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Abstract: This paper is concerned with iterative learning control of Hamiltonian
systems with nonholonomic constraints. The author has proposed a novel iterative
learning control method based on the symmetric property of Hamiltonian control
systems. This paper shows its application to a four-wheeled vehicle for which
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demonstrates the effectiveness of the proposed method. Copyright c©2005 IFAC
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1. INTRODUCTION

In research area on control of physical systems,
most of the existing results focus on feedback
stabilization and related topics such as trajectory
tracking control, output feedback control and so
on. On the other hand, it is also an important task
to generate an appropriate feedforward input for
a designed control system. Usually such a prob-
lem is formulated by an optimal control problem,
see e.g. (Young, 1969), and solved numerically
by optimization based iteration algorithm. This
algorithm requires the precise information of the
plant system to be controlled and it is sensitive
to unknown modeling errors. Since some of the
feedback control methods stated above derive con-

trol systems which are robustly stable against
unknown modeling errors (parameter variations),
a robust feedforward input generation algorithm
is needed.

Iterative learning control method proposed in
(Arimoto et al., 1984) is an algorithm to gen-
erate a feedforward input achieving a trajectory
tracking control (on a finite time interval) with-
out using the precise information of the system.
See also, e.g. (Sugie and Ono, 1991; Kurek and
Zaremba, 1993; Xu et al., 1999; Hamamoto and
Sugie, 1999; Ghosh and Paden, 2000). Since this
algorithm does not require the precise model of
the plant system, it is robust against modeling er-
rors. So far, however, this algorithm was only ap-
plicable to trajectory tracking control problems.



Recently, the authors proposed a novel iterative
learning control method based on the symmetric
properties of Hamiltonian systems (Fujimoto and
Sugie, 2002b; Fujimoto and Sugie, 2002a; Fuji-
moto et al., 2002). In this result, it is proved
that the variational systems of Hamiltonian sys-
tems are symmetric and this property can be
utilized for executing the iterative algorithm for
optimal control problems. Furthermore, this pro-
cedure is generalized to non-canonical Hamilto-
nian systems, that is, Hamiltonian systems with
nonholonomic velocity constraints. But this pro-
cedure requires a restrictive assumption and we
need to employ an approximation to apply this
method to systems in the real world.

The present paper evaluates the effectiveness of
our preliminary result by employing an appro-
priate approximation. The proposed method is
applied to a four-wheeled vehicle system which is
a typical example of real world nonholonomic sys-
tems. Moreover, some simulation of the wheeled
vehicle demonstrate the advantage of the pro-
posed method.

2. PRELIMINARIES

2.1 Optimal control of Hamiltonian systems via
iterative learning

This section briefly refers to some preliminary
backgrounds.

Symmetric properties Our target system is a
Hamiltonian system with dissipation Σ with a
controlled Hamiltonian H(x, u, t) as (x1, y) =
Σ(x0, u) :


ẋ = (J − R)

∂H(x, u, t)
∂x

T

, x(t0) = x0

y = −∂H(x, u, t)
∂u

T

x1 = x(t1)

. (1)

Here the structure matrix J ∈ Rn×n and the
dissipation matrix R ∈ Rn×n are skew-symmetric
and symmetric positive semi-definite, respectively.
The matrix R represents dissipative elements such
as friction of mechanical systems and resistance
of electric circuits. For this system, the following
theorem holds.

Theorem 1. (Fujimoto and Sugie, 2003) Consider
the Hamiltonian system with dissipation and the
controlled Hamiltonian Σ in (1). Suppose that
J and R are constant and that there exists a
nonsingular matrix T ∈ Rn×n satisfying

J =−TJ T−1 R = TR T−1

∂2H(x, u, t)
∂(x, u)2

=
(
T 0
0 I

)
∂2H(x, u, t)

∂(x, u)2

(
T 0
0 I

)−1

.
(2)

Then the Fréchet derivative of Σ is described
by another linear Hamiltonian system (x1

v, yv) =
dΣ((x0, u), (x0

v, uv)) :

ẋ=(J − R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

ẋv=(J − R)
∂Hv(x, u, xv, uv, t)

∂xv

T

,xv(t0) = x0
v

yv=−
∂Hv(x, u, xv, uv, t)

∂uv

T

x1
v=xv(t1)

with a controlled Hamiltonian Hv(x, u, xv, uv, t)

Hv(x, u, xv, uv, t) =
1
2

(
xv

uv

)T
∂2H(x, u, t)

∂(x, u)2

(
xv

uv

)
.

Furthermore, the adjoint of the variational system
with zero initial state ua 7→ ya = (dΣx0

(u))∗(ua)
is given by

ẋ = (J − R)
∂H(x, u, t)

∂x

T

ẋv = −(J − R)
∂Hv(x, u, xv, ua, t)

∂xv

T

ya = −∂Hv(x, u, xv, ua, t)
∂ua

T

with the terminal states x(t0) = x0 and xv(t1) =
0. Suppose moreover that J − R is nonsingu-
lar. Then the adjoint (x1

a, ua) 7→ (x0
a, ya) =

(dΣ(x0, u))∗(x1
a, ua) is given by the same state-

space realization (3) with the terminal states
x(t0) = x0, xv(t1) = −(J − R)T x1

a and x0
a =

−T−1(J − R)−1xv(t0).

This theorem reveals that the variational system
and its adjoint of a Hamiltonian system in the
form (1) have almost the same state-space realiza-
tions. This means that the input-output mapping
of the adjoint can be produced by the input-
output data of the original Hamiltonian system
as

R◦(dΣ(u))∗ ◦R(v) = dΣ(ū)(v) ≈ Σ(ū+v)−Σ(ū)
(3)

provided appropriate boundary conditions are se-
lected, where R is the time reversal operator de-
fined by

R(u)(t − t0) = u(t1 − t), ∀t ∈ [t0, t1]. (4)

This property is utilized for solving the optimal
control problems in which the adjoint operator
plays an important role.

Remark 2. It is noted that if the system is a gra-
dient system (Crouch, 1981) which is a nonlinear



generalization of a linear symmetric system, that
is, J = 0, then the assumption (2) in Theorem 1 is
automatically satisfied with T = I. On the other
hand, if the system is conservative, that is, R = 0
then it is self-adjoint in the usual sense (Fujimoto
and Sugie, 2003).

Optimal control via iterative learning Let us con-
sider the system Σ : U → Y in (1) and a cost
function Γ : X2 ×U ×Y → R. The objective is to
find the optimal input (x0

?, u?) minimizing the cost
function Γ(x0, u, x1, y). In general, however, it is
difficult to obtain a global minimum since the cost
function Γ is not convex. Hence we try to obtain
a local minimum here. Here we can calculate

d
(
Γ((x0, u),Σ(x0, u))

)
(dx0,du)

= dΓ((x0, u),Σ(x0, u))
(
(dx0,du),dΣ(x0, u)(dx0,du)

)
= 〈Γ′((x0, u),Σ(x0, u)),

(
idX×U

dΣ(x0, u)

)
(dx0,du)〉X2×U×Y

= 〈
(
idX×U ,(dΣ(x0, u))∗

)
Γ′(x0, u, x1, y), (dx0,du)〉X×U .

Therefore, if the adjoint (dΣ(x0, u))∗ is available,
we can reduce the cost function Γ down at least
to a local minimum by an iteration law with a
K(i) > 0.

u(i+1)

=u(i)− K(i) (0UX , idU )
(
idX×U , (dΣ(x0

(i), u(i)))∗
)

×Γ′(x0
(i), u(i), x

1
(i), y(i)) (5)

The results in the previous section enable one to
execute this procedure without using the param-
eters of the original operator Σ by the relation
(3), provided Σ is a Hamiltonian system and the
boundary conditions are selected appropriately.
In (Fujimoto and Sugie, 2003), this framework is
effectively utilized for iterative learning control (of
trajectory tracking) for a ‘round trip’ type trajec-
tory. More precise discussion for optimal control
will be made in the following sections.

2.2 Application of iterative learning control into
Nonholonomic systems

The result obtained above is quite useful for feed-
forward optimal control of mechanical systems
with unknown modeling errors. In this section, we
will mention about a problem upon applying the
former method of iterative learning control into
Nonholonomical systems and a simple transfor-
mation method to overcome it.

Problem to solve It is proved in (Maschke and
van der Schaft, 1994) that simple Hamiltonian
systems with nonholonomic constraints which is

linear in the velocity of the configuration states
are represented by the following form(

q̇
ṗ

)
=

(
0 J12(q)

−J12(q)TJ22(q, p)

)(
∂H
∂q

T

∂H
∂p

T

)
+

(
0

G(q)

)
u

(6)
with a Hamiltonian

H(q, p) =
1
2
pTM(q)−1p. (7)

This system is called a port-controlled Hamilto-
nian system. Here q(t) ∈ Rn and p(t), u(t) ∈ Rm

with n > m. Note that the structure matrix
J depends on the state x = (q, p) and is not
constant. From this notice, it is obvious that the
proposed method in section 2.1 is not applicable
to Hamiltonian systems with nonholonomic veloc-
ity constraints whose structure matrix depends
on the state, where the former method requires
the assumption that the structure and dissipation
matrices J and R are constant.

Application to nonholonomic Hamiltonian sys-
tems To apply the iterative learning method,
proposed in section 2.1, to nonholonomic Hamil-
tonian system, we have to convert the system (6)
into the form (1). In order to do this, we will use
the following result which is a variation of the
result in (Fujimoto and Sugie, 1999).

Lemma 3. (Fujimoto and Sugie, 1999) If a drift-
less system

q̇ = J12(q)v (8)
can be transformed into a form

˙̄q = J̄12(q̄)v̄ (9)

by a set of feedback and coordinate transforma-
tions

v = N(q)v̄, q̄ = Ψ(q), (10)
then a coordinate transformation for the port-
controlled Hamiltonian system

x̄ =
(

q̄
p̄

)
= Φ(x) :=

(
Ψ(q)

N(q)TM(q)−1p

)
converts the corresponding port-controlled Hamil-
tonian system (6) into another one whose struc-
ture matrix has a form

J̄(q̄, p̄) =
(

0 J̄12(q̄)
−J̄12(q̄)T J̄22(q̄, p̄)

)
.

When the system is controllable, it is easy to find
out from (8) to (10) that if the transformation
matrices Ψ(q), N(q) satisfies

∂Ψ(q)
∂q

J12(q)N(q) =
(

I
J̄2

12

)
it is always possible to find a transformation (10)
such that the corresponding matrix J̄12(q̄) has a
form

J̄12(q̄) =
(

I
J̄2

12(q̄)

)



with a matrix J̄2
12(q̄) ∈ Rm×(n−m), for any port-

controlled Hamiltonian system (6).

Since J̄2
12(q̄) is not constant, the proposed iterative

learning method is not applicable. So from now on
we consider a division state of the q̄ as

q̄ = (q̄1, q̄2), q̄1 ∈ Rm, q̄2 ∈ Rn−m.

Finally, by applying a feedback

ū = G(q)u + γ(q̄, p̄) (11)

:= G(q)u − J̄2
12(q̄, p̄)T

∂H

∂q̄

T

+ J̄22(q̄, p̄)
∂H

∂p̄

T

the dynamics of the partial state (q̄1, p̄) can be
described by a Hamiltonian control system

(
˙̄q1

˙̄p

)
=

(
0 I
−I 0

) ∂H̄
∂q̄1

T

∂H̄
∂p̄

T


y = −∂H̄

∂ū

T

= q̄1

(12)

with a Hamiltonian

H̄(x̄, ū) = H(Φ−1(x̄)) − q̄1ūT.

By using the generalized canonical transforma-
tion 1 and converting (6) into a system described
as (12) that has a constant structure matrix, we
are able to apply the iterative learning method to
nonholonomic Hamiltonian system.

Ignoring the feedback As for iterative learning
control, it is not proper to use an particular
preliminary information of the system. From this
point of view, the feedback γ applied in (11) is not
always appropriate. But the feedback in (11) has
the following property.

Proposition 4. (Fujimoto, 2004) The function γ in
(11) satisfies

γ(q̄, p̄) = o(‖p̄‖).

This proposition implies that if p̄ is small enough,
that is, the velocity (momentum) is sufficiently
small, then the feedback in (11) can be approxi-
mated by just

ū = G(q)u. (13)

Therefore, what we need for iterative learning con-
trol of the port-controlled Hamiltonian system (6)
is the information on G(q) and Ψ(q) in (10), if the
prescribed desired trajectory yd moves sufficiently
slow.

1 A generalized canonical transformation is a set of coor-

dinate and feedback transformations preserving the Hamil-
tonian structure (Fujimoto and Sugie, 2001).

3. APPLICATION TO A VEHICLE SYSTEM

In this section, the proposed method is applied to
a four-wheeled vehicle system which is a typical
and practical example of port-controlled Hamilto-
nian systems with nonholonomic constraints.

3.1 Modeling

L θ

φ

x

y

Fig. 1. A four-wheeled vehicle model

Let us consider a four-wheeled vehicle as depicted
in Figure 1. Suppose this vehicle as a driftless
system, then it’s nonholonomic constraints are
described by

ẋ sin θ − ẏ cos θ = 0
(ẋ cos θ + ẏ sin θ) tanφ = Lθ̇

.

The first equation describes the constraints of the
rear wheels and the second equation describes
those of the front ones.

Using this equation, the dynamics of this system
is

Mq̈ = A(q)λ + B(q)u

where A(q), B(q), M , λ, u, q are given by

A =


tanφ cos θ − cos θ
tanφ cos θ sin θ

−L 0
0 0

 , B =


sin θ 0
cos θ 0

1
L

tanφ 0

0 1


M = diag(m, m, Jθ, Jφ), λ = (τ, f)T

u = (ur, uf )T , q = (x, y, θ, φ)T

.

The parameters are defined as follows: ur denotes
the input thrust force of the rear wheels, uf

denotes the steering torque for the front wheels, m
denotes the weight of the vehicle itself, Jθ denotes
the inertia of the vehicle, Jφ denotes the inertia of
the front wheels, τ and f denotes the constraint
torque and the constraint force of the vehicle.

3.2 Settings for iterative learning control

As shown in (6), this system can be described by
a port-controlled Hamiltonian system with



J12 =


cos θ 0
sin θ 0

1
L

tanφ 0

0 1

 , J22 =

 0
θ̇

cos2 θ
−θ̇

cos2 θ
0


G =

(
1 +

1
L2

tan2 θ 0

0 1

) .

Here the transformation in (10) can be chosen as

Ψ(q) =


x

sec3 θ tanφ

L
tan θ

y


N(q) =


1

cos θ
0

−3 tan θ tan2 φ

L cos θ sec2 φ

1
sec3 θ sec2 φ

 .

(14)
The corresponding transformation converts the
system into another port-controlled Hamiltonian
system with

J̄12(q̄) =


1 0
0 1

tanφ

cos3 θ
0

tan θ 0

 .

That is, this transformation can be used for it-
erative learning control for nonholonomic system
by the procedure given in the previous section. For
the result of the transformation which is described
as in (12), the states needed to be measured in
iterative learning are

q̄1 =

 x
sec3 θ tanφ

L

 .

To stabilize the plant asymptotically, we employ a
PD pre-feedback which preserves the Hamiltonian
structure (Fujimoto and Sugie, 2003)

ũ = ū + KPq̄1 + KD ˙̄q1.

Note that the preliminary information used for the
setting of the vehicle system for iterative learning
control is only L, which denotes the distance be-
tween the front wheel axis and the rear one. Dif-
ferent from other parameters, this information is
needed to recognize the nonholonomic constraints
and to plan the desired trajectory, so we think this
information as a critical one and use it in learning
control.

3.3 Simulation

Since this simulation is about four-wheeled ve-
hicle, desired trajectory is given by it’s position
(x, y). For the flatness of the system, other states

of the system are calculated from the given desired
trajectory as

θ = atan2(ẏ, ẋ)
φ = ±atan2(L(ẋÿ − ẍẏ), (ẋ2 + ẏ2)

3
2 )

. (15)

The desired output signal q̄1d is calculated from
the desired trajectory using (15).

Take the cost function Γ = ‖q̄1 − q̄1d‖2
L2

with the
desired trajectory given by

x = π cos(
π

T
t)

y = − π

12
cos

(
π cos(

π

T
t) +

3
2
π

)
where T is the simulation time. The physical
parameters like the weight of the vehicle and the
inertia are all set to 1, including L. The design
parameters for iteration are

KP = diag(100, 100), KD = diag(100, 100)
K(i) = diag(12000, 12000) .

Simulation results are shown in Figure 2 (T =
5[s]) and Figure 3 (T = 10[s]). Only the pa-
rameters of the simulation time T are different
between Figure 2 and Figure 3, other physical
and design parameters are same. Both Figure 2(a)
and Figure 3(a) depict the responses on the X-Y
plane. In the figures, the solid line denotes the
desired trajectory and the dashed ones are the
intermediate responses in the learning procedure.
Figure 2(b) and Figure 3(b) depict the transition
of the cost function.

The figures show that the proposed iterative learn-
ing method works well also for nonholonomic
Hamiltonian systems. Comparing the difference
between Figure 2 and Figure 3, in particular, with
respect to the tracking error on the X-Y plane, the
method is much more effective in the latter case
than that in the former, i.e., the case with the
slower trajectory works better. This means that
the conclusion given in the previous section, which
is implied by Proposition 1 as in Equation (13), is
true for this system.

4. CONCLUSION

In this paper, we have shown that our iterative
learning method for port-controlled Hamiltonian
systems with nonholonomic constraints works well
with a wheeled vehicle example. In this method,
we need to employ an approximation to derive
an iterative learning control system, due to the
non-canonical Hamiltonian structure. In fact this
method works well with a wheeled vehicle system
which was evaluated with some numerical simula-
tions.
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