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Abstract:  
This paper focuses on the application of stochastic (genetic algorithms, simulated 
annealing) and deterministic (sequential quadratic programming) optimization methods 
for the Integrated Design of processes considering dynamical non-linear models. 
Moreover, a hybrid methodology that combines both types of methods is proposed, 
showing an improvement on performance. Controllability indexes such as disturbance 
sensitivity gains, the H∞ norm, and the ISE were considered to obtain optimum 
disturbance rejection. In order to illustrate and validate our proposal, an activated sludge 
process with PI schemes is taken. The problem is stated as a multiobjective non-linear 
optimization problem with non-linear constraints. The application of the mentioned 
strategies is discussed. The results are encouraging for future application of these 
techniques to solve synthesis MINLP problems. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Process design has been always a hard task, 
especially when dealing with chemical process 
design. Typically, the process engineer determines 
the economically optimal process configuration 
among many possible alternatives by making use of 
heuristic knowledge. After the process flowsheet and 
design parameters are determined by minimising 
construction and operation costs, the dynamical 
behaviour of the system is taken into account for the 
control system design. Thus, the well established 
notion that controllability of the process is an 
inherent characteristic of its design is ignored 
(Luyben, 1993; Luyben and Floudas, 1994; Vega 
and Gutiérrez, 1999).  

 
The Integrated Design techniques try to overcome 
these difficulties, because they integrate 
controllability issues in the design stage, making the 
final system more controllable (Luyben, 1993; 
Luyben and Floudas, 1994; Vega and Gutiérrez, 
1999). By using this methodology, plant and control 
system parameters can be obtained at the same time, 
and all this parameters provide optimum costs and 

proper controllability behaviour based on dynamical 
controllability performance indexes. This problem is 
stated mathematically as a non-linear multiobjective 
optimization problem with non-linear constraints 
including economic, process and control 
considerations. 

 
Another important issue when designing a plant is 
the selection of the best configuration for the plant. 
The problem is then called process synthesis and 
mathematically involves the use of binary variables, 
making the optimization more complex to solve. A 
non-linear MINLP constrained optimization problem 
is generated and has to be solved (Luyben and 
Floudas, 1994; Revollar et al., 2004).  

 
Due to the complexity of chemical processes, the 
classical optimisation methods for solving the 
process synthesis and Integrated Design, sometimes 
fail to converge properly because of presence of 
local minima, discontinuities, numerical problems, 
etc. For this reason, the study of these optimisation 
methods and the need to look for alternative ones are 
important issues to be considered (Kookos and 
Perkins, 2001; Tsai and Chang, 2001). 
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The classical gradient based optimization techniques, 
such as sequential quadratic programming (SQP), 
have been broadly applied for constrained 
optimisation obtaining good solutions in a 
reasonable amount of computing time (Edgar, 2001; 
Gill, 1981). However, for complex problems these 
algorithms sometimes fail to give any solution, and 
their effectiveness decreases when discontinuities 
and non convexity are present. In this work, a two 
steps optimization approach has been proposed to 
improve SQP algorithm convergence and results. 

 
The stochastic optimisation techniques such as 
genetic algorithms and simulated annealing 
(Salamon, 2002; Laarhoven, 1987) are recommended 
for complex non-linear and discontinuous problems 
where classical optimisation techniques might fail. 
This algorithms have been used with good results for 
this type of problems, and particularly for solving 
process synthesis (Costa and Oliveira, 2001; Tsai 
and Chang, 2001; Revollar et al., 2004), but their 
main drawback is the difficulty to handle constrained 
problems because the stochastic search operators 
frequently produce infeasible solutions. 

  
In this paper, a hybrid method for the solution of 
these complex problems, such as process Integrated 
Design and synthesis, combining genetic algorithms 
and SQP to make use of the advantages of both 
methods. First, the genetic algorithm is good to find 
candidate solutions close to an optimum, exploring 
all the search space, without suffering numerical 
problems, and then these candidate solutions are 
improved using SQP methods to find a real feasible 
optimum.  
 
Some results of the application of this hybrid 
optimization technique to activated sludge Integrated 
Design are shown in this work. Open and closed 
loop design with PI control configuration have been 
studied.  A comparison of these results with SQP and 
stochastic optimisation techniques (genetic 
algorithms and simulated annealing) is also 
presented. 
 

2. DESCRIPTION OF THE PROCESS AND 
PLANT CONTROLLER 

 
In order to apply the Integrated Design methodology 
and compare solutions using different optimization 
methods, the activated sludge process in a 
wastewater treatment plant has been chosen.  
 
The plant layout is represented in Figure 1, and it 
consists of a simple structure with one aeration tank 
and one secondary settler. The fundamentals of the 
process are that a microbial population (biomass) 
living into the bioreactor, transforms the 
biodegradable pollution (substrate) when dissolved 
oxygen is supplied through aeration turbines. Water 
coming out of the reactor goes to the settler, where 
the activated sludge is separated from the clean water 
and recycled to the bioreactor.  
 

The process variables are presented in Figure 1. 
Biomass concentrations are denoted by “x” (mg/l), 
organic substrate concentrations are denoted by “s” 
(mg/l), “c” is used for the oxygen concentrations 
(mg/l), and “q” for flow rates (m3/h). 
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Figure 1: Activated sludge process layout 

 
The control of this process aims to keep the substrate 
at the output (s1) below a legal value despite the 
large variations of the flow rate and the substrate 
concentration of the incoming water (qi and si). 
These disturbances are one of the main problems 
when trying to control the plant properly. A 
conventional PI controller has been considered, with 
qr1 as manipulated variable. The set of disturbances 
used as system input in dynamic simulations for 
designing the plant (Figure 2) has been taken from 
the European research group COST 624 and its 
benchmark for wastewater treatment plants. 
 

 

 
 

Figure 2: Substrate and flow disturbances at the 
influent 

 
3. INTEGRATED DESIGN OPTIMIZATION 

PROBLEM 
 
The Integrated Design for the activated sludge 
process, consists of minimizing an objective function 
which represents construction and operation costs, 
while the desired open or closed loop dynamic is 
considered as constraint. Mathematically it is stated 
as a NLP/DAE optimization of the following cost 
function, subject to process and controllability 
constraints. The problem is formulated as follows: 

 



Cost function:  
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where V and A are the volume of the reactor and the 
cross-sectional area of the settler, fk is the aeration 
factor in the reactor, q2 is the total recycling flow and  
wi  (i = 1,…,4) are the corresponding weights. 
  
Process constraints: 
 
− Residence time and mass load in the aeration 
tank:      
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− Limits in hydraulic capacity and sludge age in 
the settler: 
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− Limits in the relationship between the input,  
recycled and purge flow rates: 
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− Constraints on the non-linear differential 
equations of the plant model to obtain a solution 
close to a steady state (ε  close to zero): 
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Controllability constraints: 
 
The controllability constraints are stated to guarantee 
disturbance rejection capability, either in open or 
closed loop configurations. 
 
− The ISE norm 
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where Tmax =165 hours is the simulation time and s1r 
is the steady-state value or reference for substrate. 
 
− The H∞ norm of the disturbance transfer 
function: 
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where σ  is the maximum singular value 
 
− The disturbance sensitivity gains at the 

dominant frequencies of the disturbances.  
 

( )
( )

2

2

dG j d
Ds

d

ω
ω

⋅
=    (16) 

where Gd is the disturbance transfer function, ω is 
the frequency, and d is the maximum disturbance 
vector. 
 

4. SOLVING THE PROBLEM BY 
DETERMINISTIC AND STOCHASTIC 

METHODS 
 
 4.1. Solving the problem by deterministic methods: 
Sequential Quadratic Programming (SQP) 
 
When tackling the Integrated Design mathematical 
problem, specific features of the process (non-
linearities, different sensitivity for plant parameters 
and controller parameters, etc.) increase the 
complexity of the problem. For this reason, when 
solving closed loop Integrated Design, we propose a 
methodology consisting of an iterative two steps 
approach.  For open loop design, optimization of 
function (1) is sufficient, but for closed loop 
Integrated Design, the optimization procedure 
involves the two cost functions (1) and f2, 
 

2 ( ) 5f x w ISE= ⋅         (17) 

 
where ISE is obtained by equation (14) and w5 is the 
corresponding weight. 
 
The first step performs the plant design optimizing 
f1, and the second step the controller tuning 
optimizing f2. At every step, plant or controller 
parameters obtained are used as constant values for 
the following optimization step. The loop ends when 
a convergence criterion is reached.  (figure 3) 
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Figure 3: Iterative loop for Integrated Design 

 
For SQP method implementation the MATLAB 
Optimization Toolbox has been used.  
 
4.2. Solving the problem by stochastic methods: 
genetic algorithms (GA) 
 
Genetic algorithms are stochastic optimisation 
techniques based on natural evolution. The 
optimisation process is carried out with a population 
of potential solutions for the problem coded as 
chromosomes (individuals). A fitness value based on 
the cost estimation is assigned to each one.  For each 
generation, a number of individuals of the population 



are chosen to mate; the selection process favours the 
best fitted individuals. The mating results in possible 
new solutions, which can be randomly mutated, and 
included into population, deleting some previous 
existing ones. After several generations, the 
algorithm converges to the best individual, which 
hopefully represents an optimal solution to the 
problem (Gen and Chen, 2000). 
  
For this particular case, real coding is proposed, 
defining each chromosome as [x1, s1, c1, xd, xb, xr, qr, 
qp , fk, V, A], where the variables are coded as genes 
in the range [ 0 1]. The tournament operator was 
used for selection procedure. The “arithmetic 
extended intermediate crossover” is used to generate 
new candidate solutions. This crossover operator 
calculates the genes of the offspring (zi) as the 
weighted average of the genes of the parents (xi, yi), 
as shown in equation (18) (Gen and Chen, 2000).  
 

1 2i i iz x yλ λ= ⋅ + ⋅       (18) 
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It is important to find an appropriated technique to 
deal with constraints. In this case, an evaluation 
function with penalty term in the addition form was 
applied (Gen and Chen, 2000).   
 
For the closed loop design, chromosomes include 
controller parameters. The algorithm should also 
favour the exploration of the space of possible 
controllers for a particular plant, therefore, the 
population contains individuals representing 
different plant-controller alternatives and individuals 
which represent the same plant with different 
controllers and its size is duplicated. 
 
The optimization problems presented in this work 
were solved using a population size of 30 individuals 
and a maximum generation number of 300. 
 
4.3. Solving the problem by stochastic methods: 
simulated annealing (SA) 
 
Another stochastic method used in this work is the 
simulated annealing, that is inspired in the annealing 
process to get minimum energy states in a solid. 
Mathematically, the states represent candidate 
solutions, and the energy is the cost associated to 
each of them. Starting with a random initial point, a 
sequence of candidate solutions is generated 
iteratively using the following acceptance criteria. If 
i is the previous candidate, with cost f(i), and j is a 
new generated  candidate with cost f(j), the 
acceptance probability of taking j as new candidate 
solution is  
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where c is a parameter that decreases when the 
number of iterations increases.  This acceptance 
probability allows for the algorithm to select 

solutions that increase cost, in order to avoid local 
minima. 
 
Candidate solutions are encoded as normalized real 
number vectors, and the generation of a new 
candidate consists of changing randomly one of the 
vector elements (representing one of the optimization 
variables). Cooling schedule for c parameter used 
here is a linear decreasing with rate 0.88. 
 
4.4. Solving the problem by a hybrid method 
combining deterministic and stochastic methods 
 
Stochastic methods have the advantage of avoiding 
local minima and the ability of providing solutions 
when dealing with complex problems. If binary or 
integer variables are involved in the optimization 
problem (such as process synthesis or model 
predictive controller parameters tuning), this 
methods are particularly suitable. However, 
sometimes they do not arrive to feasible solutions 
easily, and give only solutions close to an optimum. 
On the other hand, deterministic methods alone, such 
as SQP, do not converge to any solution when 
dealing with complex problems. This is the reason 
why we propose a combination of both methods, 
consisting on a final refinement of stochastic 
solutions with the SQP method. In this way, 
advantages of both methods are exploited. 
 

5. INTEGRATED DESIGN RESULTS 
 
Three scenarios are presented to study the Integrated 
Design problem and the effectiveness of the 
algorithms proposed. First, the design was performed 
to optimise investment and operation costs without 
any controllability considerations.  The second case 
is focused in open loop design including disturbance 
sensitivity gains and H∞ norm as controllability 
measures. Finally the Integrated Design of the plant 
with a PI controller is developed. For the three 
design cases, results with deterministic and 
stochastic methods are presented, and also results 
using the hybrid methodology (GA refined) 
proposed in the paper. 

 
5.1. Design considering only investment and 
operation  costs 
 
In this design case, optimum costs plants are 
obtained, together with a steady state working point. 
Results are shown in table 1, and the plant response 
when disturbances are present is in figure 4.  
 

Table 1: Integrated Design results without 
controllability 

 
Parameters SQP GA SA GA refined 
V (m3) 5046 5939 4829 5066 
A (m2) 1885 1980 1775 1887 
S1 (mg/l) 87.5 86.21 85.30 87.47 
ISE 588790 528460 891970 594770 
Cost 0.040 0.059 0.035 0.040 
Ds (ω1) 2.342 2.203 2.324 2.340 
Ds (ω2) 2.700 2.609 2.6775 2.696 
Norm H∞ 0.2900 0.286 0.1609 0.2908 



 
 
Figure 4: Output substrate of the plant resulting from 

design without controllability using SQP 

5.2. Design considering open loop controllability 
constraints 
 
The aim here is to design an optimum plant that 
rejects the two load disturbances at the output 
variable, s1, without any controller. The solutions are 
presented in tables 2 and 3, and the plant response is 
shown in figures 5 and 6. At the view of dynamical 
responses and controllability indexes, plants 
obtained in this case exhibit a better disturbance 
rejection than the economically optimal plants shown 
in section 5.1, but with higher costs. 
 

Table 2: Open loop Integrated Design results with 
constraints in disturbance sensitivity gains 

 
Parameters SQP GA SA GA refined 
V (m3) 7270 6317 6215 6762 
A (m2) 2372 3075 3013 2615 
S1 (mg/l) 50.72 51.52 50.06 50.53 
ISE 186230 179110 175520 184330 
Cost  0.0807 0.0985 0.0895 0.0812 
Ds (ω1) 1.354 1.378 1.379 1.366 
Ds (ω2) 1.499 1.494 1.497 1.500 
Norm H∞ 0.151 0.156 0.160 0.1573 

 

 
 

Figure 5: Response of the plant resulting from the  
Integrated Design considering Ds gains 

 
Table 3: Open loop Integrated Design results with 

constraint in H  ∞ norm 
 

Parameters SQP GA SA GA refined 
V (m3) 7772 7784 6777 5968 
A (m2) 2172 2447 2165 2990 
S1 (mg/l) 51.26 51.41 51.42 51.32 
ISE 185350 158080 485110 194430 
Cost  0.083 0.104 0.0706 0.0863 
Ds (ω1) 1.349 1.355 1.382 1.414 
Ds (ω2) 1.510 1.508 1.574 1.537 
Norm H∞ 0.1600 0.1609 0.1601 0.1600 

 

Figure 6: Response of the plant resulting from the 
Integrated Design considering H∞ norm 

5.3. Closed loop Integrated Design  
 
The complexity of the Integrated Design for the  
closed loop operation increases significantly because 
now this is a multiobjective dynamical optimisation 
problem, where the plant and controller parameters 
(Kp, Ti) were determined simultaneously, satisfying 
the compromise between economics and 
controllability. Results are presented in table 4. Now 
the dynamical performance index ISE is much better 
than for open loop design. In figures 7 and 8 can be 
easily seen good disturbance rejection, indicating an 
appropriated controller tuning. 

  
Table 4: Closed loop Integrated Design results 

 
Parameters SQP GA GA refined 
V (m3) 8570 9664 8611 
A (m2) 3084 2405 3026.1 
S1 (mg/l) 47.38 59.00 38.63 
ISE 79791 75114 79771 
Cost  0.1335 0.1355 0.1292 
Kp -11.94 -41.10 -7.33 
Ti 0.1330 626.7 415.1 
Norm H∞ 0.4220 0.1274 0.1080 

 

 
 

Figure 7: Response of the plant resulting from the 
closed loop Integrated Design with SQP 

 

 
Figure 8: Response of the plant resulting from the 

closed loop Integrated Design with GA 
 
 



In general, the effectiveness of the algorithms 
applied to solve the Integrated Design problem is 
satisfactory in all the cases studied. For the open 
loop design, the SQP method exhibited better 
performance in terms of computational time and 
solutions quality. The stochastic algorithms always 
lead to solutions comparable to the SQP results, but 
when dealing with constraints these methods provide 
frequently non feasible solutions, especially when 
using simulated annealing.  However, the use of 
refined GA with SQP gives quite good solutions 
with a reasonable computational effort. 

 
The closed loop design was solved using only SQP, 
GA and the hybrid methodology. The computational 
time required to solve the problem was similar for 
both techniques, and different results with similar 
quality were found. It is important to note that, for 
this complex case, the hybrid methodology gives the 
best solution. 

 
6. CONCLUSIONS 

 
In this paper different optimization methods have 
been studied to solve the Integrated Design problem 
of processes, and particularly the activated sludge 
process. Two stochastic methods (simulated 
annealing and genetic algorithms) and one 
deterministic (sequential quadratic programming) 
have been applied, showing good results in open 
loop design and closed loop Integrated Design with 
PI controllers. 
 
Furthermore, hybrid optimization starting with GA 
and refining solutions with SQP has also been 
developed, combining advantages of both methods, 
and giving also good results for Integrated Design. 
Because of GA seems very suitable for solving 
MINLP problems, these results are encouraging for 
the application of the hybrid method to solve the 
problems derived from process synthesis, or 
Integrated Design with model predictive controllers, 
that also involves integer variables. 
 
Note that plant non-linear dynamics has also been 
considered in the Integrated Design process. Plants 
designed are optimum costs and feature optimum 
disturbance rejection depending on requirements. 
The non-linear model of the plant is satisfied, as well 
as the operation and process constraints.  
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