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Abstract: A new Generalized Minimum Variance control law has been derived
recently for the control of nonlinear multivariable systems. In this paper we restrict
our interest to single-input, single-output plants with input nonlinearities in the
form of hard actuator limits. Since in real systems saturation always exists in some
form, e.g. as a result of valve opening limits or finite power supply, this is a natural
case to consider. One of the well-known problems associated with input saturation
is the integral windup phenomenon, which occurs whenever the controller includes
integral action. In this paper, we show that the classical form of the “anti-windup”
mechanism can be obtained within the Nonlinear GMV controller framework by a
suitable selection of the design parameters. The advantage of the approach is that
the anti-windup mechanism is obtained naturally from the optimization problem.
There is also the possibility that the technique can be extended for other specialized

nonlinear compensation problems. Copyright 2005 [FAC
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1. INTRODUCTION

The subject of actuator saturation has received
considerable attention in the literature on control
systems design and tuning. This is mainly due to
the fact that certain limits on the control action
are always present in real systems, caused usually
by a finite energy supply or physical constraints
of the actuation element. It is well known that
saturation, if its effects are ignored in the design,
may lead to some significant deterioration in the
control performance, and in some cases it may
even destabilize the closed-loop system (Seron et
al., 1994; Levine, 1996; Goodwin et al., 1993).
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The main problem with saturation occurs when
the control algorithm includes integral action.
When the saturation constraint becomes active,
the system effectively operates in open loop, with
the process manipulated variable fixed at one of
its limits. No further control action can then be
produced to reduce the control error. The inte-
grator however is ignorant of this and causes the
controller output to increase, resulting in undesir-
able transients when the system eventually gets
back to the working range. This phenomenon is
known as integral wind-up. The actuator satura-
tion imposes a hard constraint on the controller
performance and cannot be fully compensated -
the best that can be done is to keep the control
action within or on the saturation limits and to
make sure that the integral component of the
controller does not increment its internal state un-



der saturation conditions. The special controller
structures achieving these objectives are generally
known as “anti-windup mechanisms”, and many
different approaches to this problem have been
developed (Goodwin, 1972; Astrém, 1984; Hanus
et al., 1987).

In principle, the anti-windup mechanism is not
an integral part of any particular control law and
can always be used as a separate compensator
of special type, when the saturation is present
and the controller includes integral action (as is
the case in many practical applications). It can
basically be considered a heuristic modification
of the existing controller structure. In this paper,
we discuss such a scheme in the context of the
Nonlinear GMV control (Grimble, 2004; Majecki
and Grimble, 2004) and show that the “classical”
anti-windup algorithm results from an optimiza-
tion problem by a suitable choice of the design
parameters.

The paper is organized as follows: in section 2, the
system description and the NGMV cost function
are introduced; in Section 3, the optimal control
solution is presented, and the possible application
to controller benchmarking is mentioned; Section
4 deals with the main topic, which is the actuator
saturation; it describes a modification to the cost
criterion and illustrates the results with a simu-
lated example; the paper closes with conclusions
in Section 5.

2. STOCHASTIC SYSTEM DESCRIPTION
AND PERFORMANCE CRITERION

The system shown in Fig. 1 is of restricted gener-
ality and is carefully chosen so that simple results
are obtained. The plant itself is nonlinear and may
have quite a general form which might involve
state-space, transfer operators, neural networks or
even nonlinear function look-up tables. However,
the reference and disturbance signals are assumed
to have linear time-invariant model representa-
tions. This is not very restrictive, since in many
applications the models for the disturbance and
reference signals are only LTI approximations.

A nonlinear plant model can be written in the
following form:

Wu) (t) = 27F Wiu) (1), (1)

where k£ denotes the magnitude of the plant time-
delay.

2.1 Signals

The signals shown in the system model of Fig. 1
may be listed as follows:
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Fig. 1. Single Degree of Freedom Feedback Control
System for the Nonlinear Plant (inferred out-
put ¢¢ is dependent on the weightings shown
dotted)

Error signal:
e(t)=r(t) -y (t) (2)
Plant output:
y () = Wu) (t) +d(?) (3)

Reference signal:
r(t) = Wr((2) (4)
Disturbance signal:

d(t) =Wa (1) (5)

The power spectrum for the combined reference
and disturbance signal f = r —d can be computed
as:

Yip = @0 + Pgq = W, W) + W W}; (6)

and the strictly minimum phase generalized spectral-

factor Yy may be computed using:

YiYi =@y (7)

Note that a measurement noise model has not
been included to simplify the equations. This is
appropriate so long as the control cost-function
weighting, introduced in the next section, ensures
the controller rolls-off at high frequencies.

2.2 NGMYV cost function

The optimal NGMYV control problem involves the
minimization of the variance of the signal ¢q (t)
in Fig. 1. This signal involves a dynamic cost
function weighting P.(2~!) on the error signal,
represented in transfer-function form as: P. =
};zz . It also includes a nonlinear dynamic control
signal costing operator term: (F.u) (¢). The choice
of the dynamic weightings is critical to the design




and typically P, is low-pass and F. is constant or
a high-pass transfer. The signal:

po(t) = Pee(t) + (Feu) (t) (8)

is to be minimized in a variance sense, so that the
cost index to be minimized:

T=FE{¢; (1)} (9)

If the plant time-delay is of magnitude k, this
implies the control at time t affects the output k
steps later. For this reason the control weighting
can be defined as:

(Feu) (1) = 2 * (Feyu) (1) (10)
Typically this will be a linear operator but it
may also be chosen to be nonlinear to compensate
for the plant input nonlinearities in appropriate
cases, as discussed in Section 4. The delay-free
control weighting operator F.j is assumed to be
invertible.

2.3 Generalized plant

One approach to the above control problem is
to reformulate the NGMV criterion as a simpler
nonlinear minimum variance problem for a gen-
eralized plant. The expression for the controller
error can be written as:

e(t) = =27 Weu) (t) + Yie(t) (11)

where ¢(t) is a zero-mean, unity-variance white
noise process and Yy represents the combined
effect of all the stochastic inputs to the system.

The generalized output ¢ (t) can be rewritten as
follows:

o(t) = Po(—27" (Wiu) (t) + Yye(t)) + (Feu) (¢)
= 27" Fup — PWi)u (t) + P.Yye(t)

Notice that the non-linear operator in this last
expression can be considered a “generalized plant”
and the notation implies that:

(PW = Fe)u= P, (Wu) (t) — (Feu) (t) (13)

3. OPTIMAL NONLINEAR GMV PROBLEM
AND SOLUTION

The key step in the derivation of the NGMV
control law is to split the cost function (9) into
two statistically independent terms, one of which
is independent, and the other dependent on the
controller. The control law then results by simply
setting the latter to zero.

(12)

Dividing the weighted disturbance term into un-
predictable and predictable components using the
Diophantine identity (degFy < k):

P.Y; = Fy+ 2 "R, (14)

equation (12) can be rewritten as:

do(t) = Foe(t) + 2% [(For — P.Wi)u (t) + Re(t)](15)

To compute the optimal control signal, inspect
the form of equation (15). Since the degree of the
polynomial Fy is required to be less than k, it
follows that the first and the remaining terms are
statistically independent, even though the second
term involves a nonlinear operator.

Furthermore, the first term on the right of (15) is
independent of the control action and the smallest
variance is achieved when the remaining terms
are set to zero. The optimal control signal must
therefore satisfy:

uPt(t) = —(Fop — PWR) ' Re(t) (16)

which, after some algebraic manipulations, can be
rewritten as

ut(t) = —[(For — FoY7 ' Wi) "RY;e](t) (17)

The above result indicates that the restriction
on the choice of the cost weightings is that the
operator (P.Wy — F.) must have a stable inverse
for the relevant input signal range.

The general NGMV controller structure, based
on equation (17), is shown in Fig. 2. Since the
controller inner loop contains the delay-free model
of the plant, an algebraic loop may arise in the ac-
tual implementation. This problem can be avoided
by extracting that part of the nonlinear operator
that depends upon the present value of the control
action and appropriately modifying the controller
structure. Alternatively, the algebraic loop may be
solved using iterative methods, or an additional
delay may be introduced into the loop.

Disturbeance

Fig. 2. NGMV controller structure

3.1 Application to controller performance assessment

The generalized output under NGMV optimal
control is a linear moving-average time series:



o (t) = Foe(t). (18)

Its variance (the minimum value of the cost func-
tion) follows as:

k—1
Junin = Var [Foe(t)] = Z f? (19)

and depends only on the combined disturbance
and reference model, and the plant time delay.

This theoretically achievable lower bound on the
value of the cost function can be estimated from
routine closed-loop operating data. The numerical
algorithms that can be used for this purpose have
been described in (Desborough and Harris, 1992;
Huang and Shah, 1999), and their application
to NGMV benchmarking has been discussed in
(Majecki and Grimble, 2004). This provides a
means of assessing the performance of nonlinear
control systems.

4. THE CASE OF ACTUATOR SATURATION

Actuator saturation is a common cause of poor
control performance and may even lead to in-
stability of a control system. These detrimental
effects are particularly severe when the controller
includes integral action (as in most cases). The
integrator increases without constraints under a
constant error signal and needs time to get back
to the working range when the error reverses.
This usually results in some undesirable transient
behaviour. Whilst it is not possible to fully com-
pensate for the decrease in gain caused by the sat-
uration, there are standard methods of avoiding
the phenomenon of the so-called integral wind-up.

A number of heuristic methods have been devel-
oped to deal with this problem, and one of such
”anti-windup” mechanisms is presented in Fig. 3,
for the simple case of PI controller with hard
actuator saturation. The idea is to calculate the
difference between the output and input of the
actuator (or its model, if the actual output is not
available) and feed it back to the input of the
controller integrator. The speed of response can
be set by the parameter 7;. In this section we
will show that a similar mechanism can be ob-
tained within the NGMV framework by a special
choice of the control weighting. Thus the heuristic
structure shown in Fig. 3 will attain a more solid
justification, as a solution to a formal optimization
problem.

4.1 NGMYV solution of the anti-windup problem

Let the function Sat(-) denote a saturation type
characteristic, which might be a part of the phys-
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Fig. 3. “Classical” anti-windup mechanism for a
continuous-time PI controller

ical plant input subsystem. However, the system
may also have hard constraints on the input sig-
nals which can be represented by this function.

For simplicity let the gain in the linear region of
this function be taken as unity. Denote a nominal
invertible choice of the control weighting as F, =
2~k F. and consider the following modification:

(Feru) (t) = (fcku) (t) + #
where p is a positive scalar weighting. The second
term in (20) does not affect the overall weighted
control signal in the “linear” region but becomes
active under saturation conditions. The rationale
behind such a choice of the weighting is to penalize
the excessive control action and therefore prevent
the integral wind-up.

u(t)

Fig. 4. Invertibility of the static function Ho(u(t))

That the modified control weighting operator (20)
is also invertible, can be seen from the following
argument. Assume for simplicity that the nominal
control weighting is linear: ]:'ck = ﬁ‘ck and write its
impulse response as FL, = fo+ 2~ Fug;. Similarly,
the first “impulse response coefficient” of the
second (nonlinear) term in (20) can be found as
pui(t) where uy(t) = [u(t) — Sat(u;)] represents
the deadzone operator. Collecting together the
terms related to the current value of u(t), the
equation (20) can be written as

_r
1—271
where Ho(u(t)) = fou(t) + plu(t) — Sat(us)] is
a static function of the current value of u(t)

(Feru)(t) = Hg(u(t))+ﬁ’ck1u(t—l)+ up (t—1)

[u(t) — Sat(u)](20)



and is invertible, as illustrated in Fig. 4. In this
figure, the two components of Hy(-) have been
drawn separately, as well as their sum and its
inverse (in this particular example 0 < fp < 1).
The overall control weighting has therefore been
shown to be invertible, and this is also true for
a nonlinear nominal control weighting, as long as
the invertibility assumption is satisfied. In that
case, however, fq in general will not be a constant
but rather a static function of ().

Note that the above argument fails if F.p is not
invertible, e.g. equals zero. The “static” part of
the control weighting then represents a pure dead-
zone operator, which is not strictly monotonic and
therefore not invertible. If it were, that would cor-
respond to the ideal compensation of the actuator
saturation, which is of course impossible. The best
that can be done is to reduce the detrimental
effects of the saturation, and this is done in our
case by an appropriate modification of the actual
nonlinearity.

The optimal control action (17) can now be
rewritten as

u(t) = F R [FoY[ Wew) (1) -

i () - RY;e(t)]

(21)

Fig. 5 shows the new arrangement, where W
is the delay-free model of the plant. Note that
the error weighting P, is assumed to include
an integrator to penalize non-zero steady-state
errors, and that both integrators have been moved
inside the loop to avoid the state mismatch (to
account for this, Rg = (1—27!)R in the diagram).
The “anti-windup” feedback is only active under
saturation and prevents the integrator state from
increasing. The speed of response is determined
by parameter p. In the linear region the control
law collapses to the nominal case. By comparing
Figs. 3 and 5 it may be concluded that the
optimal control action obtained by introducing
the modified control weighting (20) has the same
structure as the classical anti-windup scheme.

. Y0

Fig. 5. Control signal generation and controller
modules for the NGMV + Anti-Windup

4.2 Ezample: NGMYV controller design for a linear
plant with input saturation

There are two main points to illustrate with this
example:

e compare the performance of the NGMYV con-
troller for the nominal and modified control
weighting

e investigate the influence of the parameter p
in the anti-windup loop.

The actual plant is linear, and is modelled by a
simple first-order lag in series with an integrator:
K

s(rs+1)

with the nominal settings 7 = 0.5s and K = 1.
This setup may represent the dynamics of a DC
motor, where the input is the voltage applied to
the motor, and the output is the shaft position.
Obviously, there will always be a maximum per-
missible voltage that can be applied, and this
constraint can be approximately modelled using
the nonlinear saturation element. The saturation
function for this example is symmetric and con-
strains the actual input to the plant to the range
[—a,a], with the nominal setting a = 1. Since
the plant includes an integrator, arbitrary set-
points may in principle be achievable, however
the transient performance may be deteriorated
due to the saturation and integral wind-up. The
modification of the control weighting will be used
to tackle this problem.

Wi(s) =

A nonlinear GMV controller design has been per-
formed for this system, resulting in the following
weighting selection:
1-0.8271
Pc = T __1
1— 21

The final design includes also the nonlinear mod-
ification as in equation (20). The controller in-
cludes the discretized model of the plant, with the
sampling period T = 0.1s.

Fop = —0.2

Fig. 6 shows the simulation results for the step-
change reference signal and the values of param-
eter p ranging from 10~* to 50. The horizontal
dash-dotted lines in the control signal plot corre-
spond to saturation limits, and in both plots the
direction of increasing p has been indicated. The
value p = 10~ is close to the 'no anti-windup’
case, and the larger p becomes, the better the
correcting action that prevents the state of the
integrator from increasing.

5. CONCLUSION

Nonlinear GMV controller design in the presence
of hard actuator constraints has been considered.
It was shown that by a particular choice of the
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Fig. 6. Simulation results for different values of
the parameter p (p = 0.0001,0.01, 0.1, 50)

weighting transfer functions it is possible to obtain
a control structure that is equivalent to the well-
known anti-windup scheme. The approach may be
extended for other types of nonlinear problems
(e.g. deadzone). That is, the cost index can have
additional nonlinear terms to modify the con-
troller characteristics in a way that is impossible
in linear optimal control design.
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