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Abstract: In this work a multiobjective genetic algorithm is applied to the identification
of radial basis function neural network coupled models of humidity and temperature in
a greenhouse. Models are built as one-step-ahead predictors and then used iteratively
to produce long term predictions. The number of neurons and input terms used in both
models define the search space. Two combinations of performance and complexity criteria
are used to steer the selection of model structures, resulting in distinct sets of solutions.
It is shown that minimisation of one-step-ahead prediction errors negatively influences
long term prediction performance. Long term prediction results are presented for a pair of
models selected from sets of models obtained in the experiments.Copyright (©) 2005 IFAC

Keywords: Genetic Algorithms, Greenhouse Environmental Control, Radial Basis
Functions, Temperature Prediction, Humidity Prediction

1. INTRODUCTION

The main purpose of greenhouses is to improve the en-
vironmental conditions in which plants are grown. The
aim of greenhouse environmental control (GEC) is to
provide means to further improve these conditions in
order to optimise the plant production process. Meth-
ods aimed at efficiently controlling the greenhouse cli-
mate environment and optimising the crop must take
into account the influences of the outside weather, the
actuators and the crop, which is achieved by the use
of models. For the great majority of crops, production
is mainly affected by greenhouse temperature, humid-
ity and CO; concentration. This work deals with the
identification of radial basis function (RBF) neural
network (Broomhead and Lowe, 1988) models of the
greenhouse temperature and humidity. These models
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are to be used in a predictive GEC strategy as depicted
in Figure 1.

1.1 Previous work

Previous work conducted by the authors investigated
the application of RBF neural networks (NNs) to
greenhouse air temperature modelling (Ferreira et
al., 2000a). A new RBF training method was pro-
posed (Ferreira and Ruano, 2000; Ferreira et al., 2002)
and its on-line application compared to other on-line
methods (Ferreira et al., 2000b). The RBF ability to
perform long term prediction was evaluated (Ferreira
and Ruano, 2001) and compared with ARX models
previously obtained (Ferreira et al., 2000c). The input
structure of the RBF model used in those studies was
selected from a previous work (Cunha et al., 1996),
in the context of dynamic discrete-time model iden-
tification, where several hypothesis were tested and
the best model was chosen by means of the Akaike
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Fig. 1. Predictive greenhouse environmental control
strategy

information criterion. It is obvious that this model
input structure can not be considered optimal or sub-
optimal in any sense when applied to a RBF NN. This
fact raised several questions about designing NN,
particularly RBF: given a set of available variables
in the form of data, which should be used as inputs
to the NN? Having made this decision, are lagged
input and output values important? What lags should
be considered? How many neurons should be used
in the network hidden layer ? The answers are prob-
lem dependent and often very unlikely to have trivial
solutions. In (Ferreira and Ruano, 2002; Ferreira et
al., 2003) two approaches were tested with the aim
of selecting a better model structure.

2. PROBLEM CHARACTERISATION

As mentioned above, greenhouse temperature and hu-
midity are two of the environmental quantities which
most affect crop production, and it is known from the
literature that these two variables are strongly coupled.
Identifying long term predictive models of coupled
variables, can be cast as the problem of finding a set of
coupled models satisfying some pre-specified criteria.
As long as auto-regressive (AR) model structures are
to be selected based on long term prediction errors,
both models must be determined prior to evaluation.
Having these considerations in mind the problem can
be stated as the search for a pair of coupled humidity-
temperature models which is best in some sense. For
the problem at hand the notion of best is regarded as
the minimisation of both long term prediction error
and number of parameters. In the framework of RBF
NN modelling, searching for model structures corre-
sponds to searching for both the number of neurons
in the hidden layer and the network input terms, given
a set of available variables. Improving prediction per-
formance while reducing model complexity easily be-
comes conflicting, giving rise to a multiobjective op-
timisation problem. Evolutionary multiobjective op-
timisation (EMO) algorithms have been successfully
applied (Fonseca and Fleming, 1996a; Rodriguez-
Viasquez et al., 2004) to this type of system identifica-
tion problems. In particular, the multiobjective genetic
algorithm (MOGA) (Fonseca and Fleming, 1998a)

has been applied by the authors to greenhouse inside
air temperature prediction (Ferreira et al., 2003), and
is considered in this work.

3. RBF NN REPRESENTATION AND THE MOGA

The MOGA is an evolutionary computing approach,
inspired by the theory of natural selection and the
notion of survival of the fittest, which performs a
population-based search by employing operators such
as selection, mating and mutation. One of the advan-
tages of EMO techniques over other techniques is
that they can provide a diverse set of non-dominated
solutions to problems involving a number of possibly
conflicting objectives, in a single run of the algorithm.
One run consists of a sufficiently large number of gen-
erations to allow the evolution of individuals meeting
certain pre-specified requirements.

3.1 Chromosome representation

The structure of a multiple-input single-output RBF
NN can be represented by the number of neurons
in the hidden layer and the number of inputs. The
chromosome for one such network can be represented
by a string of integers, the first of which corresponds
to the number of neurons, and the remaining represent
a variable number of distinct input terms. Input terms
are represented by their position in a lookup table
of the lagged terms considered for each available
variable. For the case of the humidity-temperature
models, each individual chromosome is constructed
by concatenating two such strings of integers.

3.2 Recombination

After the individuals in a generation are evaluated, the
population is ranked using the preferability relation
(Fonseca and Fleming, 1998a) and then,the individ-
uals selected are mated to produce two offspring from
each pair of parents. Parent recombination is done in
such way that offspring respect the maximum model
length with no loss of input terms (Fonseca and Flem-
ing, 1996a). The resulting offspring may be longer,
shorter or equally sized as their parents.

3.3 Mutation

The mutation operator is implemented by three basic
operations: substitution, deletion and addition of one
element. The number of neurons is mutated, with a
given probability, by adding or subtracting one neuron
to the model, verifying boundary conditions that no
NN can have fewer or more neurons than pre-specified
values. Each model input term in the chromosome is
tested and, with a given probability, is either replaced
by a new term not in the model, or deleted. Finally a
new term may be appended to the chromosome.



4. METHODOLOGY
4.1 Data sets

The data employed in this work was acquired with a
sampling rate of 1 minute, in a plastic covered green-
house, and is composed of 12 days of data. Variables
used are: greenhouse inside relative humidity (rh;)
and temperature (¢;), outside temperature (¢,) and solar
radiation (sr,). Other variables (inside solar radiation
and outside wind speed and direction) are available
but were not considered, as they were discarded by the
MOGA when modelling greenhouse inside air temper-
ature in a previous experiment (Ferreira et al., 2003).
Although wind speed and direction could be of im-
portance for the humidity model, there is no data re-
garding the greenhouse openings state, and the fact
they were not selected in previous work may mean
that they were almost always closed at the time the
data was acquired. The number of points is reduced
by applying a 5 minute average over the entire data set
and then, due to the different scales in the variables
considered, all data is scaled to the [0, 1] interval. The
resulting data is split up into three equally sized (4
days) data sets, DS;, DS, and DS,, for model training,
generalisation testing, and validation, respectively. For
each variable in the data sets, lagged terms up to 24
hours are computed, resulting in 288 possible input
terms per variable. In order to reduce the size of the
search space, a subset of all possible input terms is se-
lected according to the following reasoning. Consider
the fact that climate values at a given time instant are
strongly related to their most recent values, and also,
to a certain extent, to their values 24 hours before. So
that recent values predominate and a smaller number
of not so recent values, including those from one day
before, are present, per-variable lagged term subsets
are chosen as follows:

Li=round (l;),i=1,--- N
Li=lL_1hi=2,---,N
L=1

where N is the desired number of terms and the value

of h is such that Ly = 288. As an example, for N = 10,
the lagged terms considered would be:

L=[1,2,4,7,12,23,44,82,154,288]

and & = 1.8761. In this work, for each variable con-
sidered N is set to 144 and & = 1.0404.

4.2 RBF NN training

Networks are trained as one-step-ahead (OSA) predic-
tors by an algorithm (Ferreira and Ruano, 2000; Fer-
reira et al., 2002) based on unconstrained determin-
istic optimisation employing Levenberg-Marquardt
methods. RBF NNs are structurally simple layered

feed-forward NN characterised by a nonlinear-linear
topology in the parameters. The referred algorithm
exploits this feature on the minimisation of a single
explicit training criterion (Ferreira and Ruano, 2000).
Early stopping is used to terminate training.

4.3 Model search space

Each individual in the MOGA is a pair of humidity-
temperature models. The structure for both models is
a Non-linear auto-regressive model with exogenous
inputs (NARX) with the following general form:

rhi(k+1) = RBFy {rh;(k),...,rhi(k —n,),
ti(k), .. ti(k—ng)} (1)
fi(k+1) = RBF {1;(k),...,t;(k—ny),
rhi(k),...,rhi(k—n.),
to(k)y. .. to(k—nyp),
sto(k), ... sro(k—ng)} 2)

The number of neurons for each network is required
to be between 2 and 15. RBF| and RBF, may have
16 and 32 inputs, respectively. These limits spawn a
search space of about 2.5750 x 10'?° model pairs.

4.4 Long term prediction

When predicting rh;(k + j) or t;(k+ j), any lagged
model input terms for which no measured values are
available are replaced by the corresponding predic-
tions, rizi and #. For the t, and sr, variables, two
independent auto-regressive RBF NN models were se-
lected using a similar MOGA approach and are used to
predict the necessary input values. The quality of each
trained NN is assessed by its prediction performance
over an horizon of 3 hours (36 steps) using the DS,
data set. To reduce computational time, prediction is
computed starting at one hour intervals, resulting in
96 prediction horizons. For each starting point, the
prediction error ey is taken over the prediction horizon.
Consider the matrix,

e(1,1) " €(1,36)
E— : .

€(96,1) """ €(96,36)

where each row corresponds to the errors obtained
over each prediction horizon. Let R(:) be the root
mean square error (RMSE) function operating over
the rows of a matrix. In this way, R(E) and R (ET)
are vectors denoting the RMSE over the full predicted
horizon for every time instant, and the RMSE over
all the horizons, for each prediction instant within the
considered horizon, respectively.



Table 1. MOGA runs objectives.

Objective Case 1 Case 2
OSATE ;i) X minimise
OSAGE ;) x minimise
max{R (ET)},,,  minimise  minimise
max{R (ET)}, minimise  minimise
[ WI1; 7 7

[ W1, 7 7

Table 2. MOGA runs results.

Case 1 Case 2
Generations 350 500
PS #) 19,24.4,33  123,134.8, 157
Distinct pairs
of models (PS) 16, 20.8, 25 113, 125, 148
Distinct humidity
models (PS) 15,19.8,25 67,84.2,110
Distinct tempera-
ture models (PS) 12,17.4,25 101, 116, 140

4.5 MOGA parameters

The MOGA population size was set to 250 individu-
als, each with a maximum chromosome length of 50
(see sections 3.1 and 4.3). At the end of each gen-
eration 25 (10% of population) random immigrants
are introduced. The selective pressure, crossover rate
and mutation survival rate are, respectively, 2, 0.7
and 0.5. The objectives used in the experiments can
be classified into two groups: model complexity and
model performance. For the former, the norm of the
RBF NN output linear parameters, |W||, is used, with
subscripts rh; and ¢; denoting humidity and tempera-
ture models, respectively. Model performance objec-
tives are the sum of the OSA training error for both
models (OSATE ;, . ,p,,)), the sum of the OSA testing or
generalisation error for both models (OSAGE(ti+r,1i>),
and the maximum value of R (ET) taken individually
for each model. Table 1 shows how the two case
studies considered in this work were setup in terms
of objectives. The x symbol means the objective was
ignored. The measures |[W||,, and ||W||,, were setup
as restrictions with equal priority. For each case, 5
MOGA runs were executed.

5. RESULTS AND DISCUSSION

Table 2 presents some general results regarding the
two case studies. PS is an abbreviation preferable set.
Where the notation x,y,z is found, x, y and z corre-
spond to the minimum, mean and maximum values
obtained over the 5 MOGA runs. Case 2 has a larger
objective space, and originating a PS with more indi-
viduals than the case 1 PS. The numbers of distinct
models indicate greater humidity model similarity in
case 2, whereas for case 1 this is verified by the tem-
perature models (see also figure 2). Table 3 shows
the distribution of the number of neurons in the pre-
ferred humidity and temperature models found in the
5 MOGA runs. The numbers show a greater dispersion
in case 2, probably due to the presence of the OSA

Table 3. Frequencies of the number of neu-
rons in distinct humidity and temperature
models in the PS.

Neurons Case 1 Case 2
Hum. | Temp. | Hum. | Temp.
2 82 56 67
3 86 264
4 2 2 31 11
5 24 114 38
6 33 42 37
7 24 1 15 23
8 2 2 6 6
9 14 5
10 5 6 8
11 7 3
12 13 20
13 11 59
14 9 17 19
15 13 20

Table 4. Frequency of the number of inputs
in distinct humidity and temperature mod-

els in the PS.
Inputs Case 1 Case 2
Hum. | Temp. | Hum. | Temp.

1 5

2 10

3 6

4 13

5 1 37 3
6 38 2
7 37 2
8 53 4
9 41 2
10 2 43 11
11 4 43 18
12 10 34 23
13 11 22 20
14 20 19 24
15 32 15 21
16 19 5 27
17 47
18 1 35
19 39
20 29
21 1 32
22 37
23 8 37
24 3 37
25 8 38
26 5 30
27 4 28
28 5 15
29 11 11
30 10 5
31 11 3
32 20

prediction error objectives, which favour a larger num-
ber of neurons. Clearly, networks with fewer neurons
are favoured, and better long term prediction results
were observed for such networks in general. Table
4 presents the distribution of the number of inputs
in the humidity and temperature models found in the
five runs. Shaded areas indicate numbers of inputs not
allowed for the model in the corresponding column.
Again the results for case 2 show much greater diver-
sity. As opposed to the number of neurons, networks



Table 5. MOGA objectives in the two runs, regarding distinct pairs of models in the PS.
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Fig. 2. Attainment surfaces for the two case studies.
(Solid line: case 1. Dashed line: case?2)

with more inputs are favoured and generally presented
better long term prediction results. Table 5 compares
both cases in terms of the MOGA objectives and
the OSA validation error (OSAVE(, 1)) It is clear
that case 2 models are generally better OSA predic-
tors, although some exhibit worse OSATE ;,, 1,,) and
OSAGE ;, 1p,;) values. This is was caused by hill condi-
tioned models as it can be seen by the results in ||W/|| 4,
and ||W]||;,. The fact that case 1 models are not as good
OSA predictors is justified by the absence of small lag
terms, namely r — 1 appearing only in about 10% of
the humidity models obtained and never in tempera-
ture models. Considering this, it is not surprising that
the relation between OSAVE(;,, 1., and the other OSA
measures favours case 2 models. On the other hand,
case 1 models present the best results regarding long
term prediction. Figure 2 compares the attainment sur-
faces (ASs) (Fonseca and Fleming, 1996b) obtained in
both case studies, regarding the long term prediction
objectives only. For each case study, the three lines
(from the lower left to the upper right corner) depict
the estimates of the 0%, 50% and 100% ASs. The
region attained in case 2 is almost entirely covered by
that of case 1, with the exception of a small region of
very good temperature models but poor humidity pre-
dictors. It is important to note that the models obtained
in case 1 are generally non-dominated with respect to
those obtained in case 2. This is an indication that in
case 2 the MOGA was unable to cover the tradeoff
surface to its full extent, possibly due to the increased
dimensionality of the objective space. However, goal
levels for each objective could be provided to the

Measure Minimum Mean Maximum

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

OSATE ;i) 0.0238 0.0085 0.0360 0.0197 0.0552 0.2281

OSAGE () 0.0338 0.0123 0.0622 0.0304 0.1030 0.3191
max{R(EY)},, | 41857% 54598% | 6.7105% 88150 % | 24.3699 %  32.1086 %
max{R (ET) Y 1.1843°C 1.1738°C | 1.4103°C 1.9989°C | 2.7042°C  9.8666 °C

W1, 1.0492 0.6025 1.8663 2.9753 5.0475 6.9696

(W], 1.0723 0.9138 2.5793 3.0127 4.2869 6.8532

OSAVE(;, s i) 0.0521 0.0129 0.1122 0.0445 0.1577 0.3502

Humidity
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Fig. 3. Humidity prediction for a selected model pair.

MOGA, which would reduce the size of the preferred
region and focus the search, eventually providing bet-
ter performance (Fonseca and Fleming, 1998b).

Regarding input term selection, good agreement could
be found for a considerable number of either specific
terms or terms with very similar lags. Certainly, input
term selection would gain from a reduction in search
space dimension by further restricting the number of
neurons and inputs. Such restrictions can be guided by
the results obtained regarding those parameters.

Long term prediction capabilities over the DS, data
set, for a model pair with a good compromise be-
tween humidity and temperature prediction, selected
from a run in case 1, are shown in figures 3 and 4.
The networks have 6 neurons and 11 inputs for the
humidity model, and 2 neurons and 29 inputs for the
temperature model. Good fittings are obtained for the
prediction in 1, 18 and 36 steps ahead. Both figures
show also the evolution of max{R (ET)} over the
prediction horizon. The mean and maximum absolute
error values obtained for humidity and temperature are
3.0383 %, 24.5791 %, 0.8434 °C, and 6.1402 °C.

6. CONCLUSIONS

In this work a strategy was presented for the iden-
tification of coupled long term predictive humidity-
temperature RBF models, using an evolutionary mul-
tiobjective algorithm. The models obtained showed a
good level of agreement regarding the number of neu-
rons and inputs, and significant input term selectivity,
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Fig. 4. Temperature prediction for selected model pair.

both within and between runs, which suggests consis-
tent behaviour of the MOGA. Two experiments with
difference sets of performance criteria were discussed,
and it was shown how minimising one-step-ahead
prediction errors does not lead to the best long term
prediction performance. A good compromise between
model complexity and performance was achieved with
networks with just a few neurons and greater input di-
mension. The methodology presented here is suitable
for the design of predictive RBF models, providing
the designer with a good number of well performing
solutions with varying degrees of complexity.
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