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Abstract: Chromatographic separations are widespread in the fine chemicals and
pharmaceutical industries for the downstream processing of complex mixtures with
similar thermodynamic properties. In recent years, continuous chromatographic
processes, in particular Simulated Moving Bed (SMB) processes are increasingly
applied in industry. SMB processes are characterized by a counter-current move-
ment of the liquid and the solid phase which is achieved by switching the inlet and
the outlet ports of a closed loop of chromatographic columns periodically.
Recent research has focused on the model-based optimization and control of SMB
processes. In a model-based approach, plant/model mismatch has to be taken
into account. In this paper, the issue of state estimation in SMB processes under
plant/model mismatch is addressed. A Kalman filter is designed and successfully
applied. The estimation is based on only one measurement device located in the
recycle stream of the process. Copyright c©2005 IFAC
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1. INTRODUCTION

Preparative chromatographic separation processes
play an important role in the downstream process-
ing in the pharmaceutical and fine chemicals in-
dustries. Until now, most industrial separations
are performed discontinuously, leading to low pro-
ductivity and high solvent consumption. In recent
years, continuous Simulated Moving Bed SMB
processes are increasingly applied due to their
advantages with respect to the utilization of the
adsorbent and solvent consumption.
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SMB processes are characterized by mixed dis-
crete and continuous dynamics, spatially distrib-
uted state variables with steep slopes, and slow
and strongly nonlinear reactions of the product
concentrations to changes of the operating pa-
rameters, and therefore difficult to control. An
overview of recent achievements in the optimiza-
tion and control of chromatographic separations
can be found in (Engell and Toumi, 2004). A two-
layer control strategy for SMB processes was pro-
posed in (Klatt et al., 2000). On the upper layer,
the operating parameters are optimized using a
rigorous plant model. The low level control task
is to keep the process on the optimal trajectory
despite disturbances and plant/model mismatch
by controlling the positions of the concentrations



fronts (Wang et al., 2003). On the upper layer the
model parameters are adapted based on online
measurements. However, the stabilization of the
front positions does not guarantee the product
purities in the presence of plant/model mismatch
and in case of structural plant/model mismatch an
additional purity control layer must be introduced
(Hanisch, 2002). In (Toumi and Engell, 2004a)
and (Toumi and Engell, 2004b), a nonlinear opti-
mizing control scheme was proposed and success-
fully applied to a 3-zone reactive SMB process for
glucose isomerization. In each switching period,
the operating parameters are optimized to mini-
mize a cost function. The product purities appear
as constraints in the optimization problem. In the
optimization, a rigorous model of the general rate
type is used. Plant/model mismatch is taken into
account by assuming an additive constant distur-
bance derived from the difference of the predicted
and the measured purities. In addition, the model
parameters are regularly updated. The internal
(distributed) states of the plant are computed
from the available concentration measurements by
forward simulation. The prediction is based upon
the assumption that the columns are uniform
and that modeling errors are small. However, the
columns may have different effective lengths, and
the adsorbent and the catalyst (for the case of
reactive chromatography) may be packed differ-
ently. In addition, the column temperatures can
exhibit some variation. Therefore, as observed in
the experimental validation of the controller, the
product purities of a SMB plant may oscillate over
a cycle of operation when the operation parame-
ters obtained from the simulation of a plant with
uniform columns are applied.

In this paper, the issue of the estimation of the
internal concentration profiles in SMB processes
from available measurements at the column out-
puts is addressed. A particular challenge results
from the fact that the measurement information
which is available at a real plant is rather scarce.
Even when both concentrations in the product
streams are measured continuously (which is not
the standard in production processes), the dy-
namic errors of these measurements usually are
too large to use them for the computation of the
internal concentration profiles. We therefore esti-
mate the concentration profiles inside all columns
from only one continuous concentration measure-
ment in the recycle loop. The goal is to apply the
state estimation scheme for the computation of
the initial state and for the adaptation of crucial
model parameters in the online optimizing control
concept.

The remainder of this paper is structured as fol-
lows: in the next section, SMB processes are intro-
duced. Section 3 is devoted to the observation of
the states in the SMB plant based upon only one

measurement device, the situation encountered at
our pilot plant. Simulation results are presented
in section 4. Finally, a summary and outlook for
future research are given.

2. SMB PROCESSES

2.1 Process description

The SMB process is a practical implementation
of a counter-current movement between the liquid
and the solid phase in chromatographic separa-
tions. The process consists of chromatographic
columns which are connected in series to form a
closed-loop system. The counter-current motion
of the solid phase with respect to the liquid phase
is achieved by synchronously advancing the inlet
and outlet ports of the system in the direction
of the liquid flow. The columns can be divided
into four different zones according to their relative
position with respect to the inlet and the outlet
ports as depicted in Figure 1:

(i) Zone I between eluent and extract port:
desorption of the more strongly retained
component

(ii) Zone II between extract and feed port:
desorption of the less retained component

(iii) Zone III between feed and raffinate port:
adsorption of the more strongly retained
component

(iv) Zone IV between raffinate and eluent port:
adsorption of the less retained component.
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Fig. 1. Schematic diagram of a 4-zones SMB
process

In this paper, the separation of fructose (A) from
glucose (B) is considered (Jupke, 2004). The ad-
vantage of pure fructose is its higher sweetness and
better solubility in water at room temperature.
The columns are packed with an ion exchange
resin adsorbent (Amberlite CR-13NA). An opti-
mized SMB configuration with a 1/2/2/1 column
distribution among the zones is considered. The
concentration profiles in the plant move in the
direction of the liquid flow and are then shifted
by one column against the liquid flow at the end
of each period T. When the concentration profiles
after the switch are identical to those at the be-
ginning of the period, stationary operation at a
cyclic steady state is reached.



2.2 Modeling

Modeling of chromatographic processes has been
the focus of many publications in recent years.
Rigorous models of SMB plants consist of dynamic
models of each column and periodic shifting of
the ports. From mass balances around the inlet
and outlet nodes the following expressions for
the internal flow rates QI , QII , QIII , QIV and the
inlet concentrations cin

i,I , c
in
i,III after the mixing

nodes can be derived:
Desorbent node: QIV + QDe = QI

cout
i,IV QIV = cin

i,IQI

Extract node: QI −QEx = QII

Feed node: QII + QFe = QIII

cout
i,IIQII + ci,FeQFe = cin

i,IIIQIII

Raffinate node: QRa + QIV = QIII .
i = A, B

QDe, QEx, QFe, QRa denote the external flow
rates while cout

i denotes the concentration of com-
ponent i leaving the respective zone.

The chromatographic columns are described ac-
curately by the general rate model which ac-
counts for all important effects of the column, i.e.
mass transfer between the liquid and solid phase,
pore diffusion, and axial dispersion (Gu, 1995),
(Guichon et al., 1994). It is assumed that the
particles of the solid phase are uniform, spherical,
porous (with a constant void fraction εp), and
that the mass transfer between the particle and
the surrounding layer of the bulk is in a local
equilibrium. The concentration of component i
is given by ci in the liquid phase and qi in the
solid phase. Dax is the axial dispersion coefficient,
u the interstitial velocity, εb the void fraction of
the bulk phase, ceq

i the equilibrium concentration,
kl,i the film mass transfer resistance, and Dp,i the
diffusion coefficient within the particle pores. The
concentration within the pores is denoted by cp,i.
Assuming that u and ci are uniformly distributed
over the radius, the following set of partial dif-
ferential equations can be obtained from a mass
balance around an infinitely small cross-section of
the column:

δci

δt
+

(
1− εb

εb

)
3kl,i

rp
(ci − cp,i|r=rp

)

= Dax,i
δ2ci

δz2
− u

δci

δz
(1)

(1− εb)
δqi

δt
+ εp

δcp,i

δt
− εpDp,i

1
r2

δ

δr

(
r2 δcp,i

δr

)

= 0 (2)

The initial and boundary conditions are

ci,t=0 = cin
i ; cp,i,t=0 = cp,i(0, r, x),

δci

δz

∣∣∣∣
z=0

=
u

Dax,i

(
ci − cin

i

)
;

δci

δx

∣∣∣∣
z=L

= 0 (3)

δc

δr

∣∣∣∣
r=0

= 0;
δcp

δr
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r=rp

=
ki

εpDp,i

(
ci − cp,i,r=rp

)
.

For sugar separations at low and medium con-
centrations, the adsorption can be described by
a linear (Henry) adsorption isotherm:

qi = Hicp,i. (4)

The extract purity Ex and raffinate purity Ra are
calculated according to:

Ex =

∫ T

0
CEx,Adt

∫ T

0
(CEx,Adt + CEx,Bdt)

(5)

Ra =

∫ T

0
CRa,Bdt

∫ T

0
(CRa,Adt + CRa,Bdt)

. (6)

The resulting coupled partial differential equa-
tions can be solved efficiently using the numeri-
cal approach proposed by (Gu, 1995), where the
solid phase is discretized by applying orthogonal
collocation and the bulk phase is discretized using
the Galerkin finite element method. The finite ele-
ment method is especially suitable for stiff systems
as chromatographic processes which are charac-
terized by steep gradients in the fluid phase. If the
concentration of the feed, the switching period,
the input and the output flows are constant and
the absorption isotherm is linear, the resulting
ordinary differential equation system is linear. For
the observer application presented in this paper
the classical SMB operation with constant flows
is considered. With the chosen number of finite
elements and collocation points, the six column
SMB process in Figure 1 is described by 312
states. In the sequel, the states of the discretized
model are denoted by x and the set of linear ODEs
is referred to as ẋ = f(x). In the simulations,
the set of ordinary differential equations is solved
using the ODE solver ”dvode”.

3. OBSERVER DESIGN

The development of the state estimator is re-
lated to the pilot SMB-plant which is operated
in our department. The plant is equipped with
three concentration measurement devices which
are located at the outlet ports of the extract
and the raffinate flows and in the recycle stream.
The concentration measurements in the product
streams are not useful for dynamic state estima-
tion because of considerable hold-ups that cause
delays and back mixing. They are only used to
determine the average product purities over one
period (Hanisch, 2002). The measurement device
in the recycle stream has small dead volumes and
provides precise dynamic concentration profiles.
Hence only two measurements (two concentra-
tions at one location) are available to estimate the
remaining 310 states. The recycle measurement is
stationary within the physical plant. Therefore,
the measurement position is shifted one column in
the opposite direction to the liquid flow when the



ports are moved. The available measurement thus
provides different state variables during each of
the 6 switching periods over one cycle. The output
matrix C is adjusted after each period accordingly.

3.1 Kalman Filter design

The purpose of the state estimator is to provide
corrected predictions of the model states. It can
be shown that the system is observable from the
available measurements. A linear Kalman Filter
(KF) is applied here. It is characterized by a
prediction step and a correction step:

(1) Prediction:

x̂k+1,k = x̂k,k +
∫ tk+1

tk

f̂(x̂)dt (7)

Pk+1,k = APk,kAT + Q (8)

(2) Correction:

Kk = Pk,k−1C
T (CPk,k−1C

T + R)−1 (9)
x̂k,k = x̂k,k−1 + Kk(yk − ŷk,k−1) (10)
Pk,k = (I −KkHk,k−1)Pk,k−1, (11)

where P is the error covariance, K the Kalman
gain, A the system matrix, Q the model error
covariance matrix, R the measurement error co-
variance matrix, f̂ is the right hand side of the
ODE system describing the process model, and y
are the measurements. x̂ represents the estimated
states. The first index denotes the actual time
instance, while the second index is the time in-
stance when the respective matrix is calculated.
The error matrix Psmb of the SMB plant can be
represented as:

Psmb =




P1,1 P1,2 P1,3 P1,4 P1,5 P1,6

P2,1 P2,2 P2,3 P2,4 P2,5 Pc,6

P3,1 P3,2 P3,3 P3,4 P3,5 P3,6

P4,1 P4,2 P4,3 P4,4 P4,5 P4,6

P5,1 P5,2 P5,3 P5,4 P5,5 P5,6

P6,1 P6,2 P6,3 P6,4 P6,5 P6,6




, (12)

where for example P1,2 is the error covariance of
the states of column 1 and the states of column 2.
The evolution of the error covariance matrices Pi,j

over time depends on the position of the respective
column as well as potentially on different model
parameters for each column.

As the state variables are defined relative to the
port locations and not along the physical columns,
the states and the state error covariances must be
shifted when the ports are switched. To account
for the shift, the error matrix of the SMB-process
is transformed after each period T according to:

Pi,j(T+) = Pi+1,j+1(T−), i, j = 1, .., 5 (13)
P6,i(T+) = P1,i+1(T−), i = 1, .., 5 (14)
Pi,6(T+) = Pi,1(T−), i = 1, .., 5 (15)
P6,6(T+) = P1,1(T−). (16)

The transformation of Psmb reflects that the error
covariances of the physical columns remain un-
changed as the ports are shifted.

The SMB-process considered here is simulated
with the set of plant parameters and operating
parameters given in Table 2. In the investigation
of the performance of the estimator, it is assumed
that the measurements are corrupted with addi-
tive white noise with a variance of 2.5% of the
largest concentration value. The measurement er-
ror covariances are assumed to be diagonal with
variances σ2

i on the diagonal. The state noise
covariance matrix Q is calculated at each time
step using the so-called Linearization approach
introduced by (Valapil and Georgakis, 1999). The
mean values of the parameters, pnom, and the co-
variances Cp of the model parameters are utilized
to determine Q(t) according to:

Q(t) = Jp,nom(t)CpJ
T
p,nom(t), (17)

where Jp,nom = δf̂
δp

∣∣∣
nom

.

In this approach it is assumed that f̂ is linear
in its parameters p. The SMB example process
considered here is only slightly nonlinear in the
parameters so this assumption is justified. (Valapil
and Georgakis, 1999) demonstrated that this tun-
ing approach is efficient. In the simulation model
errors introduced by perturbed Henry coefficients
are investigated. The covariance matrix CP of the
Henry coefficients is calculated by:

CP =
(

σ2
HA

σHA
σHB

σHA
σHB

σ2
HB

)
. (18)

For the simulations the standard deviations σHA

and σHB are assumed to be 0.1126 and 0.0837,
respectively. The initial error covariance matrix
P0 is considered as a tuning parameter of the
estimator. P0 = 100 · I was found to give good
results.

4. RESULTS

Figures 2 and 3 demonstrate the convergence
of the estimator described above for a perfectly
known model but an initial error of -100% from
the actual plant operated at CSS which is equiv-
alent to assuming an empty plant while the real
plant is already at the cyclic steady state. The
observed state reaches the real state within 6
switching periods. The assumption that the con-
centration profile is completely unknown initially
is overly pessimistic. Instead, the measured con-
centrations over one full cycle (the so-called As-
sembled Elution Profile, AEP) provide a good
approximation of the internal profiles at the be-
ginning of a cycle and can be taken as the initial
state for the estimator. In the scheme used in
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Fig. 2. True and estimated elution profiles at
t=3T, concentration measurement at the out-
let of column 4; initial error -100%; thick
lines: reference plant, marked dashed lines:
estimation
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Fig. 3. True and estimated elution profiles at
t=6T, concentration measurement at the out-
let of column 1; initial error -100%; thick
lines: reference plant, marked dashed lines:
estimation

(Toumi and Engell, 2004a,b), the internal states
are estimated by simulating the plant model start-
ing from the AEP as the initial state. This scheme
is thus equivalent to the Kalman filter without the
correction step.

In a second scenario, a virtual plant with para-
meters that are different from the model used in
the estimator operated at the CSS with the sim-
ulation initialized by the AEP is considered. The
evolution of a corrected and an uncorrected model
is considered over 6 periods since a new AEP is
available after each cycle and can then be used for
reinitializing the model states. A model error is
introduced by increasing the value of both Henry
coefficients in the model by 30% (Hi,model = 1.3 ·
Hi,ref ), hence the adsorption is overestimated in
the model. An error of the Henry coefficients
was chosen because the adsorption isotherm is
of crucial importance for the behaviour of the
process. The measurement device is positioned at
the outlet of column 6 for the first period and then
moves one column to the left for each period.

The initial profile and the profiles at the end of
periods 4 and 6 are shown in figures 4, 5, 6 and the
achieved purities for each period and average pu-
rities are given in Table 1. During the first period,
the observer does not correct the model states
since the outlet concentrations of the reference
plant and the model are both close to zero. The
superior performance of the observer is demon-
strated from the second period on. The corrected
states remain close to the profile of the actual
plant but exhibit a cyclic behaviour depending
on the position of the recycle measurement, see
Table 1. Especially for periods 4 - 6, the product
purity forecast of the observer is much closer to
the value of the ”real” plant than the forecast
of the uncorrected model. The average product
purity computed by the observer is within 1.4%
of the true value while the use of an uncorrected
model leads to a bias of almost 4% for the extract
purity.
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Fig. 4. Elution profiles at t=0, concentration mea-
surement at the outlet of column 6; model
error: Hi = 1.3 · Hi,ref ; thick lines: refer-
ence plant, dashed lines: estimation, dash-
dots: open-loop observer
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Fig. 5. Elution profiles at t=3T, concentration
measurement at the outlet of column 4;
model error: Hi = 1.3 ·Hi,ref ; thick lines: ref-
erence plant, dashed lines: estimation, dash-
dots: open-loop observer
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Fig. 6. Elution profiles at t=6T, concentration
measurement at the outlet of column 1;
model error: Hi = 1.3 ·Hi,ref ; thick lines: ref-
erence plant, dashed lines: estimation, dash-
dots: open-loop observer

Table 1. Comparison of the predicted
purities for simulation and state esti-
mation at the cyclic steady state; ref-
erence purities: 96.8% (extract) and

97,0% (raffinate)

Period Exest Raest Exsim Rasim

1 94.10% 96.81% 94.10% 96.81%
2 93.90% 96.92% 94.10% 97.09%
3 95.25% 97.20% 93.66% 97.43%
4 96.20% 97.52% 93.03% 97.83%
5 96.59% 97.83% 92.21% 98.23%
6 96.55% 98.04% 91.21% 98.59%
average 95.43% 97.39% 93.05% 97.60%

5. CONCLUSION

The performance of the Kalman Filter developed
for Simulated Moving Bed processes is satisfac-
tory, given the difficult task to observe the plant
based on only one measurement device. In combi-
nation with the AEP, the forecast of the product
purities is improved compared to a pure simu-
lation. The application of the observer for SMB
processes presented in this paper is especially
suitable for processes with high purity require-
ments, which require a precise purity forecast for
optimal operation. It is expected that the perfor-
mance of the model predicitive control approach
to SMB processes as described in (Toumi and
Engell, 2004a,b) can be improved by using a state
estimation scheme rather than uncorrected simu-
lations. In future research, the observation of SMB
processes with nonlinear adsorption isotherms will
be studied.
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