE OF METHOD

In the proposed approach, the design of a new
engineering system starts with the construction of a
list of functions considered for inclusion in the new
system. For a system that provides active safety
functions in a passenger car, for instance, such
functions would include antilock braking, traction
control, emergency brake assistance, and vehicle
stability control. In the proposed method, the
following information should be established for each
function potentially included in the system:

• an estimate of the extra value that customers

would be prepared to pay for inclusion of this
function

• the technical implementation of the function,
i.e. a set of components needed to deliver the
function

Note that in our approach, each component can
participate in more than one technical
implementation. The relationship between functions
and components must therefore be established and
provided as an input in the form of a matrix that
relates functions to sets of components (i.e. their
technical implementations). For each component
potentially employed by a function, the cost and
average failure frequency must also be established
and provided as input to the optimisation process.
We hope that this requirement would not pose a
problem in practice, as large companies are
reasonably expected to maintain cost and reliability
databases that are already useful in existing
applications.

The set of all candidate functions considered for a
new design obviously engages all candidate
components and therefore represents the most
expensive (and functionally powerful) potential
design solution. Each subset of these functions
represents a less complete and less expensive
specification for the system under design. Given that
data about the value of functions and the cost &
reliability of components is available, then the
potential profit, cost and level of safety associated
with each potential design solution can be calculated
as follows:

1 For the purposes of this paper, the term technical
implementation is used to describe the set of
components needed for the delivery of the function

• Cost can be calculated as the sum of costs of
components participating in all technical
implementations of the included functions.

• Profit can be calculated as the sum of function
values minus the overall cost of components.

• An indication of the safety offered by each design
solution can be given by a preliminary calculation
of risk2. Risk can, in turn, be estimated as the
sum, calculated over all functions in a design
solution, of the severity of functional failure
multiplied by the failure frequency of the
respective technical implementation.

Assuming that data is available to perform the above
calculations, the problem that we try to address can
then be seen as one of identifying which design
solution provides optimal values for the above
calculations of cost, profit and risk. One approach to
this problem would be to exhaustively enumerate all
potential design solutions (representing different
combinations of functions) and for each solution
perform the above calculations. However, if we were
to adopt this approach, we would encounter a
classical problem of combinatorial explosion, which
in practice means that for a modestly large number of
functions the number of design solutions and
consequent calculations is too large to contemplate.

To overcome this difficulty, we opted to apply
evolutionary search and optimisation techniques. We
developed a genetic algorithm which performs a
systematic, but selective search for those potential
design solutions (i.e. configurations of functions and
components) that optimise profit within given cost
constraints and risk requirements. The algorithm
simultaneously generates several solutions by
carrying out an iterative multidirectional search. In
the course of this search, the genetic algorithm
calculates the fitness of candidate designs in terms of
profit, cost and risk and then ranks potential solutions
according to their “degree of dominance” (Fonseca
and Fleming, 1998) thus forming and progressively
improving a “Pareto front” of optimal solutions (see
section 4 for details).

In the context of the problem that we examine, this
type of multidirectional search provides the essential
flexibility required in the final decision making.
Theoretically optimal (in terms of profit, cost and
risk) solutions, for example, may be impractical
because they imply awkward physical arrangements
of components. In such cases, suboptimal solutions
may be preferable. In a different scenario, solutions
may be theoretically better than others because they
achieve higher profit within the same cost constraint.
However, the extra profit may be achieved at
significant extra cost in which case less profitable
designs may be preferable as they achieve a better
ratio of profit over cost. Precisely because such
decisions are very difficult, rather than prescribing a

2 Safety can indeed be defined as “freedom from
unacceptable risk”, see for example (CENELEC,
1999)

single optimal solution, the proposed method
generates several solutions and leaves the final
judgements to humans.

A precise mathematical formulation of the problem
and a more detailed presentation of the optimisation
algorithms follow which, we hope, provide a more
thorough exposition of the proposed approach.

3. MATHEMATICAL FORMULATION

To represent the problem more formally, a matrix
notation was developed drawing from earlier work
by Suh (2001) in axiomatic design and Grante and
Andersson (2003) in design optimisation. In this
notation, functions delivered by the system under
design are represented in a function vector F and
components in a component vector C. A realisation
vector rvi defines the technical implementation of
function Fi. Each element of the realisation vector
declares the presence or not of a component in the
technical implementation and can have the value of
one – indicating that the corresponding component is
needed – or zero indicating that the component is not
needed. The realisation vectors for all customer
functions,

 mi K1=rv ,

together form the realisation matrix RM. Thus the
problem can be described according to equation (i),

 CRMF ⋅= (i)

i.e.,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nmm C

C

F

F

L

L

L

L

L

L
111

rv

rv

where m is the number of potential functions and n
the number of components. The function vector
differs from the component vector in that the
component vector may have alternative
implementations of components, for example
variants provided by different manufacturers.

Each combination of components yields one possible
solution to the problem. For a problem with n
components and an average of d alternative
implementations for each component there are 2(n*d)
different possible solutions (note the combinatorial
explosion). A particular solution, X, is expressed by
a vector

 []1 2, ,.... nx x x=X ,

where xi is either zero indicating that the component
is not part of the design solution or a natural number
between 1 and dTIi indicating which implementation
of component is part of the solution. In order to
calculate the value that customers will be prepared to
pay for a specific solution, the functions that could

be possibly realised using the components included
in a solution must be determined. The function
realisation vector, W, represents this. W is calculated
according to equation (ii).

 ()

1

...

...

m

w

w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

W X

 where

 ⎥
⎦

⎥
⎢
⎣

⎢
⋅

⋅⋅
= T

i
T

TT
i

i
diagindiag

w
rv1

XXrv
X

)(
)((ii)

Where diagXT is a diagonal matrix with the elements
of XT in the diagonal and diaginXT is a diagonal
matrix with the elements of XT which are not zero
inverted in the diagonal. Thus,

 TT diagindiag XX ⋅

is a vector that contains ones and zeros, where one
indicates that a component is a part of the solution
and a zero that it is not. The notation

 a⎢ ⎥⎣ ⎦

denotes the largest integer that is less than or equal to
a. The number of components used by function i that
are included in solution X is represented by

)(TT
i diagindiag XXrv ⋅⋅ .

This number is divided by the number of all
components needed to implement function i, i.e.

 T
i

T rv1 ⋅ ,

where 1T is a vector of one. If X contains all
components needed by Fi this quotient equals 1,
otherwise it is less than one. Equation (ii) thus
returns 1 only for functions that are implemented by
X. The total value, tv, of a solution is calculated by
adding the values of all functions that can be realised
by solution X, i.e.

 VXWX ⋅= Ttv)()((iii)

where V is the vector containing the values that
customers are prepared to pay for functions 1..m
respectively, i.e.,

 []1 2, ,...,T
mv v v=V .

The cost of implementing each component is
represented by the cost-implementation matrix CIM,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nanaa

n

n

ccc

ccc
ccc

L

MOMM

L

L

2211

22212

12111

CIM

where each component cost (cij) contains the
development, material and production costs. Note
that each component n may have up to an different
implementations. CIM is therefore a representation
of the costs involved in these alternative
implementations. The total cost c of solution X is
obtained by adding the cost of the selected
implementations for components participating in X
(components for which xi =1). In this simplified
model, profit, p, is expressed as the value that the
customer is prepared to pay for a particular design
solution minus the cost of developing and producing
it; see equation (iv).

 () () ()p tv c= −X X X (iv)

The optimisation problem can thus be described as
finding the set of components, X, that maximises
profit p(X) without exceeding the development
budget. To introduce safety as a parameter in the
optimisation, we also employ the commonly used
definition of safety as “freedom from unacceptable
risk” and introduce risk calculations into the model.
Risk is defined as a combination of the consequence
(s) and the frequency (f) of an unplanned,
undesirable event. According to Thomson (Thomson,
1987) but also the CENELEC railway safety
standards (CENELEC, 1999), risk is the product of
consequence and frequency, i.e.

 s f risk ×= (v)

Since several events can occur, the risk is the sum of
all events, and for n events the risk is calculated
according to equation (vi).

() ()∑ ×=
n

i ii kfrisk (vi)

A product introduced on the market has to be safe,
i.e. must only entail an acceptable level of risk. Thus,
in order to evaluate the risk of a potential design
solution, additional data must be included in the
model. The first such data is the consequence vector

 []m, ., h, hh …= 21 H ,

which contains a quantified indication of the severity
of failure of each function. For guidelines on how to
interpret qualitative severity classes (marginal,
critical, catastrophic) into quantitative indices the
reader is referred to the CENELEC standards
(CENELEC,1999)

The second additional input required to enable risk
calculations is the matrix,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nanaa

n

n

fff

fff
fff

L

MOMM

L

L

2211

22212

12111

FM

that contains the frequency of malfunction of
component implementations, which is similar in
structure to the cost-implementation matrix CIM.

The main difficulty in performing preliminary risk
assessment so early in the design is that it must be
done in the absence of a system architecture. This is
inevitable, though, since the aim is precisely to
establish which functions the design should include,
and from this to proceed in the development of an
architecture. Without knowledge about how
components are connected, however, risk cannot be
calculated. For the purposes of this analysis, a
conservative series architecture is always assumed in
which functions fail if any single component in their
technical implementation fails. We should note that
although this is a conservative assumption, it often
gives a fair estimation of the actual behaviour of
functions when they are eventually realised in
systems. If fault tolerance is already planned at this
early stage, fault tolerant schemes will have to be
represented as single components with the reduced
failure frequency that they achieve directly entered in
the frequency matrix FM. From the data specified
above, and using classical reliability theory, the
failure frequency of each function ffi, can be
calculated according to equation (vii).

 ∏
=

∀−−=
n

j
ji jfff

1

),1(1 (vii)

where fj is the failure frequency of the selected
implementation of each component. If the component
does not participate in the design solution (xi = 0)
then fi is zero. A function frequency vector can now
be created to include the failure frequencies of all
functions according to (viii).

 []mffffff ,,, 21 K=FF (viii)

The level of risk associated with each function, cfri,
is obtained by multiplying the frequency of
malfunction with the severity of consequence:

 iii ffhfr ⋅= (ix)

A new vector of function risk FR can now be
obtained according to (x), where diag(H) represents a
diagonal matrix with the elements of H in the
diagonal.

 FFHFR ⋅=)(diag (x)

Finally, the total risk, r, of a design concept is
calculated as the sum of all risks associated with the
functions included in this concept. Thus r is
calculated by multiplying the customer function risk
vector with the function realisation vector W(X), see
equation (xi).

)()()(XWFRX ⋅= TXr (xi)

This equation can be used for prediction of the likely
risk associated with a potential design solution.

4. EVALUATION USING OPTIMISATION

Assuming that input data is provided for functions
and components according to the specification of
section 3, the problem is then formulated as one of
multiple-objective optimisation. The objectives are to
maximise the likely profit of a design concept and
simultaneously minimise cost and risk as specified
below:

[]
},,2,1{,10

,,, s.t.

)(min

 min

max

21

nix
xxx

r

)c(

) p(

i

n

X

X

X

K

K

∀∨=
=X

X

X

X

 (xii)

Beyond the above formulation of the problem as
multi-objective optimisation, we also opted for a
multi-directed search in which the optimisation
algorithm is looking not for a single optimal solution
but for a set of Pareto optimal solutions also known
as non-dominated solutions. In Pareto optimisation a
solution is said to dominate another if it is better in
all objectives. Thus, if we consider a minimisation
problem with k objectives and two solution vectors, x
and y, then x is said to dominate y, denoted yx f ,
if:
 { } () ()yx ii ffki ≤∈∀ :,...,2,1 and

 { } () ()yx jj ffkj <∈∃ :,...,2,1 (xiii)

Equation (xiii) implies that x dominates y if x is as
good as y in all objectives, and that there is at least
one objective in which x is better. Using this concept
of non-dominated solutions, our approach yields a set
of design solutions that provide higher potential for
profit for different levels of expenditure and risk.
The result of this optimisation can be graphically
visualised as a Pareto front which shows trade-offs
between profit, cost and risk, i.e. how maximum
profit increases as cost and safety constraints are
decreased in various configurations and vice versa.

The combination of a Pareto approach with genetic
algorithms has previously been shown to work well
on similar engineering design problems, see
(Andersson, 2001), and was, therefore, also adopted
in this work. To address the given optimisation
problem, first it was necessary to model potential
design solutions as genetic material (chromosomes)
that can be meaningfully manipulated by a genetic
algorithm. For this purpose, a string of natural
numbers with the same length as the number of
available components was used to represent each
potential design solution. The value of each number
in the string is 0 when the corresponding component
does not participate in the design solution or a
positive integer that corresponds to the variant of the
implementation of the component employed in the
solution.

We also developed a genetic algorithm which applies
an evolutionary optimisation process on this type of
genetic material. In the course of that process, the
algorithm first creates a number of random
chromosomes each representing a potential design
solution that employs some of the candidate
functions and components. The algorithm then
calculates the fitness of each individual in this
population of individual solutions using the
mathematical model presented in section 3. One
difficulty here is that, in Pareto optimisation, there is
no single objective function to determine the fitness
of different individuals. Therefore, the relative
ranking scheme presented by Fonseca and Fleming
(Fonseca and Fleming, 1998) is used to rank
individuals according to their “degree of dominance”
which for each individual equals the number of
individuals that is dominated by, plus one. In this
approach, design concepts with a degree of
dominance equal to one are effectively non-
dominated solutions which lie on the Pareto front,
and therefore represent the fittest designs in a given
population of candidate design solutions.

To progressive improve this Pareto front in the
course of the evolutionary optimisation, the genetic
algorithm creates new generations of candidate
design solutions using an implementation of a
recently proposed algorithm (Anderson and Wallace,
2002). In this algorithm, parents are chosen from the
two most recent generations of candidate designs and
then basic genetic mixing and modification
mechanisms such as one-point crossover and flip
mutation are performed to create children. For each
child, the most genetically similar individual in the
entire population is then identified and the fitness of
this individual is compared with that of the child. If
the child is fitter it replaces the older individual in the
population.

There is evidence that this replacement strategy
counteracts genetic drift that can confine population
diversity and lead to inbreeding. Poor diversity in
practice means that the population is clustered at the
extremes of the Pareto front, which means that trade-
offs that could be achieved in the middle area are not
clearly identified. Note that in classical genetic
algorithm optimisation, the population of a genetic
algorithm usually converges to a single optimal point
[Goldberg, 1989]. However, using the concept of
dominance it is possible to adjust the algorithm so
that it spreads the population effectively over the
entire Pareto front, thus helping to identify tradeoffs
among the different parameters of the optimisation.

5. RESULTS

The method has been tested in Volvo Cars on a case
study which included 52 active safety functions
supported by 48 components for a new vehicle
model. This configuration could result in more than
70 billion possible design concepts. Manual
evaluation of all those concepts with regards to cost,
profit and risk would have certainly been impossible.
However, with the aid of the optimisation tool, it was

possible to arrive at a smaller set of concepts that
potentially maximised profit within given cost and
risk constraints. A number of interesting conclusions
can be drawn from this study.

Firstly, the study showed that the functionality (i.e.
the value for customers) and potential profit of the
system almost doubled when the optimisation
approach was used as a replacement of the traditional
manual approach to development and selection of
new design concepts.

Secondly, when only cost and profit criteria were
used in the optimisation process many optimal
concepts entailed an unacceptable level of risk (see
the concepts in Fig.1 marked as circles). If these
design concepts were allowed to be further
developed, their design would almost certainly have
been revisited at a later stage to address the problem
of high risk.

Profit

R
is

k

Safe

Unsafe

Profit

R
is

k

Safe

Unsafe

Fig. 1. Risk of design concepts before (o) and after

(x) the design iteration aided by the tool.

However, by introducing risk as a parameter in the
optimisation process and by iterating the method we
were able to identify and correct design weaknesses
early in the design. Such weaknesses included key
components that consistently contributed to a
substantial increase of risk across the design space.
By replacing these components with more reliable
equivalents a significant risk reduction was achieved
in almost all concepts (crosses in Fig.1). The
consequent shift of the Pareto front in the area of
acceptable risk is illustrated in Fig.1.

6. CONCLUSIONS

There is presently a lack of methods to support the
development and optimisation of abstract design
concepts for new systems. As systems become more
complex, especially distributed systems, the absence
of such support becomes increasingly problematic.

In this paper, we presented a method that provides
automated support in the optimisation of abstract
designs with respect to a number of objectives that
include cost, profit and risk. A mathematical
framework was presented which models the
relationships between functions and their technical
implementations. Based on this framework, the
problem of developing abstract design concepts was

formulated as a multi-objective optimisation
problem, i.e. one of maximising profit while keeping
to a restricted development budget and creating a
product that entails only acceptable levels of risk.

An optimisation tool was developed, and, with the
aid of this tool, the method was evaluated in a case
study on active safety systems, performed by Volvo
Car Corporation. A main result from this study is a
Pareto front of optimal design solutions for an active
safety system that explores potential trade-offs
between profit, cost and risk in various
configurations for this system. The study has shown
that the proposed method could double the customer
value and company returns for given levels of
expenditure. It also demonstrated the potential of the
method for initiating useful design iterations driven
by risk criteria at very early stages of the design.

By using this approach, we hope that some aspects of
early design can be improved. At the same time, we
currently extend this work by developing a concept
for application to more refined architectural models
produced at later stages of the design (Papadopoulos
and Grante, 2004). The potential benefits from
further extension of these techniques are substantial
and include further rationalisation of the design
process, fewer late design changes, improved value
for customers and potentially higher returns for
producers.

REFERENCES

Andersson, J. (2001). Multiobjective Optimization in

Engineering Design, Dissertation, Department of
Mechanical Engineering, Linköping University,
Linköping.

Andersson, J. and D. Wallace (2002). Pareto Optimi-
zation Using the Struggle Genetic Crowding
Algorithm, Engineering Optimization 34 (6):623-
643.

CENELEC (1999). Railway applications: The Speci-
fication and Demonstration of Dependability,
Reliability, Availability, Maintainability and
Safety, EN-50126, European Committee for
Electro-technical Standardisation.

Grante, C. and J. Andersson (2003). Optimisation of
Design Specifications for Mechatronic Systems,
Research in Engineering Design, 14 (4):224-235.

Goldberg, D.E. (1989). Genetic Algorithm in Search
and Machine Learning, Addison Wesley.

Fonseca, C. and P. Fleming (1998). Multi-objective
Optimization and Multiple Constraint Handling
with Evolutionary Algorithms, IEEE Trans. on
Systems, Man, & Cybernetics, 28:26-37.

Papadopoulos, Y. and C. Grante (2004). An
Evolutionary Process for the Design of Safe
Computer-based Systems, INCOM 2004, Salva-
dor, Brasil.

Suh, N. (2001). Axiomatic Design Advances and
Applications, Oxford University Press, New
York.

Thomson, J.R. (1987). Engineering Safety Assess-
ments, Longman Scientific & Technical,
Longman Group UK Limited.

