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Abstract: Stability properties for a class of reset systems, such as systems
containing a Clegg integrator, are investigated. We present Lyapunov based results
for verifying L2 and exponential stability of reset systems. Our results generalize
the available results in the literature and can be easily modified to cover Lp

stability for arbitrary p ∈ [1,∞]. Several examples illustrate that introducing
resets in a linear system may reduce the L2 gain if the reset controller parameters
are carefully tuned. Copyright c©2005 IFAC.
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1. INTRODUCTION

It is a well known fact that linear control suf-
fers from certain fundamental performance limi-
tations. These limitations may sometimes be al-
leviated by nonlinear or hybrid feedback (Feuer
et al., 1997). Reset controllers are an example of
nonlinear controllers that may overcome some of
the fundamental performance limitations of linear
controllers (Beker et al., 2001).

Reset controllers are motivated by the so-called
Clegg integrator introduced in (Clegg, 1958). This
device is a particular type of a nonlinear integrator
that operates in the same manner as the linear
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integrator whenever its input and output have
the same sign and it resets its output to zero
otherwise (modeling of the Clegg integrator was
analyzed in detail in (Zaccarian et al., 2004)). Its
describing function has the same magnitude plot
as the linear integrator but it has a phase lag of
only 38.1◦ compared to the lag of 90◦ for a linear
integrator (see (Clegg, 1958) for details). This
feature can be used to provide more flexibility in
controller design. A more general reset element is
the so called First Order Reset Element (FORE).
A FORE operates in the same way as the Clegg
integrator except that it contains a more general
first order linear filter instead of an integrator.

Early designs of reset controllers that use respec-
tively Clegg integrators and FOREs can be found
in (Krishnan and Horowitz, 1974) and (Horowitz
and Rosenbaum, 1975). First attempts to rigor-
ously analyze stability of reset systems with Clegg
integrators can be found in (Hu et al., 1997; Hollot
et al., 1997). In particular an integral quadratic
constraint was proposed in (Hollot et al., 1997)



to analyze stability of reset systems. However,
the proposed condition was conservative as it was
independent of reset times. Stability analysis of
reset system consisting of a second order plant
and a FORE was conducted in (Chen et al., 2001)
(see also (Chen et al., 2000b)). Stability analysis
of general reset systems can be found in (Beker et
al., 2004) (see also (Hollot et al., 2001; Chen et
al., 2000a)), where Lyapunov based conditions for
asymptotic stability of general reset systems were
presented. Moreover, the authors proposed com-
putable conditions for quadratic stability based on
linear matrix inequalities (LMIs). Bounded-input
bounded-state stability of general reset systems
was obtained as a consequence of quadratic stabil-
ity. Finally, an internal model principle was proved
for tracking of and disturbance rejection.

In this paper we present Lyapunov based condi-
tions for L2 stability of general reset systems. We
emphasize that the same proof technique can be
used to prove Lp stability for arbitrary p ∈ [1,∞].
Moreover, a similar Lyapunov condition is pre-
sented for exponential stability that generalizes
the stability condition in (Beker et al., 2004, The-
orem 1) in several directions. First, our results
use locally Lipschitz Lyapunov functions, includ-
ing piecewise quadratic Lyapunov functions, as
opposed to continuously differentiable Lyapunov
functions that were used in (Beker et al., 2004).
Second, we use a model of reset systems, pro-
posed in (Zaccarian et al., 2004), that allows us to
considerably relax the Lyapunov conditions. For
instance, in (Beker et al., 2004, Theorem 1) the
authors require existence of a Lyapunov function
that decreases along solutions of the system in
absence of resets everywhere in the state space.
Our condition, on the other hand, requires such
a decrease only in a strict subset of the state
space. This allows us to obtain sharper stability
bounds and input/output gains and, as a result,
we obtain interesting new insights into design of
reset systems with Clegg integrators and FOREs
(see also (Zaccarian et al., 2004)).

The results of this paper provide a framework
for the analysis of exponential and input/output
stability of reset systems and will be useful in the
development of systematic reset controller design
procedures. For instance, the results of this paper
are used in (Zaccarian et al., 2004) to derive
LMI based tools for the construction of piecewise
quadratic Lyapunov functions that establish L2

and exponential stability of reset systems with
Clegg integrators and FOREs. We believe that
further such developments will be made possible
using the results of this paper.

The paper is organized as follows. In Sections
2 and 3 we present respectively preliminaries
and the class of reset systems that we consider.
Section 4 contains the main results. Examples are
presented in Section 5. Summary and conclusions
are given in the last section.

Notation. The sets of positive integers (includ-
ing zero) and real numbers are respectively de-
noted as N0 and R. Given vectors x1, x2 we use
the notation (x1, x2) := [xT

1 xT
2 ]T . Given an

integer p ∈ [1,∞) and a Lebesgue measurable
function d : [t1, t2] → R

d, we use the notation

‖d[t1, t2]‖L2
:=

(∫ t2

t1
|d(τ)|2dτ

) 1
2

. If ‖d[0,+∞)‖L2

is bounded, then we write d ∈ L2.

2. PRELIMINARIES

We use here the approach from (Goebel et al.,
2004) to define the solutions of hybrid systems.
The hybrid time domain is defined as a subset of
[0,∞)×N0, given as a union of finitely or infinitely
many intervals [ti, ti+1] × {i} where the numbers
0 = t0, t1, . . . , form a finite or infinite nondecreas-
ing sequence. The last interval is allowed to be of
the form [ti, T ) with T finite or T = +∞. Let two
closed sets C and D be given such that C∪D = R

n

and functions f : C → R
n and g : D → R

n. A
solution of the hybrid system x(·, ·) is a function
defined on the hybrid time domain, such that

ẋ(t, i) = f(x(t, i))

}
only if x(t, i) ∈ C
and t ∈ (ti, ti+1)

x(ti+1, i + 1)
= g(x(ti+1, i))

}
only if x(ti+1, i) ∈ D
and i ∈ N0 .

(1)

To shorten notation, we omit the time arguments
and write (1) as:

ẋ = f(x) only if x ∈ C

x+ = g(x) only if x ∈ D . (2)

Given (t,N) such that t ∈ [tN , tN+1] we define:

∫ t

0

x(τ)dτ :=

N−1∑

i=0

∫ ti+1

ti

x(τ, i)dτ+

∫ t

tN

x(τ,N)dτ .

In the next section we will use sets C and D of a
special form that are defined next. Let ε ≥ 0 and
M = MT and denote

Cε := {x ∈ R
n : xT Mx + εxT x ≥ 0} (3)

Dε := {x ∈ R
n : xT Mx + εxT x ≤ 0} (4)

and C := C0 and D := D0.

3. RESET SYSTEMS

In the sequel we concentrate on the following class
of hybrid models:

ẋ = Ax + Bd
τ̇ = 1

}
only if x ∈ C

or τ ≤ ρ
(5)

x+ = Ãx

τ+ = 0

}
only if x ∈ D

and τ ≥ ρ
(6)

y = Cx , (7)



where x ∈ R
n, d ∈ R

nd , τ ≥ 0 and ρ > 0.

The role of the variable τ to achieve “time regular-
ization” in the sense of (Johansson et al., 1999) in
order to avoid Zeno solutions. Indeed, it is obvious
that the reset times satisfy ti+1 − ti ≥ ρ for all
i ∈ N0 and, hence, Zeno solutions can not occur.

It was shown in (Zaccarian et al., 2004) that the
class of models (5), (6), (7) can be used to describe
general (linear) reset systems, as the following
example illustrates.

Example 1. (Zaccarian et al., 2004) The block
diagram of the Clegg integrator controlling an
integrator via a unity feedback is given in Figure 1.
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Fig. 1. Clegg integrator controlling an integrator.

The model of the closed loop system can be
written as follows:

ẋr = r − x
ẋ = k · xr + d
τ̇ = 1



 only if (x, xr) ∈ C or τ ≤ ρ

x+
r = 0

τ+ = 0

}
only if (x, xr) ∈ D and τ ≥ ρ .

where ρ > 0; C and D are defined in (3), (4)

with M =

[
0 −1
−1 0

]
and ε = 0; xr and x are

respectively the controller (reset) and plant states;
d and r are the disturbance and reference inputs.

Remark 1. It is important to note the difference
between our model and the model in (Beker et
al., 2004), which has the following form:

ẋ = Aclx + Bcld if x 6∈ M(t) (8)

x+ = ARx if x ∈ M(t) , (9)

where M := {x : Cclx = 0, (I − AR)x 6= 0} for
some matrix Ccl ∈ R

p×n. There are three main
differences between our model (5), (6) and the
model (8), (9):

1. In the model (8), (9) resets are only possible
on the hyperplane Cclx = 0 (as long as some flow
has occurred since the last reset), whereas in our
model (5), (6) resets are enforced on a sector D.

2. Our model (5), (6) uses time regularization to
avoid Zeno solutions whereas there is no time reg-
ularization in the model (8), (9). Instead, (Beker
et al., 2004, Theorem 1) states existence of so-
lutions for (8), (9). Despite this result, it is not
clear what they mean by solution for some states.
Indeed, for the reset system (8), (9) without dis-
turbances it is not clear how to define solutions for
the initial conditions satisfying Cclx0 = 0, (I −

AR)x0 = 0 and where, following the differential
equation for arbitrarily small time yields Cx(t) =
0 and (I − AR)x(t) 6= 0. As an example, consider
the initial condition x0 = (0, a, 0), a > 0 for the

system with Acl =
[
−1 0 0
0 −1 −1
0 1 −1

]
, AR =

[
1 0 0
0 1 0
0 0 0

]
,

Ccl = [ 1 0 0 ]. Note that we have Cclx0 = 0,
(I − AR)x0 = 0 for the given initial condition
(thus x0 6∈ M and the reset is not possible at
t = 0, which means that the dynamics can only
be governed by the flow equation (8) for small
t ≥ 0). Moreover, integrating the in differential
equation (8) from the same initial condition yields
Cclx(t) = 0 for all t and (I−AR)x(t) = [ 0 0 x3(t) ]

′
,

which is initially zero but is nonzero for all small
t (thus x(t) ∈ M for t > 0 and thus flowing from
the initial condition is not possible). Note that the
conditions of (Beker et al., 2004, Theorem 1) hold
for this example (use V (x) = |x|2, which yields

V̇ = −2V and ∆V ≤ 0).

3. The set M and its complement are not closed
whereas the sets C and D are always closed.
Moreover, the sets M and its complement are
disjoint, whereas the sets C and D have a common
boundary and, hence, they overlap.

4. MAIN RESULTS

In this section we state our main results. Suffi-
cient L2 and exponential stability conditions for
the system (5), (6) are presented respectively in
Theorems 1 and 2. In all our results we will rely
on the following assumption:

Assumption 1. For the system (5), (6), the reset

map Ã is such that

x ∈ D =⇒ Ãx ∈ C . (10)

Condition (10) is quite natural to assume for re-
set systems. This condition guarantees that after
each reset time the solutions will be mapped to
the set C where the dynamics are governed by
the differential equation (5) so that flowing is
possible from there. Without this condition, due
to the time regularization, defective trajectories
may correspond to solutions that keep flowing
and jumping within the set D, so that it would
be impossible to establish that all solutions flow
only in the set Cε. This last property is a key
tool for exploiting the advantages of resets within
the Lyapunov framework, thereby establishing our
main results.

Theorem 1. Suppose that Assumption 1 holds
and that there exists a locally Lipschitz Lyapunov
function V : R

n → R≥0, strictly positive numbers
a1, a2, a3, a4, γ, ε and a matrix M = MT such that
the following holds for all d ∈ R

nd :



a1|x|
2 ≤ V (x) ≤ a2|x|

2, ∀x ∈ R
n; (11)

∂V

∂x
(Ax+Bd) ≤ −a3|y|

2+γ|d|2, for a.a. x ∈ Cε (12)

V (Ãx) − V (x) ≤ 0 ∀x ∈ D; (13)∣∣∣∣
∂V

∂x

∣∣∣∣ ≤ a4 |x| , for a.a. x ∈ R
n . (14)

Then, for any L > 1 there exists ρ∗ > 0 such
that 4 for all ρ ∈ (0, ρ∗) the solutions of the
system (5), (6), (7) satisfy:

∫ t

0

|y(τ)|2dτ ≤
La2

a3
|x0|

2 +
γ

a3

∫ t

0

|d(τ)|2dτ ,

for all t ≥ 0, τ(0, 0) = τ0 ≥ 0, x(0, 0) = x0 ∈ R
n

and d ∈ L2. �

Remark 2. A results similar to Theorem 1 can be
stated for the case of Lp stability for arbitrary
p ∈ [1,∞]. The conditions of Theorem 1 need
to be changed slightly and the proofs modified in
a straightforward manner. We did not state this
result due to space constraints and for simplicity.

Remark 3. Sufficient conditions for L∞ (bounded
input bounded state) stability of reset systems
were presented in (Beker et al., 2004) for general
reset systems. Theorem 1 presents for the first
time results on L2 stability of reset systems.

It is instructive to note that Lp stability from
w to y for some p ∈ [1,∞) implies exponential
stability of the system in the absence of distur-
bances. Therefore, if we have an appropriate Lp

detectability from y to x, we can conclude Lp

stability from w to x from Theorem 1. Then,
under mild technical conditions this implies ex-
ponential stability in the absence of disturbances.
This result can be proved using results of (Teel
et al., 2002) and it is very similar to (Nešić and
A.R.Teel, 2004). A special case of the required
detectability property is when there exists µ > 0
such that µ2|x|2 ≤ |y|2. We formally state this
case in the next theorem, while additional results
relying on more general detectability conditions
will be not covered here.

Theorem 2. Consider the system (5), (6) without
disturbances. Suppose that Assumption 1 holds
and that there exists a locally Lipschitz Lyapunov
function V : R

n → R≥0, strictly positive numbers
a1, a2, a3, a4, ε and a matrix M = MT such that
the following holds:

a1|x|
2 ≤ V (x) ≤ a2|x|

2, ∀x ∈ R
n; (15)

∂V

∂x
Ax ≤ −a3|x|

2, for a.a. x ∈ Cε; (16)

V (Ãx) − V (x) ≤ 0, ∀x ∈ D; (17)∣∣∣∣
∂V

∂x

∣∣∣∣ ≤ a4 |x| , for a.a. x ∈ R
n; (18)

4 The explicit value of ρ
∗ is omitted due to space con-

straints.

Then, there exist ρ∗,K > 0 such that for all
ρ ∈ (0, ρ∗) the solutions of the system (5), (6)
satisfy:

|x(t, i)| ≤ K exp

(
−

a3

2a2
t

)
|x0| ,

for all t ∈ [ti, ti+1], i ≥ 0, τ(0, 0) = τ0 ≥ 0 and
x(0, 0) = x0 ∈ R

n. �

Remark 4. Note that conditions (12) and (16)
need to hold only on the set Cε, which is a subset
of R

n. Moreover, the closure of Cε is typically a
proper subset of R

n; hence conditions (12) and
(16) are much weaker than requiring stability of
ẋ = Ax + Bd that was required in (Beker et
al., 2004, Theorem 1) to guarantee stability of the
reset system. Hence, Theorems 1 and 2 relax the
stability conditions used in (Beker et al., 2004).
Finally, we note that in general we can not replace
Cε by C in (12). However, when V (·) has extra
properties (as in the following Proposition 1), this
can be possible.

Remark 5. Our conditions (14) and (18) allow for
non-differentiable Lyapunov functions V (·), which
is another relaxation of the conditions in (Beker et
al., 2004, Theorem 1), where continuous differen-
tiability of V (·) was required. This generalization
allows us, among other things, to consider piece-
wise quadratic Lyapunov functions which were not
possible to handle using the results of (Beker et
al., 2004, Theorem 1). It turns out that piece-
wise quadratic Lyapunov functions are a key tool
for exploiting convex optimization tools such as
LMIs when trying to obtain tight estimates of L2

gains for this class of systems, as illustrated in
(Zaccarian et al., 2004).

Theorems 1 and 2 provide a theoretical frame-
work for analysis and design of reset systems.
A typical analysis problem consists in finding an
appropriate Lyapunov function satisfying the con-
ditions of the theorems for a given system (5),
(6). Computational approaches via LMIs that use
piecewise quadratic Lyapunov functions are given
in (Zaccarian et al., 2004). For instance, Theo-
rem 1 can be used to prove the following result
on L2 stability via quadratic Lyapunov functions
V (x) = xT Px.

Proposition 1. (Zaccarian et al., 2004) Consider
the reset control system (5), (6), (7), where the
sets C and D are defined by the matrix M via (3),
(4). If the following linear matrix inequalities in
the variables P = P T > 0, τF , τR ≥ 0, γ > 0 are
feasible:




AT P + PA + τF M PB CT

? −γI 0
? ? −γI


 < 0,

ÃT PÃ − P − τRM ≤ 0,

(19)



then, there exists ρ∗ such that, for all ρ ∈ (0, ρ∗),
the reset system (5), (6), (7) has a finite L2 gain
from d to y that is smaller than γ. �

We note that using quadratic Lyapunov functions
is often too restrictive for reset systems and more
general theorems based on piecewise quadratic
Lyapunov functions from (Zaccarian et al., 2004)
are often needed.

Sketch of Proof of Theorem 1: The proof is
based on Lemmas 1-3 (see below) that are stated
without a proof. Denote the reset times as ti where
we use the convention that t0 = 0 and tN = t
even though the times 0 and t may not be reset
times. Lemma 2 gives us an appropriate bound on
the time interval [t0, t1]. Because of Assumption
1 we have that x(ti, i) ∈ C for all i ≥ 1 and
Lemma 1 gives us appropriate bounds on the
intervals [ti, ti+1] for i = 1, . . . , N − 1. Lemma
3 guarantees that the value function does not
increase at reset times. Hence, by concatenating
the intervals [ti, ti+1] we can add the bounds in
Lemmas 1 and 2 to prove the result. More details
can be found in the journal version of this paper
(Nešić et al., 2004). �

Lemma 1. Suppose that the conditions of Theo-
rem 1 hold. Then, there exists ρ∗ > 0 such that
for all ρ ∈ (0, ρ∗) we have that if x(ti, i) ∈ C

and d ∈ L2 then a3

∫ t

ti

|y(τ, i)|2dτ ≤ V (x(ti, i)) −

V (x(t, i)) + γ
∫ t

ti

|d(τ)|
2
dτ for all t ∈ [ti, ti+1]. �

Lemma 2. Suppose that the conditions of The-
orem 1 hold. Then, for any L > 1 there ex-
ists ρ∗ > 0 such that for any ρ ∈ (0, ρ∗),
x(0, 0) = x0, τ(0, 0) ≥ 0 and d ∈ L2 we have that

a3

∫ t

t0
|y(τ, t0)|

2dτ ≤ LV (x(t0, 0)) − V (x(t, 0)) +

γ
∫ t

t0
|d(τ)|

2
dτ for all t ∈ [t0, t1]. �

Lemma 3. Under the conditions of Theorem 1,
for any i ≥ 0 we have that V (x(ti+1, i + 1)) ≤
V (x(ti+1, i)). �

5. EXAMPLES

Constructing Lyapunov functions for general re-
set systems that satisfy the conditions of Theo-
rems 1 and 2 is typically hard. It is easier to do
so for systems containing FOREs. In (Zaccarian
et al., 2004) we presented a method based on
Linear Matrix Inequalities to construct piecewise
quadratic Lyapunov functions to check L2 stabil-
ity for a class of reset systems containing FOREs.
In this section, we use results from (Zaccarian et
al., 2004) to analyze the L2 stability of systems
with reset controllers. In particular, we show how
changing parameters in the FORE affects the gain
of the reset closed-loop system.

Example 2. Consider an integrator (plant) con-
trolled by a FORE:

ẋ1 = x2 + d
ẋ2 = −x1 + βx2

τ̇ = 1



 only if x1x2 ≤ 0 or τ ≤ ρ (20)

x+
2 = 0

τ+ = 0

}
only if x1x2 ≥ 0 and τ ≥ ρ (21)

and assume that the output is y = x1. Here, x1

and x2 respectively denote the state of the scalar
plant and of the FORE. We computed the L2

gain from d to y for the system (20), (21) using
the LMI method from (Zaccarian et al., 2004).
The gain has been computed for the limit case
as ρ → 0. (Larger values of ρ correspond, in
general, to larger gains due to the fact that Cε

would be larger.) The gain is plotted as a function
of the parameter β that determines the pole of the
FORE. This plot is represented by the dashed line
in Figure 2. Moreover, we considered the linear
system without resets:

ẋ1 = x2 + d
ẋ2 = −x1 + βx2

y = x1.
(22)

The full line in Figure 2 shows the L2 gain of the
linear system (22) as a function of the parameter
β. Note that adjusting the parameter β in the
linear controller can not produce a gain smaller
than ≈ 1.5. Moreover, as β tends to zero the
L2 gain of the linear system tends to infinity.
For positive values of β the linear system (22) is
unstable and does not have a well defined L2 gain.
On the other hand, the L2 gain of (20), (21) is well
defined for all values of β. Moreover, as β → ∞
the L2 gain of the reset system tends to zero. This
example illustrates that reset controllers may have
advantages over linear controllers.
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Fig. 2. L2 gains of linear and reset closed loops
for Example 2, as a function of the pole of
the FORE.

Example 3. We also address a second example
borrowed from (Hollot et al., 2001). In this exam-
ple, a FORE element whose linear part is charac-
terized by the transfer function 1

s+1 controls via
a negative unitary feedback a SISO plant whose

transfer function is Xr(s)
E(s) = s+1

s(s+0.2) . For this



example, the control system involving the FORE
is shown in (Hollot et al., 2001) to behave more
desirably than the linear control system. It was
shown in (Hollot et al., 2001) that the reset system
had only about 40% overshoot of the linear closed
loop system while retaining the rise time of the
linear design. This example can be further inter-
preted using our results. Indeed, when computing
the L2 gain from the plant input to the plant
output, the linear closed-loop system has an H∞

norm around 5, while using the construction in
(Zaccarian et al., 2004, Theorem 3) and the main
results of our paper we obtain that the L2 gain of
the reset system is 3.82.

Figure 3 reports the L2 gains for the linear closed-
loop and the reset closed-loop as a function of
the pole of the FORE. Once again, for positive
values of β (unstable fores) the linear closed-loop
is unstable, while the reset closed-loop guarantees
smaller gains. The case studied in (Hollot et
al., 2001) corresponds to the horizontal coordinate
β = −1 in Figure 3.
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Fig. 3. L2 gains of linear and reset closed loops
for Example 3, as a function of the pole of
the FORE.

6. CONCLUSIONS

We provided Lyapunov like conditions that guar-
antee L2 stability and exponential stability of a
class of reset systems, such as systems containing
Clegg integrators. Our results provide a theoret-
ical framework for systematic analysis and con-
troller design of reset systems and they generalize
the corresponding results in (Beker et al., 2004).
Examples illustrate that it is possible to improve
the L2 gain of a linear controller by a simple
introduction of resets.
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