
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

OPTIMAL SELF TUNING NEURAL NETWORK CONTROLLER DESIGN 
 
 
 

Ladislav Körösi, Štefan Kozák 
 
 

Department of Automatic Control Systems, 
Faculty of Electrical Engineering and Information Technology, 

SUT Ilkovičova 3, 812 19 Bratislava Slovak Republic 
korosi@kasr.elf.stuba.sk, kozak@kasr.elf.stuba.sk 

 
 
 

 
Abstract: The proposed paper deals with modeling and control of continuous-time 
processes using artificial neural network with orthogonal activation functions, applicable 
for real-time control. A genetic algorithm has been used to find the optimal neural 
structure for on-line identification with the best learning algorithm. A moving prediction 
horizon in the control algorithm found by genetic algorithm has been compared with a 
constant prediction horizon.  The proposed algorithms were verified on practical control 
problem and have proved a good performance. Copyright © 2005 IFAC 
 
Keywords: neural-network models, neural control, optimal control, on-line control, 
genetic algorithms 

 
 
 
 

 
1. INTRODUCTION 

 
Application of artificial neural networks (ANN) in 
modeling and control originates from an attempt to 
model the nervous system and its activity. Due to its 
universal approximation ability, a neural network can 
be used either as a model, or controller or another 
intelligent unit in the closed loop, and thus substitute 
conventional closed loop items. For modeling 
nonlinear dynamic systems, a recurrent multi-layer 
ANN is frequently used. In many cases, the neuron 
model is represented with a perceptron. Several 
research works and papers dealing with nonlinear 
process modeling using ANN show high 
approximation precision at the expense of computing 
time; therefore these techniques can’t be used for 
real-time applications. Presented limitations (large 
number of iterations, long solution time, large 
number of training samples, etc.) can be eliminated 
by selecting other types of activation functions (AF), 
e.g. the sigmoid AF (SAF) (Oravec, et al., 1998; 
Šnorek, and Jiřina, 1995). Recently, orthogonal 
activation functions (OAF) have been used for 
modeling highly nonlinear processes with high 
precision and have been successfully applied in the 

design of linear and non-linear self-tuning 
controllers. Compared with conventional on-line 
modeling and control techniques, the SAF based 
techniques verified on a quantity of examples have 
shown a considerable modeling speed up.  
The proposed paper focuses on modeling and control 
of continuous-time processes using artificial neural 
networks with OAF using genetic algorithm to 
optimize the ANN structure, cost function weight 
parameters and moving prediction horizon. 
 
 

2. NEURAL NETWORK STRUCTURE USING 
ORTHOGONAL ACTIVATION FUNCTIONS 

 
A typical neural structure used to approximate a non-
linear function is the three-layer structure in Fig.1 
(Zhu, et al., 1998). The input layer has m nodes with 
inputs u=[u(1) u(2),...u(m)]. The hidden layer 
consists of neurons with orthogonal (orthonormal) 
activation functions. It is assumed that the AF’s for 
these neurons belong to the same class of orthogonal 
functions and no two neurons have the same order of 
AF in the input blocs. Each neuron has a different 
order activation function beginning from 0 to n. This 
ensures that no cross-correlation occurs among the 



     

neurons in the hidden layer. The nodes on the right 
side of the orthogonal neurons implement the 
product operation. Each π node has m input signals 
from m different input blocks. The weights between 
the input and the hidden layers are fixed and depend 
on the OAF type. The input and output layers consist 
of linear neurons. The output of the network with 
OAF (estimated process output) is given by the linear 
combination of activation functions 

 

     ( ) ( ) ( )∑ ∑
−

=

−

=

Φ==
1

0

1

0

1

1

11
.........,

N

n

N

n

T
mnmnm

m

m

Wuunnwwuy φ   (1) 

 
where u=[u1 u2 .. .um]T is a m-dimensional input 
vector, Ni is the number of neurons associated with 
the i-th input, W is the vector of weights between 
hidden and output layers and Φ are the OAFs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Block scheme of a three-layer ANN with 

OAF. 
 
The learning in ANN is performed by adapting the 
network weights so that the expected value of the 
mean squared error (MSE) between the network 
output and the training output is minimized. The 
recursive MSE learning algorithm is used to train the 
OAF based ANN. On-line recursive MSE algorithm 
can be described with equations: 
 
        ( )( ) ( ) ( ) ( )1ˆ1ˆ, −−=− kWkkykWk T

p φε     (2) 
 
where yp(k) is the process output in k-th step, 

( )1ˆ −kW  is the weight matrix in step k-1, ( )kTφ  is the 
transformed input signal and ε  is the error between 
process output and the ANN output. 
 
              ( ) ( ) ( )

( ) ( ) ( )kkPk
kkPkK T φφ

φ
11

1
−+

−
=           (3) 

 
where P is the covariance matrix and K is the gain 
vector. 
            ( ) ( ) ( ) ( ) ( )11 −−−= kPkkKkPkP Tφ       (4) 
 

           ( ) ( ) ( ) ( )( )1,1 −+−= kWkkKkWkW
)))

ε      (5) 
 
There are some algorithm modification as constant 
trace, exponential forgetting, exponential forgetting 
and resetting algorithm. 
The on-line methods are described in more detail in 
(Körösi, 2002; Linder, 2002; Kozák, 2002; Kozák 
2003). 
 
 

3. CONTROLLER DESIGN 
 
The control of nonlinear processes using the ANN is 
extraordinarily interesting from a practical point of 
view, leading to many new studies and results on 
control problems such as robust stability and 
performance improvement. As ANN modeling adapts 
to parametric and structural variations of the system, 
artificial ANN with OAF provides an efficient means 
for robustness maximization when modeling non-
linear systems. 
A nonlinear self-tuning predictive controller (Fig.2) 
consists from two blocks (Kozák, 2002; Kozák 
2003). Its first block is the feed-forward OAF based 
ANN; the ANN is trained on-line. The output from 
the network is the predicted system output. The 
second (optimization) block computes the system 
input, which ensures equality between system and 
network outputs.  
The control variable can be determined as follows 
 

                
)(
)()1()(

ku
kJkuku

∂
∂

−−= α               (6) 

 
where J(k) is the cost function in the form and α is 
the weighting factor  
 

   { }2211
2
1 )]k(u[)]k(y)k(r[)e,w(J m ∆γ++−+=   (7) 

 
where r is a reference signal, ym is the ANN model 
output, ∆u is the control signal and γ is the weighting 
factor. 
Applying the Quasi-Newton method, the control 
variable is 
 

       
)1()1(

)1()(
1

2

2

−∂
∂

⋅







−∂

∂
−−=

−

ku
J

ku
Jkuku      (8) 

 
The robust version of the proposed control algorithm 
can be expressed in the form 
 

   
)1(

,
)1(

max)1()(
1

2

2

−∂
∂





























−∂

∂
−−=

−

ku
Jh

ku
Jabskuku  (9) 

 
 
where h>0 is a small constant.  



     

 
Fig. 2. Block scheme of a nonlinear self-tuning 

predictive controller. 
 

The control algorithm contains these basic four steps: 
 

1. initialization (process input-output sampling 
and normalization,  u(k)=u(k-1)) 

2. prediction of yM and computation of 
derivations 

3. computation the optimal control  u (recursive 
algorithm using equation 9) 

4. denormalization 
 
The above algorithm is described in more detail in 
(Körösi, 2002; Linder, 2002; Kozák, 2002; Kozák 
2003). 
 
 

4. GENETIC ALGORITHMS 
 
Using genetic algorithms is an optimization 
technique that relies on parallels with nature. It can 
tackle a variety of optimization techniques provided 
that they can be parameterized in such a way that a 
solution to the problem provides measure of how 
accurate the solution found by the algorithm is.  
Genetic algorithms have been used in conjunction 
with neural networks in three major ways. First, they 
have been used to set the weights in fixed 
architectures. Second, genetic algorithms have been 
used to learn neural network topologies (how many 
hidden units a NN should have, how the nodes are 
connected, etc.). A third major application is the use 
of genetic algorithms to select training data and to 
interpret the output behaviour of a neural network. 
The second way is described in more detail this 
section. 
Usually, there are only two main components of 
most genetic algorithms that are problem-dependent 
(Darrell, 1994): the problem encoding and the 
evaluation function (fitness).  
Using genetic algorithms for solving optimization 
problems can be briefly described as follows. A 
population of possible solutions to an optimization 
problem is obtained in the form of vectors, the so-
called chromosomes. Each vector consists of genes 
taken from the range given by its lower and upper 
limits. The OAF base NN structure with the learning 
algorithm can be coded by a chromosome, which 
consists of the following genes: 

 
Gene 1 : Number of delayed process inputs 
Gene 2 : Number of delayed process outputs 
Gene 3 : OAF order (one dimensional OAF)1 

Gene 4 : OAF type 
Gene 5 : Learning method 
Gene 6 : Learning parameter 

 

After calculating the fitness2 function (the fitness of 
an organism is measured by the success of the 
organism to survive) for individual vectors a new 
population is created.  
The new population comprises: 
 

1. the best string or strings (with the smallest 
fitness - minimization) to ensure the 
convergence 

2. other selected strings (for example: roulette 
wheel selection, rank selection, steady-state 
selection, etc.) 

3. crossover (to form new offspring from 
parents)  and mutation (mutates offspring at 
each locus with the mutation probability) 
operations can be applied to the chosen 
strings 

4. addition of new random strings  
 

It is expected that the objective criterion values for 
different chromosomes will gradually improve over 
generations, approaching the optimal values. This 
ensures the convergence of the algorithm. 
Constructing the optimal neural network structure 
with genetic algorithm is an off-line method. 
 
 

5. SIMULATION EXAMPLES 
 
For testing the ANN modeling and control, the 
bioprocess (bioreactor) presented in (Körösi, 2002) 
has been considered (Fig.3). 
 

 
 

Fig. 3.  Principal scheme of the bioreactor. 
 
The process is described by the following equations: 
 
                           ( ) DXXS

dt
dX

−= µ                      (10) 

 
           ( ) ( ) inDSDSXSvkXSk

dt
dS

+−−−= 21µ  (11) 

 
                            ( ) DPXSv

dt
dP

−=                       (12) 

 
 

1The π - neurons order is set to OAF order to ensure 
a faster adaptation due to a low number of 
interconnections between input and hidden layer. 
2 The fitness function must be relatively fast. 
 



     

 
The matrix representation: 
 
















+
















−
































−=

















0

0

0
0

1
0
0

0

1

1 inDS
P
S
X

D
SX

SX
k

P
S
X

dt
d

β
α   (13) 

 
where X – cell mass concentration [g/l], P – product 
concentration [g/l], S – substrate concentration [g/l] 
with the following specified parameters: 

3.271 =k , 02 =k , 3.0=D , 5=inS , ( ) 3.00 =X ,
( ) 1.00 =S , ( ) 1.00 =P , 2.0=α , 1.0=β . 

 
 
5.1 Neural network modelling 
 
Process identification can be defined as finding such 
input-output relations and parameters, which 
describe the process behavior with a specified 
precision. For nonlinear process modeling and 
control, the black-box approach is used, that means 
observing the input-output data without any 
knowledge about the structure, order, mathematical 
description, etc. 
To generate the optimal ANN structure a genetic 
algorithm has been used because finding the optimal 
ANN structure (including learning method, etc.) is an 
optimization problem with several parameters. The 
population consists of 100 chromosomes. The 
encoding is show in the previous section with the 
following gene intervals: 
 

Delayed process inputs  <1, 6> 
Delayed process outputs  <1, 6> 
OAF order   <0, 5> 
OAF type   <0, 3>, where 
  0 = Hermit, 1 = Laguerre, 2 = Legendre,                
  3 = Chebychev 
Learning method  <0, 2>, where 
  0 = constant trace, 1 = exponential forgetting, 
  2 = exponential forgetting and resetting algorithm 
Learning parameter  <0.05, 1> 

 
The algorithm uses combination of the mutation, 
crossover and selection operations. After 2000 
simulations (20 populations) the sum squared error 
(SSE – fitness function) settled at 398.25 for training 
data and 147.36 for testing data with the following 
string: 
 

1. Number of delayed inputs : 4 
2. Number of delayed outputs : 4 
3. OAF order : 2 
4. OAF type: Hermit 
5. Learning method : exponential forgetting 
6. Learning parameter : 0.98 (constant exp. 

forgetting factor) 
 
For simulation, 2000 training and 2000 testing 
samples have been used for the sampling time 
T=0.1h. The OAF based ANN has been compared 
with the perceptron with 8 input neurons and 24 
sigmoid hidden neurons (structure similar to ANN 
with OAF). The SSE is smaller (341.39 for training 

data and 131.20 for testing data) but the learning took 
2000 epochs for on-line weights adaptation. 
Graphical simulation results are shown in Figures 4 
and 5. 
 

 
 
Fig. 4.  Time responses of the process and the neural 

model outputs with Hermit OAF and SAF 
(training data). 

 

 
 
Fig.5 Time responses of the process and the neural 

model outputs with Hermit OAF and SAF  
(testing data). 

 
 
5.2 Neural network control 
 
For process control using the adaptive ANN model, 
the previous optimal structure has been used. 
Because the control quality depends on the prediction 
horizon and penalization factors the maximal 
prediction horizon, 32, has been found by increasing 
the prediction horizon from 0 and observing the 
control quality. Increasing the prediction horizon 
over 32 gives worse results per consequens of 
computation error. 
The next step is choosing the penalization factors α 
and γ. A genetic algorithm has been used to find 
these parameters for the prediction horizon 15 
(average). The population consists of 100 strings. 
Each string contains 2 genes from intervals: 
 

1.    α  <0.05, 2> 

2. γ <0.05, 2> 



     

 
In the algorithm, the mutation, crossover and 
selection operations have been combined. After 1000 
simulations (10 populations) the sum squared error 
(SSE – fitness function) settled with the penalization 
factors α = 0.95 and γ = 2. The simulation results for 
different prediction horizons are in Fig. 6. 
 

 
 
Fig. 6. ANN based control using Hermit OAF for 
prediction horizons 1, 15, 20 and 32. 
 
A rising prediction horizon speeds up the control 
process at the beginning (with an overshoot) and then 
slows it down. With a smaller prediction horizon the 
control is very slow. There are several possibilities 
how to improve the control, e.g. using an off-line 
trained ANN, leaving more time to adapting the 
ANN to the reference variable, using a moving 
prediction horizon, etc. In our case a moving 
prediction horizon has been applied.  
 
To construct the optimal prediction horizon path, a 
genetic algorithm is used. The population consists of 
70 chromosomes. Each chromosome contains 10 
genes from the interval <1, 32> which represents the 
following points: <tsi; genei>, where ts=0,1,2,… is 
the time elapsed after the reference change; genei is 
the prediction horizon and i=1,..,10. The neighboring 
points are interpolated with lines (Fig. 7.) 
 
 

 
 
Fig. 7. Example of construction of the optimal 

prediction horizon path using genetic algorithm. 
 
In the proposed algorithm, the mutation, special 
mutation, crossover and selection operations have 
been combined. Special mutation means mutation at 
every gene, one mutated gene per chromosome; 

therefore the offspring for this operation will contain 
10 new mutated chromosomes.  
 

 
 
Fig. 8.  Comparison of the closed-loop responses 

using the ANN with Hermit OAF for the 
prediction horizon 32, and the moving prediction 
horizon. 

 
 

 
 

Fig. 9.  Specification of the time path of the moving 
prediction horizon. 

 
The optimal path after genetic algorithm evaluation 
is coded with the following chromosome: [31.7540, 
8.6002, 31.7836, 8.3830, 5.6929, 7.7739, 8.2488, 
4.4140, 2.5917, 6.9444]. Using the moving 
prediction horizon (Fig.9) brought about performance 
improvement in terms of SSE and settling time 
(Fig.8). This control algorithm is less 
computationally demanding because of a smaller 
prediction horizon. 
 
 

6. CONCLUSION 
 

The presented paper deals with design and 
improving the conventional ANN modeling and 
control methods using orthogonal activation 
functions (OAF). The proposed approach to 
modeling and control has been demonstrated for a 
real plant model of a bioreactor. Simulation results 
confirm the advantages of the designed solution in 
terms of precision, speed and quality. Theoretical, 
numerical and graphical results prove the 
effectiveness of this approach applied in modeling 
and control of highly nonlinear practical problems. 

   1         2         3        4         5 time

gene4 

gene0 

Prediction 
horizon 



     

 
ACKNOWLEDGMENT 

 
 

This paper was partially supported by the Slovak 
Scientific Grant Agency VEGA, Grant No. 
1/0115/03. 
 

REFERENCES 
 

 
Darrell W. (1994), A genetic algorithm tutorial. 

Statistics and Computing, 4:65-85 
Kozák, Š. and L. Körösi (2002), Využitie umelých 

neurónových sietí v praxi a v priemysle, Conf. 
SSKI, Trebišov 

Kozák, Š. and L. Körösi (2003), A novel type of self-
tuning neural controller,  IFAC Conference 
CAO, Visegrád, Hungary 

Körösi, L. (2002), Metódy identifikácie a riadenia 
nelineárnych procesov pomocou ortogonálnych 
a wavelet funkcií, FEI STU Bratislava, KASR p. 
1-70  

Linder, P. (2002), Modelovanie a  riadenie 
dynamických systémov pomocou neurónových 
sietí  s ortogonálnymi aktivačnými funkciami. 
FEI STU Bratislava, KASR, p. 1-55 

Liu, G. P. (2002), Neural-learning control of 
nonlinear systems using variable neural 
networks, IFAC, 15th Triennial World 
Congress, Barcelona, Spain,  

Oravec, M., J. Polec and S. Marchevský (1998), 
Neurónové siete pre číslicové spracovanie 
signálov. Vydavateľstvo FABER, Bratislava, 
196p. 

Šnorek, M. and M. Jiřina (1995), Neuronové sítě a 
neuropočítače. Vydavateľstvo ČVUT, Praha, 
124P. 

Zhu, Ch., D. Shukla and F.W. Paul (1998), 
Orthogonal Function for System Identification 
and Control, Control and Dynamic System, 
Edited by Cornelius T. Leondes , Academic 
Press, p.1-72 




