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Abstract: A primary goal of adaptive control is to achieve stability and asymp-
totically optimal performance, given the feasibility of adaptive control problem—
defined as the existence of a stabilizing solution in a continuously parametrized
controller set. A solution is proposed called safe adaptive control, which robustly
achieves this goal without any assumptions other than feasibility. Specifically, a
list of the required properties of the cost function is formulated. The paper builds
on the previous results in Stefanovic et al. (2004) and Morse et al. (1992). The
previous results are generalized here by allowing the class of candidate controllers
to be infinite. The problem is motivated by a model-mismatch stability failure
associated with a multitude of adaptive control schemes. Copyright c© 2005 IFAC
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1. INTRODUCTION

The book Adaptive Control (Åström and Wit-
tenmark, 1995) begins in the following way: “In
everyday language, ‘to adapt’ means to change
a behavior to conform to new circumstances. In-
tuitively, an adaptive controller is thus a con-
troller that can modify its behavior in response
to changes in the dynamics of the process and the
character of the disturbances”.

Whether it is conventional, continuous adaptive
tuning or more recent adaptive switching, adap-
tive control has an inherent property that it orders
controllers based on evidence found in data. Any
adaptive algorithm can thus be associated with a
cost function, dependent on available data, that
it minimizes, though this may not be explicitly
present. The differences among adaptive schemes
arise in part due to specific algorithms employed
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to approximately compute cost-minimizing con-
trollers. And, major differences also arise due to
the extent to which additional assumptions are
tied with this cost function. The cost function
needs to be chosen to reflect control goals. Thus,
an important issue is the precise definition of the
goal of adaptive control, which has been used
variously. The perspective adopted in this paper
hinges on the notion of feasibility of adaptive
control. An adaptive control problem is said to be
feasible if the plant is stabilizable and at least one
(a priori unknown) stabilizing controller exists
in the candidate controller set that achieves the
specified control goal for the given plant. Given
feasibility, the view adopted in this paper of a pri-
mary goal of adaptive control is to recognize when
the accumulated experimental data shows that a
controller fails to achieve desired stability and per-
formance objectives. If a destabilizing controller
happens to be the currently active one, adaptive
control should eventually switch it out of the loop,
and replace it with an optimal one. An optimal



Fig. 1. Switching adaptive control system
∑

controller is one that optimizes the cost function
given the currently available evidence. This per-
spective renders the adaptive control problem in
a form of a standard constrained optimization.

Following the work in (Safonov and Tsao, 1997),
further progress was made in (Stefanovic et al.,
2004) which identifies sufficient conditions for en-
suring stability and convergence to a robustly
stabilizing controller, given control problem feasi-
bility, with a focus on a finite candidate controller
set. The results of this paper widen the previous
theoretical ground by allowing the class of candi-
date controllers to be infinite. This property is es-
sential when the uncertainties are so large that no
set of finitely many controllers is likely to suffice in
achieving the control goal. It is shown that, under
some mild additional assumptions on the cost
function (designer-based, not plant-dependent),
stability of the closed loop switched system is
assured, as well as the convergence to a stabilizing
controller in finitely many steps. Related work can
be found in e.g. (Morse et al., 1992), (Hespanha
et al., 2003).

The paper is organized as follows. Preliminary
facts are given in § 2, followed by the main
result in § 3. Then, § 4 presents an example of
the cost function satisfying sufficient conditions
for stability and finiteness of switches, while § 5
provides a simple simulation verification of the
proposed theory.

2. PRELIMINARIES

Let Z be the set of all possible output signals
z = [u, y] reproducible by switching adaptive
system Σ : L2e −→ L2e in Figure 1. Let zdata

= [ydata, udata] ∈ Z represent the output signals
recorded (hypothetically) in one single, infinite
duration, experiment. At any time τ , Pτzdata is
the actually available data obtained using the
projection operator that truncates a signal after
t = τ , where t, τ ∈ T = R+.

Unless otherwise noted, it is assumed, throughout
the paper, that all components of the system
under consideration have zero-input zero-output

property, so that when system Σ is undisturbed
((r, d, n) = 0), the pair (y, u) = (0, 0) is an
equilibrium solution.

An infinite set K (e.g. containing a continuum)
of candidate controllers is considered. The finite
controller set results will be derived as a special
case. The parameterization of K, denoted ΘK ,
will initially be taken to be a subset of Rn; the
more general case of infinite dimensional spaces
will be discussed in Comment 3.

Definition 1. The adaptive control problem is
said to be feasible if a candidate controller set
K contains at least one controller that achieves
stability and performance goals.

Definition 2. A controller K is said to be feasi-
ble if it satisfies given performance and stability
constraints.

Assumption 1. (Feasibility assumption). The adap-
tive control problem is feasible.

Comment 1. It is not known a priori which K ∈
K is feasible.

Definition 3. An L2-norm of a truncated signal

x(t) is given as ||x||t =
√∫ t

0
||x(τ)||2dτ , where

||x(t)|| stands for the Euclidean norm of x at time
t. The Euclidean norm of the parameterization
θK ∈ Rn of the controller K is denoted ||θK ||.

Definition 4. (Safonov, 1980) A system Σ : L2e −→
L2e with input w and output z is said to be stable
if there exists a function φ ∈ K (class K) such that
∀w ∈ L2e,w 6= 0:

lim sup
τ→∞

||z||τ ≤ φ(lim sup
τ→∞

||w||τ )

Otherwise, Σ is said to be unstable. If φ exists and
is linear, Σ is said to be finite-gain stable.

Specializing to the system in Figure 1, stability of
the closed loop system Σ means lim supτ→∞ ||[y, u]||τ
≤ φ(lim supτ→∞ ||r||τ ), for some φ ∈ K and
∀r ∈ L2e, r 6= 0.

Definition 5. (Safonov and Tsao, 1997). For every
K ∈ K, a fictitious reference signal r̃K(zdata) is
defined to be an element of

R̃(K, zdata) .= {r|K
[

r
y

]
= u, zdata =

[
u
y

]
}.

In other words, r̃K(zdata) is a hypothetical ref-
erence signal that would have exactly reproduced
the measured data zdata had the controller K been
in the loop for the entire time period over which
the data zdata was collected.

Definition 6. Given K ∈ K and measured data
zdata, stability of the system given in Figure 1



is said to be falsified by data zdata if, for some
r̃K(zdata) ∈ R̃(K, zdata),

lim sup
τ→∞

||zdata||τ
||r̃K ||τ = ∞

Otherwise, it is said to be unfalsified.

Definition 7. The cost functional V (K, z, t) is a
causal mapping

V : K× Z×T → R+ ∪ {∞}

Definition 8. (Bertsekas, 1999) A functional f :
Rn → R is said to be coercive if lim f(x) = ∞
when ||x|| → ∞, x ∈ Rn.

Definition 9. The true cost Vtrue : K → R+∪{∞}
is defined as Vtrue(K) = supz∈Z,τ∈T V (K, z, τ)

Definition 10. A robust optimal controller KRSP

is one that stabilizes (in the sense of the Def. 4) the
given plant and minimizes the true cost Vtrue(K).

Definition 11. A system is said to be cost de-
tectable if, whenever stability of the system in
Figure 1 with K ∈ K in the loop is falsified by
data zdata, then limτ→∞ V (K, zdata, τ) = ∞.

In the following, {tk}N̄
k=1, N̄ ∈ N ∪ {∞} denotes

an ordered sequence of times (tk+1 > tk, ∀k =
1, ..., N̄). Also, V .= {Vz,t : z ∈ Z, t ∈ T} : K → R+

denotes a family of functionals with the common
domain K, with Vz,t(K) .= V (K, z, t). The the-
ory will make use of the following level set in
the controller space: L .= {K ∈ K|Vz,t(K) ≤
Vtrue(KRSP ), V ∈ V}.

Definition 12. (Rudin, 1976). If E ⊂ X, and f is
a function defined on X, the restriction of f to E
is the function g whose domain of definition is E
such that g(p) = f(p) for p ∈ E.

With the family of functionals V with a common
domain K, a restriction to the set L ⊆ K is
associated, defined as a family of functionals W .=
{Wz,t(K) : z ∈ Z, t ∈ T} with a common domain
L.

Consider now the cost minimization hysteresis
switching algorithm reported in (Morse et al.,
1992), together with the cost functional V (K, z, t)
(see Figure 2). The algorithm returns, at each
time instant τ , a controller K̂τ which is the active
controller in the loop.

ε-HYSTERESIS SWITCHING ALGORITHM A1

(Morse et al., 1992)

(1) Initialize: Let t = 0, τ = 0; choose ε > 0.
Let K̂t ∈ K be the first controller in the loop.

(2) τ ← τ + 1.
If V (K̂t, z, τ) > minK∈K V (K, z, τ) + ε then

t ← τ and K̂t ← arg minK∈K V (K, z, τ).

Fig. 2. Cost vs. control gain time snapshots.

(3) K̂τ ← K̂t;
(4) go to 2.

In the above algorithm, the hysteresis step ε serves
to limit the number of switches, and so prevents
the possibility of switching limit cycle type of
instability.

In conjunction with Algorithm A1 and the cost
function V (K, z, t), and the particular zdata from
one experiment, {tk}N̄

k=1, N̄ ∈ N ∪ {∞} denotes
the ordered sequence of switching times. Kk is
the controller switched in the loop at time tk, k =
1, ..., N̄ , that remains in the loop until some time
tk+1 > tk, when Kk+1 is switched in the loop ac-
cording to A1. K̂t is the currently active controller
at time t. Thus, K̂t = Kk on t ∈ [tk, tk+1).

Definition 13. (Wheeden and Zygmund, 1977).
Let S be a topological space. A family F .=
{fα : α ∈ A} of complex functionals with a com-
mon domain S is said to be equicontinuous at a
point x ∈ S if for every ε > 0 there exists an open
neighborhood N(x) such that ∀y ∈ N(x), ∀α ∈ A,
|fα(x) − fα(y)| < ε. The family is said to be
equicontinuous on S if it is equicontinuous at each
x ∈ S. F is said to be uniformly equicontinuous
on S if ∀ε > 0, ∃δ = δ(ε) > 0 such that ∀x, y ∈ S,
∀α ∈ A, y ∈ Nδ(x) ⇒ |fα(x)− fα(y)| < ε, where
Nδ denotes an open neighborhood of size δ.

Lemma 1. If (S, d) is a compact metric space,
then any family F .= {fα : α ∈ A} that is equicon-
tinuous on S is uniformly equicontinuous on S.

PROOF. See Stefanovic and Safonov (2005). ¥

3. MAIN RESULT

The main results on stability and finiteness of
switches are developed in the sequel.

Lemma 2. Consider the feedback adaptive control
system Σ in Figure 1, together with the hysteresis
switching algorithm A1. Suppose there are finitely
many switches. If the adaptive control problem
is feasible (Def. 1), and the associated cost func-
tional V (K, z, t) is continuous in time and satisfies
the following properties:



• Cost-detectable (Def. 11)
• Monotone increasing in time

then stability of the switched system
∑

is unfalsi-
fied and, moreover, system response z(t) with the
final controller satisfies the performance inequal-
ity

V (KN , z, τ) ≤ Vtrue(KRSP ) + ε ∀τ.

PROOF. It suffices to consider the final controller
KN . Denote the last switching time instant tN .
Then, by the definition of Vtrue(KN ) (Def. 9),
and feasibility of the control problem (Def. 1), it
follows that for all t ≥ tN ,

V (KN , zdata, t) < ε + min
K

V (K, zdata, t)

< ε + Vtrue(KRSP ) < ∞. (1)

Further, by monotonicity in t of V (K, z, t), it
follows that (1) holds for all t ∈ T. Due to the
cost-detectability, stability of Σ with KN is not
falsified by zdata, that is, lim supτ→∞

||zdata||τ
||r̃KN

||τ <

∞. ¥

Lemma 3. Let f : Rn → R be a continuous and
coercive function on Rn . Then for any scalar
α ∈ R, the level set L(α) .= {x ∈ Rn | f(x) ≤ α}
is compact.

PROOF. Since L(α) ⊂ Rn, we show that L(α)
is closed and bounded: Let {xm} ⊆ L(α) be
a convergent sequence, and x̄

.= limm→∞ xm.
Since f is continuous, f(x̄) = limm→∞ f(xm).
Also, f(xm) ≤ α, ∀m ∈ N. Then, f(x̄) =
limm→∞ f(xm) ≤ limm→∞ α = α, so x̄ ∈ L(α).
Hence, L(α) is closed. To show that is L(α) is
bounded, proceed by contradiction. Assume that
L(α) is not bounded; then there exists a sequence
{ym} ⊆ L(α) such that limm→∞ ||[ym|| = ∞.
Since f is coercive, limm→∞ f(ym) = ∞; in
particular, ∃N ∈ N such that ∀k ≥ N f(yk) > α,
for any fixed α ∈ R. Then, {ym} 6⊂ L(α), which
contradicts the above assumption. Thus, L(α) is
closed and bounded in Rn, therefore compact. ¥

Lemma 4. Consider the feedback adaptive control
system in Figure 1, together with the switching
algorithm A1. If the adaptive control problem is
feasible (Def. 1), and the associated cost func-
tional V (K, z, t) is cost-detectable and monotone
increasing in time and, in addition,

• For all τ ∈ T, z ∈ Z, V (K, z, t) is coercive on
K ⊆ Rn (i.e. lim||K||→∞ V (K, z, τ) = ∞)

• The family W .= {Wz,t(K) : z ∈ Z, t ∈ T}
of restricted cost functionals with a common
domain L is equicontinuous on L,

then the number of switches is uniformly bounded
above for all z ∈ Z by some N̄ ∈ N.

PROOF. Due to Lemma 3, the level set L is
compact. Then, the family W .= {Wz,t(K) : z ∈
Z, t ∈ T} is uniformly equicontinuous on L (see

Lemma 1), i.e. for a hysteresis step ε, ∃δ > 0 such
that for all z ∈ Z, t ∈ T, K1,K2 ∈ L, ||K1 −
K2|| < 2δ ⇒ |Wz,t(K1)−Wz,t(K2)| < ε (i.e. δ =
δ(ε) is common to all K ∈ L and all z ∈ Z, t ∈ T).
Since L is compact, there exists a finite open cover
CN = {Bδ(Ki)}N

i=1 , with Ki ∈ Rn, i = 1, . . . , N

such that L ⊂ ⋃N
i=1 Bδ(Ki), where N depends

on the chosen hysteresis step ε (this is a direct
consequence of the definition of a compact set).
Let K̂tj

be the controller switched into the loop at
the time tj , and the corresponding minimum cost
achieved is Ṽ

.= minK∈K V (K, z, tj). Consider
that at the time tj+1 > tj a switch occurs at the
same cost level Ṽ , i.e. Ṽ = minK∈K V (K, z, tj+1)
where V (K̂tj

, z, tj+1) > minK∈K V (K, z, tj+1) +
ε. Therefore, K̂tj

is falsified, and so are all the
controllers K ∈ B2δ(K̂tj ). Let Ij be the index
set of the as-yet-unfalsified δ-balls of controllers
at the time tj . Since K̂tj ∈ Bδ(Ki), for some
i ∈ Ī ⊂ Ij also falsified are all the controllers
K ∈ Bδ(Ki) ⊃ K̂tj

, so that Ij+1 = Ij \ {i}, i.e. Ij

is updated according to the following algorithm (j
is the index of the switching time tj):

Unfalsified index set algorithm:

(1) Initialize: Let j = 0, I0 = {1, . . . , N}.
(2) j ← j + 1. If Ij−1 = ∅: Set Ij = {1, . . . , N}

// Optimal cost increases
Else
Ij = Ij−1 \ {i},where i ∈ Ij−1 is such that
Bδ(Ki) ⊃ K̂tj−1 .

(3) go to (2);

Thus, the number of possible switches to a single
cost level is upper-bounded by N , the number
of δ-balls in the cover of L. The next switch, if
any, must occur to a cost level higher than Ṽ ,
due to the monotonicity of V . Then, according to
algorithm A1, |V (K̃tj+N+1 , z, tj+N+1) − Ṽ | > ε,
with d(K̃tj+N+1 , K̃tk

) < 2δ, j ≤ k ≤ j + N and
V (K̃tk

, z, tk) = Ṽ . Combining the two bounds, the
overall number of switches is thus upper-bounded
by:

N̄
.= N Vtrue(KRSP )−minK∈K V (K,z,0)

ε
¥

The finite controller set case is obtained as a
special case of the Lemma 4, with N being the
number of candidate controllers instead of the
number of δ-balls in the cover of L. The main
result follows.

Theorem 1. Consider the feedback adaptive con-
trol system Σ in Figure 1, together with the hys-
teresis switching algorithm A1. Suppose that the
adaptive control problem is feasible (Def. 1), and
the associated cost functional V (K, z, t) is contin-
uous in time and satisfies the conditions of Lemma
4. Then, the system is stable. Moreover, for each z,
the system converges after finitely many switches
to controller KN that satisfies the performance



inequality

V (KN , z, τ) ≤ Vtrue(KRSP ) + ε for all τ. (2)

PROOF. Invoking Lemma 4 proves that there
are finitely many switches. Then, Lemma 2 shows
that the adaptive controller stabilizes and that (2)
holds. ¥

Comment 2. Note that, due to the coerciveness
of V , minK∈K V (K, z, 0) is bounded below (by a
nonnegative number, if the range of V is a subset
of R+), for all z ∈ Z.

Comment 3. The parameterization of K can be
more general than ΘK ⊆ Rn; in fact, it can
belong to an arbitrary infinite dimensional space;
however K has to be compact in that case, in order
to ensure uniform equicontinuity property.

The switching ceases after finitely many steps
for all z ∈ Z. The values of the cost min-
ima are monotone increasing and bounded above
by Vtrue(KRSP ). With sufficient richness of the
system input (external reference signal, distur-
bance or noise signals) the cost will approach
Vtrue(KRSP )± ε.

4. COST FUNCTION EXAMPLE

Consider (a not necessarily zero-input zero-output)
system Σ : L2e → L2e in Figure 1. Choose a cost
functional:

V (K, z, t) = max
τ≤t

||y||2τ + ||u||2τ
||r̃K ||2τ + α

+β+γ||θK ||2 (3)

where α, β, γ are arbitrary positive numbers.
α is used in order to prevent V = const

0 when
r̃ = 0 or r̃ = y = u = 0, β ensures V > 0 even
when ||θK || ≡ 0, and γ scales the importance of
||θK ||2. Such a cost function satisfies the required
properties of Theorem 1. The reader is referred to
(Stefanovic and Safonov, 2005) for verification of
stability and finiteness of switches of the proposed
cost function.

5. SIMULATION EXAMPLE

Assume that a true, unknown plant transfer func-
tion is given by G∗(s) = s−1

s(s+1) . It is desired that
the output follows the output of the reference
model Gref = 1

s+1 . Presumed given is the set of
candidate controllers: C1(s) = − s+1

s+2.6 , C2(s) =
−s+1
0.3s+1 and C3(s) = − s+1

−s+2.6 . A non-switched
analysis (true plant in feedback with each of the
controllers separately) shows that C1 is stabiliz-
ing, while C2 and C3 are not. Next, a simulation
was performed of a switched system, where A1
was used to select optimal controller, and a cost
function was chosen to be a combination of the

Fig. 3. Current values of the cost (4) for each
controller.

Fig. 4. Switching using cost function (4). Refer-
ence and plant outputs.

instantaneous error and a weighted accumulated
error (Narendra and Balakrishnan, 1997)

Jj(t) = ẽ2
j (t) +

∫ t

0

e−λ(t−τ)ẽ2
j (τ)dτ, j = 1, 2, 3

(4)
where ẽj is the fictitious error of the jth controller,
defined as ẽj = ỹj − y, and ỹj = Gref r̃j and
r̃j = y + K−1

j u.

The stabilizing controller C1 was initially placed
in the loop, and the switching was allowed after
five seconds. Figures 3 and 4 show the simulation
results. The algorithm using cost function (4)
discards the stabilizing controller and latches onto
a destabilizing one, despite evidence found in
data. For details, see (Stefanovic and Safonov,
2005). Next, a simulation was performed using a
’good’ cost function (according to Theorem 1):

V (K, z, t) = max
τ∈[0,t]

||u||2τ + ||ẽK ||2τ
||r̃K ||2τ + α

(5)

The corresponding simulations results are shown
in Figure 5. The initial controller was chosen to
be C3 (a destabilizing one).



Fig. 5. Switching using cost function (5). Refer-
ence and plant outputs.

6. CONCLUSION

The goal of stabilizing an uncertain plant by
means of switching through an infinite candidate
controller set is solved in the paper, provided that
feasibility (defined as the existence of at least
one stabilizing solution in the candidate controller
set) holds. Sufficient conditions are derived on the
data-driven cost function to ensure stability and
performance. An upper bound on the number of
switches for a general continuum controller set
case is calculated. The result is a solution to
the problem of model mismatch instability that
has long been the focus of the research efforts in
adaptive control.
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