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Abstract: In this work we consider an adaptive optical system in which a
deformable mirror is controlled to compensate for random wavefront disturbances.
For most systems of this type, the shape of the mirror is taken as a linear function
of the wavefront error, leading to satisfactory results in linear regimes. Here, the
geometric shape of the mirror leading to a perfect correction of the wavefront
is derived. Next, a control is designed to reach that geometric shape when the
deformable mirror is a membrane mirror with electrostatic actuators. Numerical
simulations illustrating the improvements supplied by the geometric approach are
also reported here. Copyright c©2005 IFAC

Keywords: Adaptive optics, exact wavefront correction, membrane mirror.

1. INTRODUCTION

Adaptive Optics (AO) is the technology developed
for 25 years for correcting random optical wave-
front distortions in real time (see e.g. (Roggeman
and Welsh, 1996); (Hardy, 1998); (Tyson, 1998);
(Roddier, 1999); (Plemmons and Pauca, 2000);
(Luke et al., 2002); (Zakynthinaki and Saridakis,
2003)). Wavefront disturbances typically appear
when optical rays cross the Earth’s atmosphere,
since the refraction index depends on the air den-
sity, and the air density fails to be uniform in a
turbulent environment.

An adaptive optics system is composed of a wave-
front sensor and of a deformable mirror which
is controlled in real time to compensate for ran-
dom wavefront disturbances. The correction of the
wavefront is said to be perfect (or exact) when
the wavefront obtained after the reflection on the
deformable mirror is planar. For most systems
encountered in AO, the shape of the mirror is
taken as a linear function of the wavefront error,
leading to satisfactory results in linear regimes.
Obviously, a perfect correction of the wavefront

cannot be obtained this way, in general. In this
work we investigate the possibility of achieving a
perfect correction of any incident wavefront. That
issue proves to be of great importance in nonlinear
regimes where linear compensation does not work
well.

The mathematical issue whether any incident
wavefront may be corrected through the reflec-
tion on a convenient mirror is not obvious at all.
The first reason is that computations based upon
the Snell-Descartes first law reveal that a loss of
derivative occurs, and that the Nash-Moser fixed-
point theorem cannot be applied. The second
reason is that the solution may fail to exist in
certain circumstances: if the incident wavefront is
a sphere, then we cannot find any corrector mirror
passing through the center of the sphere.

Here, following a different approach we succeed
in deriving a parametric representation of a de-
formable mirror achieving a perfect correction of
any given incident wavefront. The formulas are
provided in any dimension and for any incident
angle. Next, a control is designed to compensate
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for slowly time-varying wavefront disturbances
when the deformable mirror is a membrane mirror
with electrostatic actuators. Numerical simula-
tions illustrating the improvements supplied by
the geometric approach are provided.

The paper is organized as follows. In Section 2 we
provide the parametric equations of the corrector
mirror in the n-dimensional framework (Theorem
1), and we sketch the derivation of such formulas
in dimension 2. These formulas are given when
the incident wavefront is a hypersurface. Their
generalization to parametrically defined incident
wavefronts is also supplied in dimensions 2 and 3.
Section 3 is devoted to the determination of the
incident wavefront when the measured wavefront
is the reflected one (closed-loop configuration).
Numerical simulations are displayed in Section 4.
In Section 5 we investigate the tracking problem
for a membrane mirror. Section 6 is a brief con-
clusion.

2. OPEN LOOP

2.1 The n-dimensional problem

Let R
n be the Euclidean n-dimensional space,

whose generic point is denoted by (x, z) =
(x1, ..., xn−1, z). Let {ei}1≤i≤n denote the canon-
ical basis of R

n. The incoming wavefront (resp.,
the deformable mirror) is assumed to be defined
by the equation z = zi(x) = zi(x1, ..., xn−1)
(resp., z = zm(x)), where zi : [0, 1]n−1 → R and
zm : [0, 1]n−1 → R are given functions of class
C1. The undeformed mirror is assumed to lie on
the hyperplane z = 0, so that a planar incident
wavefront of the form cos(θ)x1 − sin(θ)z = const
gives rise to a planar reflected wavefront of the
form cos(θ)x1 + sin(θ)z = const. The wave vector
associated with the reflected wavefront is defined
as f = cos(θ)e1 + sin(θ)en, where θ ∈ [0, π

2
] is

some given angle. (See Figure 1.)

The following function is introduced for notational
convenience

∆ :=



1 +

n
∑

j=1

(

∂zi

∂xj

)2





1

2

·

The following theorem provides a parametric rep-
resentation of the mirror achieving a perfect cor-
rection of any given incoming wavefront.

Theorem 1. Assume that the function zi is of
class C2. Then for any number C, the following
parametric equations

Xj = xj +
cos(θ)x1 + sin(θ)zi(x) + C

∆ − cos(θ) ∂zi

∂x1

+ sin(θ)
· ∂zi

∂xj

,

j = 1, . . . , n − 1 (1)

Z = zi(x) − cos(θ)x1 + sin(θ)zi(x) + C

∆ − cos(θ) ∂zi

∂x1

+ sin(θ)
(2)

with (x1, . . . , xn−1) ∈ [0, 1]n−1, define a mirror
shape leading to a perfect correction of the in-
coming wavefront z = zi(x).

The proof of Theorem 1 presents two steps.

• In a first step, assuming that the problem has
indeed a solution, we derive the formulas (1)-
(2) in using the fact that (i) all the reflected
rays share the same wave vector (namely,
f ) and (ii) the planar reflected wavefront is
an equiphase surface (i.e., the time needed
to reach the reflected wavefront from the
incident wavefront does not depend of the ray
under consideration.) Notice that the Snell-
Descartes first law is not explicitly used in
the computations.

• In a second step, we check that the reflected
wavefront computed in applying the Snell-
Descartes first law is indeed planar when the
shape of the mirror is given by (1)-(2).

The full details of the proof will appear elsewhere.
The derivation of (1)-(2) when n = 2 is sketched
in the next section. Let us do some comments.

(1) The shape of the deformable mirror that
enables a perfect correction of an arbi-
trary incoming wavefront is given as a
parametrized surface. When the map x 7→
X = (X1, ..., Xn−1) is invertible, then the
mirror may be defined by some equation
Z = zm(X1, ..., Xn−1).

(2) A loss of regularity occurs: if zi is of class Cr,
then the functions X1(x), ..., Xn−1(x), Z(x)
are expected to be of class Cr−1 only, due
to the presence of the derivatives ∂zi/∂xj

in (1)-(2). Notice that the formulas (1)-(2)
may be used when zi is merely of class C1,
although the Snell-Descartes first law cannot



be applied to check whether the reflected
wavefront is still planar. Indeed, to apply the
Snell-Descartes reflection law, the existence
of a normal vector to the mirror surface is
required at each point of the mirror. That
property is guaranteed if the functions Xi(x)
(1 ≤ i ≤ n−1) and Z(x) are of class C1, but
these functions are only continuous when zi

is of class C1. Notice that a loss of regularity
(expressed in a statistical framework) has
also been pointed in (Le Roux, 2003).

(3) The shape of the mirror which works fine
turns out not to be unique. Actually, we
found a one-parameter family of solutions (C
being the parameter). Geometrically, giving
a value to C amounts to choosing the loca-
tion where some incident ray and the mirror
intersect. Notice that the different shapes
of the mirror do not correspond to simple
translations of one of them: the shape of the
mirror change with C. On the other hand,
the surface defined by (1)-(2) may reduce to
a point for certain value of C (see below for
some example).

2.2 The 2D problem

Here, we consider the simplest case where n = 2,
hence x = x1. We aim to derive the parametric
form of the mirror shape thanks to which a per-
fect correction of the incident wavefront may be
carried out. An incident ray issued from (x, zi(x))
admits as (tangent) wave vector the vector n =
1

∆
(z′i(x),−1). The intersection point of the ray

with the mirror is given by







X = x +
t

∆
z′i(x)

Z = zi(x) − t

∆

(3)

where ∆(x) =
√

1 + |z′i(x)|2 and t denotes the
time needed to reach the mirror. (The speed of
light, whose value does not matter here, is chosen
to be one.) The key point is that the wave vector
of the reflected ray is f = (cos(θ), sin(θ)), which
amounts to saying that the reflected wavefront
takes the form g(x) := cos(θ)x + sin(θ)z = const.
Therefore, for T large enough, the function

g(x) = cos(θ)(X + (T − t) cos(θ))

+ sin(θ)(Z + (T − t) sin(θ))

= (x +
t

∆
z′i(x)) cos(θ)

+(zi(x) − t

∆
) sin(θ) + (T − t)

has to be constant with respect to x. Expressing t
as a function of x and plugging it in (3), we arrive
to



















X = x +
cos(θ)x + sin(θ)zi(x) + C

∆ − cos(θ)z′i(x) + sin(θ)
z′i(x)

Z = zi(x) − cos(θ)x + sin(θ)zi(x) + C

∆ − cos(θ)z′i(x) + sin(θ)
, x ∈ [0, 1].

Let us now assume that the incident wavefront
is only slightly disturbed (i.e. zi(x) = x + K +
δ(x) with |δ(x)| << 1, K being some constant),
and that θ = π/4. Then taking the second order
Taylor expansion of X and Z one obtains for
C = −K/

√
2











X = 2x +
δ

2
+ xδ′ − 1

8
xδ′

2
+

δδ′

2
+ o(δ′

2
+ |δδ′|),

Z = K +
1

2
δ +

1

8
xδ′

2
+ o(δ′

2
).

It is then easy to derive the second order ap-
proximation of Z as a function of X : Z = K +
1

2
δ(X/2)− 1

16
δ′(X/2)2 − 1

8
δ(X/2)δ′(X/2). In par-

ticular, we obtain at the first order in δ

Z = K +
1

2
δ(X/2).

Thus, at the first order the shapes of the mirror
and of the wavefront must overlap (up to a trans-
lation and a dilatation). This is the rule used in
most classical systems.

To illustrate the comments (2) and (3) of the
previous section, let us assume that θ = π/4
and that the incoming wavefront is spherical,
e.g. zi(x) =

√
1 − x2, x ∈ [−1, 0]. According to

Theorem 1, the shape of the mirror which achieves
a perfect correction of the wavefront is given by















X =
x

1 + (x/
√

2) + (
√

1 − x2/
√

2)
(1 − C)

Z =

√
1 − x2

1 + (x/
√

2) + (
√

1 − x2/
√

2)
(1 − C),

C being any real constant. It follows that the mir-
ror is a part of the parabola (X−Z)2 = 2

C−1
(X +

Z)− 2, as illustrated in Figure 2. The well-known
property that a parabolic mirror transforms a pla-
nar wavefront into a spherical one (and vice-versa)
is recovered. Notice that the parabola reduces to
the origin when C = 1, and that the parabolas
associated with different values of C fail to be
isometric.

The result in Theorem 1 may be extended to the
case where the incoming wavefront is defined in a
parametric way. This extension proves to be useful
when the wavefront measure is performed after

the reflection on the deformable mirror; indeed,
in that case the incident wavefront is defined
by parametric equations (see below). Assume the
incoming wavefront to be defined as (x, z) =
(xi(s), zi(s)), where xi and zi are given functions
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belonging to C1(I, R) (I ⊂ R is some interval)
and set

∆̃ =
(

x′
i

2
+ z′i

2
)

1

2

.

Then the following result holds true.

Proposition 1. Assume that the functions xi and
zi are of class C2. Then for any number C, the
following parametric equations

X = xi +
cos(θ)xi + sin(θ)zi + C

∆̃ − cos(θ)z′i + sin(θ)x′
i

· z′i (4)

Z = zi −
cos(θ)xi + sin(θ)zi + C

∆̃ − cos(θ)z′i + sin(θ)x′
i

· x′
i (5)

define a mirror shape leading to a perfect correc-
tion of the incoming wavefront x = xi(s), z =
zi(s).

The proof follows the same line as for Theorem 1.

2.3 The 3D Problem

Clearly, the case n = 3 corresponds to the most
interesting one from a physical viewpoint. An
application of Theorem 1 provides the following
parametric representation of the mirror

X1 = x1 +
cos(θ)x1 + sin(θ)zi(x1, x2) + C

∆ − cos(θ) ∂zi

∂x1

+ sin(θ)

∂zi

∂x1

X2 = x2 +
cos(θ)x1 + sin(θ)zi(x1, x2) + C

∆ − cos(θ) ∂zi

∂x1

+ sin(θ)

∂zi

∂x2

Z = zi(x1, x2) −
cos(θ)x1 + sin(θ)zi(x1, x2) + C

∆ − cos(θ) ∂zi

∂x1

+ sin(θ)
,

where (x1, x2) ranges over [0, 1]2.

In order to extend above formulas to the case
where the incident wavefront is defined by para-
metric equations we need to introduce a few no-
tations. Let the incident wavefront be defined as

(x, z) = (xi1(s, t), xi2(s, t), zi(s, t)), where xi1, xi2

and zi are given functions belonging to C1(I2, R)
(I is again some real interval). Let n = (n1, n2, n3)
denote the wave vector of any incident ray. We
readily find







































n1 =
∂xi2

∂t

∂zi

∂s
− ∂xi2

∂s

∂zi

∂t

n2 =
∂xi1

∂s

∂zi

∂t
− ∂xi1

∂t

∂zi

∂s

n3 =
∂xi1

∂t

∂xi2

∂s
− ∂xi1

∂s

∂xi2

∂t
·

Set

∆̃ = ||n|| = (|n1|2 + |n2|2 + |n3|2)
1

2 .

The extension of Proposition 1 to the 3D case is
as follows.

Proposition 2. Assume that the functions xi1, xi2

and zi are of class C2. Then for any number C,
the following parametric equations

X1 = xi1 +
cos(θ)xi1 + sin(θ)zi + C

∆̃ − cos(θ)n1 − sin(θ)n3

n1

X2 = xi2 +
cos(θ)xi1 + sin(θ)zi + C

∆̃ − cos(θ)n1 − sin(θ)n3

n2

Z = zi −
cos(θ)xi1 + sin(θ)zi + C

∆̃ − cos(θ)n1 − sin(θ)n3

n3,

define a mirror shape leading to a perfect correc-
tion of the incoming wavefront x1 = xi1(s, t), x2 =
xi2(s, t), z = zi(s, t).

3. 2D CLOSED LOOP CONFIGURATION

Here we focus on the so-called closed loop configu-

ration for which the wavefront sensors are located
on the optical path after the reflection.

To define the shape of the corrector mirror, we
first have to derive the form of the incident wave-
front from the measure of the reflected wavefront.
Then we may use (1)-(2) to get the parametric
equations defining the mirror.

For the sake of simplicity, we restrict ourselves
to the two-dimensional case. Thanks to the re-
versibility of Snell-Descartes laws, the incoming
wavefront may be seen as the reflected wavefront
associated with the measured wavefront (which is
the authentic reflected wavefront). Assume that
the mirror is given by the equation z = zm(x)
and that the reflected wavefront is described by
the system of parametric equations x = xr(s), z =
zr(s). Let us set



∆r :=

√

x′
r
2 + z′r

2,

∆m :=

√

1 + z′m
2.

If t(s) is the time elapsed from the reflection (i.e.,
the length of the optical path between the mirror
and the reflected wavefront), then the incoming
wavefront is defined by

xi(s) = xr(s) +
t(s)

∆r

z′r(s) − (T − t(s))ni1 (6)

zi(s) = zr(s) −
t(s)

∆r

x′
r(s) − (T − t(s))ni2 (7)

where T > 0 is a given duration and

ni = (ni1, ni2)

=
2(x′

r + z′mz′r)

∆2
m∆r

(z′m,−1) +
1

∆r

(−z′r, x
′
r)

stands for the incident wave vector. Notice that to
compute t(s) we need to find the intersection of a
ray with the mirror. This task cannot be done in
an analytical way in general.

Combining (6)-(7) to (4)-(5), we obtain a para-
metric representation of the mirror.

4. NUMERICAL SIMULATIONS

In order to numerically compute the reflection of
the wavefront on a mirror, we need to determine
the intersection points of the incoming rays with
the mirror together with the normal vectors to the
mirror surface at these points. Using parametric
representations of both the mirror surface and the
rays, the intersection points are found by solving
a 1D nonlinear equation by means of a variant of
the secant method.

One of the burning issues is how to obtain an
“efficient” shape of the mirror from the parametric
representation. It turns out that only a part of
the mirror may be used in practice for the wave-
front correction. Indeed, a parametrized surface
is generally the graph of a function only locally.
An incident ray may intersect the mirror several
times, and the first intersection point may be on
the wrong side of the mirror. One way to overcome
this problem is to impose that Z be an increasing
(or slightly decreasing) function of X , so that any
incident ray meets the mirror only one time. On
the other hand, the parametrized surface may go
beyond the zone which may be reached by the
incident rays. The parameter C arising in (1)-(2)
and the range of the variable x have to be chosen
in such a way that the deformed mirror remains
as close as possible of the undeformed mirror.
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A sample of tests when n = 2 have been carried
out with a planar mirror (no correction), and with
mirrors defined respectively by first-order, second-
order and parametric formulas.

The incident wavefront, depending on a small
parameter ε ∈ [0, 1], is defined as

zi(x) = 2 + ε sin(πx), x ∈ [0, 1]

The residual error is

er =

(
∫ 1

0

|zr(x) − zp(x)|2 dx

)

1

2

where z = zr(x) (resp., z = zp(x)) is the equation
defining the reflected wavefront (resp., the planar
wavefront).

The residual error associated to each type of cor-
rection is plotted in Figure 3. As expected, using
a deformable mirror designed with a first-order
or second order formula allows to correct in a
convenient way the incoming wavefront in a linear

regime (ε < 10−2). The error is proportional to ε2

with a mirror defined by the first-order formula.
A dramatic improvement of the correction of the
wavefront in a nonlinear regime (ε ∼ 10−1) is
achieved with a deformable mirror designed along
the parametric equations (1)-(2).

5. MEMBRANE MIRROR

In this section, we assume that the deformable
mirror is a clamped membrane mirror (see e.g.
(Welsh and Gardner, 1989)); (Tyson, 1998); (Hardy,
1998); (Fernández and Artal, 2003)). Then its dy-
namics is governed by the wave equation (written
here in its normalized form)

ytt − ∆y = v in Ω×]0, T [

supplemented with the initial conditions y(0) =
y0, yt(0) = y1 and the boundary conditions y =
0 on Σ := ∂Ω×]0, T [. Here, Ω is an open set in R

2

and v stands for the control input. We stress that



in AO, the control input is usually assumed to
be applied everywhere. The following result deals
with the tracking problem for the wave equation.

Theorem 2. Let (y0, y1) ∈ H1
0 (Ω)×L2(Ω) and let

ȳ ∈ H2
loc(R

+, L2(Ω)) ∩ L2
loc(R

+, H2(Ω) ∩ H1
0 (Ω))

be a given trajectory. Pick any number k > 0 and
set

ε(t, x) := y − ȳ

v(t, x) := ȳtt − ∆ȳ − k εt.

Then ε(t) → 0 strongly in H1
0 (Ω) as t → +∞.

Proof. Clearly, ε fulfills

εtt − ∆ε = −kεt in Ω × (0, T )

ε = 0 on Σ.

The proof is completed by applying a classical
result (see e.g. (Lions, 1988)) on the internal sta-
bilization of the wave equation. 2

Assume now that the incident wavefront zi is a
smooth function of both t and x. Applying The-
orem 1, we may associate to it a nominal mirror
shape ȳ achieving a perfect correction of the inci-
dent wavefront. Then it follows from Theorem 2
that a control input may be designed in such a way
that the difference between the nominal mirror
shape and the actual mirror shape tends to 0. As
a consequence, we obtain that the residual error
tends also to zero.

Remarks.

(1) Actually, the nominal trajectory ȳ has to
belong to H1

0 (Ω) (hence, y = 0 on ∂Ω). That
condition is fulfilled by taking the projection
on H1

0 (Ω) of the mirror shape provided by
Theorem 1. The error with respect to the
exact mirror shape may be minimized by a
convenient choice of the parameter C.

(2) In practice, a flat mirror (the so-called tilt

correction mirror, see (Roggeman and Welsh,
1996); (Tyson, 1998)) is used to compensate
for low frequency wavefront disturbances.
With such a device at hand, the mirror shape
to be reached is actually almost flat at the
boundary.

(3) In a closed loop framework, the incident
wavefront depends also on y. Then the nom-
inal trajectory is a function of zr and y.

6. CONCLUSION

A parametric representation of a mirror achieving
a perfect correction of a given incident wavefront
has been given here. When the deformable mirror

is a membrane mirror, a control input allowing
to compensate for a slowly time-varying wave-
front disturbance has been proposed. Such con-
trol deserves to be numerically studied, in the
open loop or in the closed loop configurations.
The tracking problem may also be investigated
when the deformable mirror is a bimorph mirror
((Tyson, 1998), (Lenczner and Prieur, 2004)). It
will be the purpose of further works in a near
future.
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