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1 Introduction

Cascaded dynamical systems appear in many ap-
plications whether naturally or intentionally pro-
voked by the control design. For instance, the
cascades-based control approach consists in de-
signing the control law so that the closed loop
system has a cascaded structure. Such strategy
has the advantage of, often, reducing the com-
plexity of the controller and the difficulty of the
stability analysis. This is considerably attrac-
tive when dealing with non-autonomous systems
(e.g. in tracking control and or time-varying sta-
bilization problems) since uniform forms of sta-
bility may be concluded without Lyapunov func-
tions satisfying the usual (restrictive) conditions
of sign-definiteness of the function itself and its
derivative. Furthermore, in problems such as out-
put feedback control, the cascades-based approach
may lead, under appropriate conditions, to nonlin-
ear separation principles.

Hence, on one hand the advantages that offer the
analysis of nonlinear cascaded systems in con-
trol applications (see e.g. (Loŕıa and Panteley
2005, Lefeber 2000)) as well as the complex-
ity of the problem itself (see the seminal paper
(Sussman and Kokotović 1991) or (Sepulchre et
al. 1997) and references therein) has motivated
researchers to study cascaded systems from differ-
ent viewpoints and under a diversity of conditions.
In general terms, for autonomous as for non-
autonomous systems, one may retain that cas-

cades of uniformly globally asymptotically stable
systems (UGAS) remain UGAS if and only if the
solutions are uniformly globally bounded (UGB)
(cf. (Sontag 1989, Seibert and Suárez 1990) for the
autonomous case and (Panteley and Loŕıa 2001)
for time-varying systems). The remaining funda-
mental question is how to guarantee UGB. One
way, is by ensuring the stronger property of Input
to State Stability (ISS); other conditions are for-
mulated in terms of growth-rate conditions. The
literature on this subject is very reach, specially
in the domain of time-invariant systems. See the
references in (Loŕıa and Panteley 2005, Sepulchre
et al. 1997, Sontag 2003) as well as (Arcak et
al. 2002) and recent works on integrator forward-
ing. See also (Angeli et al. 2000) for a recent ref-
erence on semiglobal versions of ISS.

A considerable drawback, from a control-practice
viewpoint, of most results on stability of cascades
is that they address the problem of guaranteeing
global properties. However, it is often the case,
for instance in output-feedback control problems
(see e.g. (Marino and Tomei 1993)), that only
semiglobal properties can be concluded, either be-
cause of technical obstacles in the control design
(due to high nonlinearities in the model as for in-
stance in mechanical systems) or due to the phys-
ical nature of the plant (e.g. multiple equilibria).
In this case the cascades approach based on global
results, which has proved to be so useful, fails
both in the control design and the stability anal-
ysis. Another important situation where classical



results fail is when one cannot ensure asymptotic
stability of the cascaded subsystems, taken sepa-
rately. That is, when only some type of robust
stability, such as convergence to “balls” may be
ensured.

In this paper we address the stability analy-
sis problem for cascades of systems that are
uniformly semiglobally practically asymptotically
stable (USGPAS, cf. Definition 3). That is,
we establish that, under a uniform boundedness
condition, the cascade of two USGPAS systems
remains USGPAS. Our main result extends in
this direction, (Panteley and Loŕıa 2001, Lemma
1) and the main (and fundamental) results of
(Sontag 1989, Seibert and Suárez 1990).

The rest of the paper is organized as follows.
In next section we present some definitions of
stability and two auxiliary propositions on local
asymptotic stability with respect to balls and on
semiglobal practical asymptotic stability. Our
main result is presented in section 3 and its proof
is given in section 4. We finally conclude with
some remarks.

2 Preliminaries

Notation. A continuous function α : R≥0 → R≥0

is of class K (α ∈ K), if it is strictly increasing and
α(0) = 0; α ∈ K∞ if, in addition, α(s) → ∞ as
s → ∞. A continuous function σ : R≥0 → R≥0

is of class L (σ ∈ L) if it is non-increasing and
tends to zero as its argument tends to infinity.
A function β : R≥0 × R → R≥0 is said to be a
class KL function if, β(·, t) ∈ K for any t ≥ 0,
and β(s, ·) ∈ L for any s ≥ 0. We denote by
x(·, t0, x0) the solutions of the differential equa-
tion ẋ = f(t, x) with initial conditions (t0, x0).
We denote by Bδ the closed ball in R

n of radius
δ. We use ‖·‖ for the Euclidean norm of vec-
tors and the induced L2 norm of matrices. We
define ‖x‖δ := infz∈Bδ ‖x− z‖. We designate by
N≤N the set of all nonnegative integers less than
or equal to N . When the context is sufficiently
explicit, we may omit to write the arguments of a
function by commodity.

2.1 Local asymptotic stability w.r.t. balls

We start by presenting some definitions concern-
ing Uniform Local (or Global) Asymptotic Stabil-
ity with respect to a set for nonlinear time-varying
(NTLV) systems:

ẋ = f(t, x) , (1)

where x ∈ R
n, t ∈ R≥0 and f : R≥0 × R

n → R
n

is locally Lipschitz in x and piecewise continuous
in t . For our present purpose, we define these
notions in the particular case when the set in an
open ball of R

n.

Definition 1 (ULAS / UGAS w.r.t. a ball) Let δ

and ∆ be positive numbers such that ∆ > δ. A
system ẋ = f(t, x) is said to be Uniformly Locally
Asymptotically Stable on B∆ with respect to Bδ if
there exists a class KL function β such that its
solutions starting from any initial state x0 in B∆
at any initial time t0 ≥ 0 satisfy

‖x(t, t0, x0)‖δ ≤ β(‖x0‖ , t− t0) , ∀t ≥ t0 .

The system is said to be Uniformly Globally
Asymptotically Stable with respect to Bδ if this
property holds for any x0 ∈ R

n.

Remark 1 Note that the “ULAS with respect to
a ball” as defined here is less restrictive than the
time-varying adaptation of “Asymptotic Stability
with respect to a set” given in (Lin et al. 1996)
for the case when the set is a ball. Indeed, in the
latter reference, it is imposed that the ball Bδ be
positively invariant.

Remark 2 If a system is ULAS on B∆ with respect
to Bδ, then it is also ULAS on B∆′ with respect to
Bδ′ , for any δ′ ≥ δ and ∆′ ≤ ∆ such that ∆′ > δ′.

Definition 2 (ULB) The solutions of (1) are said
to be Uniformly Locally Bounded on the compact
set A ⊂ R

n if there exist a class K function γ and
a nonnegative constant µ such that, for any initial
time t0 ∈ R≥0 and any initial state x0 ∈ A, it
holds that

‖x(t, t0, x0)‖ ≤ γ(‖x0‖) + µ , ∀t ≥ t0 .

2.2 Semiglobal practical properties

Consider a parameterized nonlinear time-varying
system of the form

ẋ = f(t, x, θ) , (2)

where x ∈ R
n, t ∈ R≥0, θ ∈ R

m is a constant
parameter and f : R≥0×R

n×R
m → R

n is locally
Lipschitz in x and piecewise continuous in (t, θ).

Definition 3 (USGPAS) The system (2) is said to
be Uniformly Semiglobally Practically Asymptoti-
cally Stable on the parameter set Θ ⊂ R

m if, given
any ∆ > δ > 0, there exists a parameter θ? ∈ Θ
such that ẋ = f(t, x, θ?) is ULAS on B∆ with re-
spect to Bδ.

Proposition 1 (Lyapunov condition for USGPAS)
Suppose that, given any positive numbers ∆ and δ
such that ∆ > δ, there exist a parameter θ? ∈ Θ,
a continuously differentiable Lyapunov function
V and class K functions α1, α2, α3 such that, for
any t ≥ 0 and any x ∈ B∆,

α1(‖x‖δ) ≤ V (t, x) ≤ α2(‖x‖) , (3)

‖x‖ > δ ⇒
∂V

∂t
+
∂V

∂x
f(t, x, θ?) ≤ −α3(V ) . (4)

Then (2) is USGPAS on the set Θ.



The proof of this result is omitted here by lack of
space. It can however be found in (Chaillet A. and
Loŕıa A. 2005).

We introduce now the following notation in order
to simplify the statement of our main results.

Definition 4 (D-set) For any ∆ > δ > 0, the D-set
of (2) is defined as

Df (δ,∆) := {θ ∈ R
m|(2) is ULAS on B∆ w.r.t Bδ} .

3 Main results

We consider cascaded systems of the form

{

ẋ1 = f1(t, x1, θ1) + g(t, x1, x2)x2
ẋ2 = f2(t, x2, θ2)

, (5)

where x1 ∈ R
n1 , x2 ∈ R

n2 , t ∈ R≥0, θ1 ∈ R
m1 ,

θ2 ∈ R
m2 , f1, f2 and g are locally Lipschitz in the

state and piecewise continuous in the time, and f1
and f2 are piecewise continuous in the parameter.

We shall consider the stability of (5) under the
following assumptions.

Assumption 1 The interconnection term g is uni-
formly bounded in time, i.e. there exists a non-
decreasing function G such that, for all (x1, x2) ∈
R
n1 × R

n2 and all t ≥ 0,

‖g(t, x1, x2)‖ ≤ G(‖(x1, x2)‖) . (6)

Assumption 2 Given any ∆1 > δ1 > 0, there ex-
ists a parameter θ?1(δ1,∆1) ∈ Θ1, a smooth Lya-
punov function V1, class K∞ functions α1 and α2,
a class K functions α4, a continuous positive non-
decreasing function c1, and a positive constant ε
such that, for any x1 ∈ R

n1 and any t ≥ 0,

α1(‖x1‖δ1) ≤ V1(t, x1) ≤ α2(‖x1‖)

‖x1‖ ≥ δ1 ⇒
∂V1

∂t
+
∂V1

∂x1
f1(t, x1, θ

?
1) ≤ −εV1+α4(‖x1‖∆1

)

∥

∥

∥

∥

∂V1

∂x1
(t, x1)

∥

∥

∥

∥

≤ c1(‖x1‖) .

Assumption 3 The system ẋ2 = f2(t, x2, θ2) is US-
GPAS on Θ2.

Assumption 4 Given any positive numbers δ1, ∆1,
δ2, ∆2, such that ∆1 > δ1 and ∆2 > δ2, and for
the parameter θ?1(δ1,∆1) as defined in Assumption
2, there exists a parameter θ?2 ∈ Df2(δ2,∆2) ∩Θ2
(see Definition 4) such that the trajectories of

ẋ1 = f1(t, x1, θ
?
1) + g(t, x1, x2)x2 (7a)

ẋ2 = f2(t, x2, θ
?
2) (7b)

are ULB on B∆1
× B∆2

.

Theorem 1 Under Assumptions 1, 2, 3 and 4, the
cascaded system (5) is USGPAS on Θ1 ×Θ2.

Proof . See section 4. ¥

Remark 3 In view of Proposition 1, Assumption
2 implies that the subsystem ẋ1 = f1(t, x1, θ1) is
USGPAS on Θ1. Hence, roughly speaking, Theo-
rem 1 states that, under a condition of bounded-
ness of solutions and provided the knowledge of a
Lyapunov function, the cascade composed of two
USGPAS systems remains USGPAS. The require-
ment on the gradient of V1 in Assumption 2 is
little restrictive, and is satisfied in many concrete
applications. See (Chaillet A. and Loŕıa A. 2005)
for an example in robot control.

4 Proof of Theorem 1

For any positive numbers δ1, ∆1, δ2 and ∆2 such
that δ1 < ∆1 and δ2 < ∆2, choose a θ

?
1 ∈ Θ1 satis-

fying Assumption 2 and any θ?2 ∈ Df2(δ2,∆2)∩Θ2
given by Assumption 4. We first show that there
exist δ > 0 and ∆ > 0 such that (7) is ULAS on
B∆ with respect to Bδ. To that end, we first show
that the system is “stable w.r.t. a ball”, more
precisely, we construct α ∈ K∞ and δ3 > 0 such
that

‖x1(t, t0, x10)‖δ
3

≤ α(‖x0‖) . (8)

We then use this property to prove that a ball,
larger than Bδ3 , is ULA and we construct a KL
estimate for the solutions. Finally, we show that
the estimates of the domain of attraction and of
the ball to which solutions converge can be arbi-
trarily enlarged and diminished respectively.

4.1 Proof of “stability w.r.t. a ball”

The time derivative of V1 along the trajectories of
(7) yields

V̇1 =
∂V1

∂t
+
∂V1

∂x1

(

f1(t, x1, θ
?
1) + g(t, x1, x2)x2

)

.

Therefore, according to Assumption 2, for any
x1 ∈ R

n1 \ Bδ1 ,

V̇1 ≤ −εV1 +

∥

∥

∥

∥

∂V1

∂x1

∥

∥

∥

∥

‖g(t, x1, x2)‖ ‖x2‖+ α4(‖x1‖∆1
)

≤ −εV1 + c1(‖x1‖)G(‖x‖) ‖x2‖+ α4(‖x1‖∆1
) ,

where x := (x1, x2). Defining

Γ := {t ≥ t0 | ‖x1(t, t0, x10)‖ ≥ δ1} , (9)

and using the shorthand notation x1(t) for
x1(t, t0, x0) and v1(t) := V1(t, x1(t)) we get that,
for any x0 ∈ R

n1 and any t ∈ Γ,

v̇1(t) ≤ −εv1(t) + c1(‖x1(t)‖)G(‖x(t)‖) ‖x2(t)‖

+ α4(‖x1(t)‖∆1
) .



Using Assumption 4, for all x0 ∈ B∆1
× B∆2

and
all t ∈ Γ,

v̇1(t) ≤ −εv1(t)+c2(‖x0‖) ‖x2(t)‖+c3(‖x0‖) (10)

where

c2(‖x0‖) := c1(γ(‖x0‖) + µ)G(γ(‖x0‖) + µ) (11)

c3(‖x0‖) := α4(‖γ(‖x0‖) + µ‖∆1
) . (12)

In addition, Assumption 3 ensures the existence
of a class KL function β2 such that1 for any
x20 ∈ B∆2

and any t ≥ t0,

‖x2(t, t0, x20)‖ ≤ β2(‖x20‖ , t− t0) + δ2 . (13)

From this and inequality (10), it follows that for
all x0 ∈ B∆1

× B∆2
and all t ∈ Γ,

v̇1(t) ≤ −εv1(t) + c2(‖x0‖)(β2(‖x20‖ , t− t0) + δ2)

+ c3(‖x0‖) (14)

Since β2 is a KL function, we have that

v̇1(t) ≤ −εv1(t) + c4(‖x0‖) (15)

where

c4(s) := c2(s)(β2(s, 0)+δ2)+c3(s) , ∀s ≥ 0 . (16)

Now, notice that the interior of Γ can be divided
into open intervals in the following way:

◦

Γ=

N
⋃

i=0

]T2i ; T2i+1[ , (17)

where the sequence {Ti}i∈N≤N
is nondecreasing,

T0 ≥ t0, N ∈ N is potentially infinite, T2i < T2i+1
for all i ∈ N≤N and ‖x1(Ti, t0, x10)‖ = δ1 for all
i ≥ 1 by continuity of the solutions. We consider
two cases: whether the trajectories start from out-
side (i.e. T0 = t0) or inside

2 Bδ1 .

Case 1: T0 = t0. In this case [t0;T1] ⊂ Γ. Hence
integrating (15) and using a comparison lemma
(see e.g. (Khalil 1996, Lemma 2.5)), we have that,
for any t ∈ [t0;T1],

v̇1(t) ≤
(

v1(t0)− c4(‖x0‖)
)

e−ε(t−t0) + c4(‖x0‖)

≤ v1(t0) + c4(‖x0‖) .

But, by Assumption 2,

‖x1(t)‖δ1 ≤ α−11 (v1(t)) , v1(t0) ≤ α2(‖x0‖) ,

hence

‖x1(t)‖δ1 ≤ α−11
(

α2(‖x0‖) + c4(‖x0‖)
)

.

Define next the function α̃ : R≥0 → R≥0 as

α̃(s) := α−11
(

α2(s) + c4(s)
)

− α−11
(

c4(0)
)

. (18)

In view of (16) and noticing that c2 and c3 are
nondecreasing functions, we see that α(·) is a class
K∞ function, and we have

‖x1(t)‖δ1 ≤ α̃(‖x0‖) + α−11
(

c4(0)
)

. (19)

This in turn implies that, for any x0 ∈ B∆1
×B∆2

,

‖x1(t)‖δ̃3 ≤ α̃(‖x0‖) , ∀t ∈ [t0;T1] , (20)

where δ̃3 := δ1 + α−11
(

c4(0)
)

, i.e.

δ̃3 = δ1 + α−11
(

c1(µ)G(µ)δ2 + α4(‖µ‖∆1
)
)

. (21)

Furthermore, for any t ∈ [T2i ; T2i+1], i ≥ 1, we
develop a similar reasoning, observing first that,
by Assumption 2 and the definition of the se-
quence {Ti}i∈N≤N

,

v1(T2i) ≤ α2(‖x1(T2i, t0, x0)‖) = α2(δ1) ,

and, consequently, we get that

‖x1(t)‖δ1 ≤ α−11
(

α2(δ1) + c4(‖x0‖)
)

.

In other words, defining

α(s) := α−11
(

α2(δ1)+c4(s)
)

−α−11
(

α2(δ1)+c4(0)
)

δ3 := δ1 + α−11
(

α2(δ1) + c4(0)
)

,

we see that α is also a K∞ function, and we
obtain that, for all x0 ∈ B∆1

× B∆2
and all

∀t ∈ [T2i;T2i+1], i ≥ 1,

‖x1(t, t0, x10)‖δ3 ≤ α(‖x0‖). (22)

Thus, noticing, in view of (11), (12) and (16) that
δ3 ≥ δ̃3, and defining

α(s) := max{α̃(s) ; α(s)} (23)

(which is also a K∞ function), inequalities (20)
and (22) imply that, for all x0 ∈ B∆1

× B∆2
,

‖x1(t, t0, x10)‖δ3 ≤ α(‖x0‖) , ∀t ∈ Γ . (24)

Case 2: T0 > t0. In this case, by Assumption
2 and the definition of Γ we have that, for any
i ∈ N≤N ,

v1(T2i) ≤ α2(‖x1(T2i, t0, x0)‖ = α2(δ1) .

Hence, following the same reasoning as before, we
obtain again that, for all x0 ∈ B∆1

× B∆2
,

‖x1(t, t0, x10)‖δ3 ≤ α(‖x0‖) , ∀t ∈ Γ . (25)

Notice finally that, for any t ∈ R≥t0 \ Γ, we
have that ‖x1(t, t0, x0)‖ < δ1 ≤ δ3, hence

1Notice that ‖s‖
a
≤ b ⇔ ‖s‖ ≤ a + b, ∀s ∈ R

n, a > 0, b ≥ 0.
2In the case when x1(t, t0, x10) never enters the ball Bδ1 , we consider, by an abuse of notation, that T0 = +∞.



‖x1(t, t0, x0)‖δ3 = 0. Thus, we conclude from (24)
and (25) that for all x0 ∈ B∆1

×B∆2
and all t ≥ t0,

‖x1(t, t0, x10)‖δ3 ≤ α(‖x0‖) (26)

where α ∈ K∞. From the bound (26) we now
construct a ball which is such that, any solution
x1(·, t0, x10) starting in it remains forever after in
the ball B∆1

. To that end, let ∆̃ denote the ra-
dius of such a ball. Then, as long as ∆1 > δ3, the
following choice is convenient:

∆̃ := min{α−1(∆1 − δ3) ; ∆1 ; ∆2} . (27)

Indeed, if ‖x0‖ < ∆̃, then (26) implies that

‖x1(t)‖ ≤ δ3 + α(α−1(∆1 − δ3)) = ∆1 , ∀t ≥ t0 .

Note that the previous reasoning can be repeated
with initial states x0 = (x10, x20) in the ball B∆̃
instead of B∆1

×B∆2
. Then, we can get rid of the

terms in α4 and consequently those in c3. Thus,
even though the explicit demonstration is volun-
tarily omitted due to lack of space, it can be shown
that for any x0 ∈ B∆ and all t ≥ t0, (8) holds with

δ3 := δ1 + α−11
(

α2(δ1) + c1(µ)G(µ)δ2
)

(28)

α(s) := max {α̃(s) ; α(s)} (29)

α̃(s) := α−11
(

α2(s) + c2(s)(β2(s, 0) + δ2)
)

− α−11
(

c1(µ)G(µ)δ2)
)

α(s) := α−11
(

α2(δ1) + c2(s)(β2(s, 0) + δ2)
)

− α−11
(

α2(δ1) + c1(µ)G(µ)δ2)
)

∆ := min
{

∆1 ; ∆2 ; α
−1(∆1 − δ3)

}

(30)

as long as ∆1 > δ3 . (31)

Notice that α, α̃, α are also class K∞ functions.

4.2 Proof of “attractivity w.r.t. a ball”

Consider again (14). Since β2 is a KL function,
given any ε1 > 0 and any initial condition x0,
there is a time t1 ≥ 0 such that, for any t0 ≥ 0,

β2(‖x0‖ , t− t0) ≤ ε1 , ∀ t ≥ t0 + t1 .

In view of (12), for any initial state x0 ∈ B∆, (14)
implies that, for all t ∈ Γ ∩ R≥t0+t1 ,

v̇1(t) ≤ −εv1(t) + c2(‖x0‖)(ε1 + δ2) . (32)

Consider an initial state x0 ∈ B∆ and assume, for
the time being, that ‖x(t0 + t1, t0, x10)‖ > δ1, i.e.
t0 + t1 ∈ Γ. Then, there exists a time t? > t1, po-
tentially infinite and depending on t0, such that

‖x1(t, t0, x10)‖ > δ1 , ∀t ∈ [t0 + t1; t0 + t?) (33a)

‖x1(t
?, t0, x10)‖ = δ1 (33b)

From this observation, (32) holds on the time in-
terval [t0+t1; t0+t

?). Two cases are then possible:
either t? is finite or not.

Case 1: ‖x1(t, t0, x10)‖ > δ1 for all t ≥ t0 + t1. In
this case, t? =∞ and the integration of (32) from
t0 + t1 to any t ≥ t0 + t1 yields

v1(t) ≤
(

v1(t0 + t1)− c2(‖x0‖)(ε1 + δ2)
)

× e−ε(t−t0−t1) + c2(‖x0‖)(ε1 + δ2)

In view of Assumptions 2 and 4, we get that

v1(t) ≤ α2(γ(‖x0‖+µ)e
−ε(t−t0−t1)+c2(‖x0‖)(ε1+δ2) .

Therefore, for any ε2 > 0, we have that

t ≥ t0 + t2 ⇒ v1(t) ≤ ε2 + c2(‖x0‖)(ε1 + δ2) .

where t2 := t1 +
1
ε
ln
(

α2(γ(∆)+µ)
ε2

)

. Notably, by

picking ε2 ≤ α2(δ1), we ensure the existence of
a finite time t2, independent on the initial condi-
tions t0 and x0, such that, for all time t ≥ t0+ t2,

‖x1(t)‖ ≤ δ1 + α−11
(

α2(δ1) + c2(‖x0‖)(ε1 + δ2)
)

.

Since ε1 is arbitrary and in view of (28) we con-
clude that, for all time t ≥ t0+t2 and any x0 ∈ B∆,

‖x1(t, t0, x0)‖ ≤ δ4 , (34)

where δ4 is any positive number such that

δ4 > δ3 . (35)

Case 2: ‖x1(t
?)‖ ≤ δ1 for some finite time t? ≥ t1.

In this case, since 2δ4 ≥ δ1 and invoking the con-
tinuity of the solutions of (7), there exists a time
t3 ≤ t?, potentially dependent on the initial time
t0 such that ‖x1(t0 + t3, t0, x10)‖ ≤ 2δ4. Then,
using the bound (8) by picking t3 as the ”ini-
tial time”, we get that, for all x0 ∈ B∆ and all
t ≥ t0 + t3,

‖x1(t)‖δ
3

≤ α(2δ4) (36)

Said differently, for all ∀x0 ∈ B∆,

‖x1(t, t0, x10)‖δ5 = 0 , ∀t ≥ t0 + t3 , (37)

where δ5 := δ3+α(2δ4) . (38)

But, from (32), we know that such a time t3 should
satisfy

t3 ≤ t4 :=
1

ε
ln

(

α2(∆)

δ4

)

.

Hence, (37) implies that, for all x0 ∈ B∆,

‖x1(t, t0, x10)‖δ5 = 0 , ∀t ≥ t0 + t4 , (39)

where, this time, t4 is independent of t0.

Finally, let us examine the case when
‖x1(t0 + t1, t0, x10)‖ ≤ δ1. By (8), we get that, for
all t ≥ t0 + t1, ‖x1(t)‖δ

3

≤ α(δ1). Since α ∈ K∞
and δ1 ≤ 2δ4, we can establish that (39) holds for
all t ≥ t0 + t1.



Thus, we have shown that defining,

t5 :=

{

t2 if t? =∞
t4 otherwise,

and
δ6 := max{δ4; δ5} , (40)

we have that3, for all time t ≥ t0 + t5,

‖x1(t, t0, x10)‖δ6 = 0 .

Using finally the uniform bound on the solutions
of (7) on the interval [t0;max{t2; t3}], we conclude
that there exists a class L function σ such that,
for any x0 ∈ B∆, and any t0 ≥ 0,

‖x1(t, t0, x10)‖δ6 ≤ σ(t− t0) ∀t ≥ t0 . (41)

For example, one can take sigma(t) = (γ(∆) +
µ)e−(t−t6). From (8) and (41), we are now ready
to exhibit a KL bound on the trajectories. Indeed,
first notice that δ6 ≥ δ3. Hence, (8) implies that

‖x1(t, t0, x10)‖δ6 ≤ α(‖x0‖) , ∀x0 ∈ B∆ . (42)

Multiplying (41) and (42) gives

‖x1(t, t0, x10)‖δ6 ≤
√

α(‖x0‖)σ(t− t0) .

Hence, using the equivalent formulation for (13):

‖x2(t, t0, x20)‖δ2 ≤ β2(‖x20‖ , t− t0) , (43)

we obtain that, for all x0 ∈ B∆ and all t ≥ t0,

‖x(t, t0, x0)‖δ ≤ β(‖x0‖ , t−t0) ∀x0 ∈ B∆ , (44)

where ∆ is given in (30), δ := max{δ2; δ6}, and

β(s, t) :=
√

α(s)σ(t) + β2(s, t) .

Since α, σ and β2 are respectively of class K, L
and KL, β is clearly a class KL function.

It is only left to show that δ and ∆ can be arbitrar-
ily diminished and enlarged respectively. To that
end, first notice that ∆ can be taken arbitrarily
by a convenient choice of ∆1 and ∆2. Indeed, if
one choose for example

∆1 = max
{

∆2 ; α
−1
1

(

α2(δ1)+c1(µ)G(µ)δ2
)

+ α(∆2) + δ1
}

,

then, according to (28) and (30), we get that4

∆ = ∆2. In addition, for these convenient ∆1 and
∆2, δ4 can be taken as small as wanted by picking
δ1 and δ2 sufficiently small. Hence, in view of (38)
and (40), it is also the case for δ5 and δ6. There-
fore, δ can be arbitrarily diminished by a conve-
nient choice of δ1 and δ2. Notably, the condition
∆ > δ can be fulfilled.

Hence, it suffices to pick the parameters θ?1(δ1,∆1)
and θ?2 in the set Df2(δ2,∆2) ∩ Θ2 generated by
the chosen δ1, ∆1, δ2 and ∆2, to conclude that,
for any ∆ > δ > 0, there exists some parameters
θ?1 ∈ Θ1 and θ?2 ∈ Θ2 such that (7) is ULAS on
B∆ with respect Bδ, which establishes the result.

5 Conclusion

Our main result concerns the cascade of two non-
linear time-varying subsystems which are assumed
to be USGPAS. It was shown that, under a condi-
tion of boundedness of its solutions and provided
the knowledge of a Lyapunov function for the sub-
system which is “perturbed” by the other one, the
resulting cascaded system remains USGPAS. As a
perspective, we want first to relax the assump-
tions by imposing them only on the “doughnut”
B∆ \ Bδ, which will make the use of α4 obsolete
(see (Chaillet A. and Loŕıa A. 2005)). In a second
time, we plan to get rid of the knowledge of the
Lyapunov function, by adapting and using some
converse theorems for USGPAS.
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Loŕıa A. and E. Panteley (2005). Cascaded nonlinear time-
varying systems: analysis and design. Chap. 2 in New

directions in nonlinear observer design. Vol. 311 of
Lecture Notes in Control and Information Sciences.
Springer Verlag: London. F. Lamnabhi-Lagarrigue,
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