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Abstract: The influence of multiple bottlenecks on the stability of Active Queue
Management (AQM) controllers, usually configured on a single bottleneck basis
is discussed. We consider a network scenario where RED is configured at each
router according to previously developed control theoretic techniques. These
configuration rules assure stability in a single bottleneck scenario. We show that
instability may arise when two links become congested. We justify this result
through a multiple bottleneck model using the Generalized Nyquist stability
criterion Copyright c©2005 IFAC.
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1. INTRODUCTION

AQM algorithms usually rely on some heuristics
and their performances appear to be highly de-
pendent on the considered network scenario (see,
e.g., (May et al., 2000; Firoiu and Borden, 2000),
as regards the RED algorithm).

Our research has been motivated by the consid-
eration that the distributed fashion of TCP flows
control across the network has not been explic-
itly considered up to now. As a matter of fact
TCP flows may turn to be controlled at the same
time by two or more nodes acting independently
according to their AQM settings. According to
our opinion, this can hardly affect AQM algo-
rithms performance. In particular, we propose a

? Research supported by MURST Grant ex-40% “Robust
Techniques for Uncertain Systems Control”.

counterexample to show that RED controllers,
configured according to (Hollot et al., 2001), do
not prevent from instability if two or more nodes
face congestion at the same time (this is referred
to as multiple bottleneck scenario). In our papers
(Neglia et al., 2004) instability in multiple bottle-
neck has been tackled by considering a distributed
Multi-Input Multi-Output model, whose stability
has been studied considering the poles of the
rational Linear Time Invariant model obtained
through linearization and Padé approximation for
time delays. Here the MIMO linearized model
is analyzed via the Generalized Nyquist stability
criterion.



2. SINGLE BOTTLENECK MODEL

The starting point in (Hollot et al., 2001) is
the model described by the following coupled,
nonlinear differential equations:

Ẇ (t) =
1

R(t)
− W (t)W (t−R(t))

2R(t−R(t))
p(t−R(t))(1)

q̇(t) =
W (t)
R(t)

N(t)− 1q(t)C

where 1q = 1 if q > 0, 1q = 0 otherwise. Symbols
used in the model above are summarized in the
following table.

W expected TCP window size (packets);

q expected queue length (packets);

R round-trip time;

C link capacity (packets/sec);

R0 propagation delay (secs);

N load factor (number of TCP sessions);

p probability of packet drop;

The first equation represents the TCP window,
that increases by one every round trip time, and
halves when a packet loss occurs. Packet loss rate
is computed as the dropping probability times the
number of packets sent per time unit. The round
trip time is related to the propagation delay and
the queue occupancy by the following relation:
R = R0 + q

C . The second equation represents
the variation of queue occupancy as the difference
between the input traffic and the link capacity.

AQM schemes determine the relation between the
dropping probability and the nodes congestion
status.

Here we considered RED as AQM scheme. RED
configuration is specified through four parame-
ters: the minimum and the maximum thresh-
old (THRmin, THRmax), the maximum dropping
probability in the region of random discard Pmax,
and the memory coefficient wq. RED can be mod-
elled by the following equations:

ẋ(t) = −kx(t) + kq(t) (2)

p(x) =





0, 0 ≤ x < THRmin

(x− THRmin)Pmax

THRmax − THRmin
, THRmin ≤ x < THRmax

1, THRmax ≤ x,

where k = − ln(1−α)/δ and δ is the time between
two queue samples. The time interval δ can be
assumed to be equal to 1/C for a congested node.

The linearized system (TCP sources, congested
node queue and AQM controller) can be repre-
sented by the block diagram of Fig. 1. In the block
diagram LRED = Pmax/(THRmax − THRmin).

The open-loop transfer function of the system in
Fig. 1 is:
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Fig. 1. Linearized control system for a single
bottleneck scenario

H(s) =
LRED

(RC)3

(2N)2 e−sR

(
1 + s

k

) (
1 + s

2N
R2C

) (
1 + s

1
R

) (3)

In (Hollot et al., 2001) the authors present RED
configuration rules, that guarantee the stability
of the linear feedback control system in Fig. 1 for
N ≥ N− and R0 ≤ R+.
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Fig. 2. Network topology

3. AN INSTABILITY EXAMPLE

In this section we show the example of a network
where each router has been configured so that
stability is guaranteed when congestion occurs at
a single link, but instability arises when there are
two bottlenecks at the same time. We consider a

Table 1. Network Parameters

Link Capacity (Mbps) Propagation Delay (ms)
5-1 20 2.1
1-2 10 10
2-3 20 2.1
4-3 20 19.1
3-6 10 10
7-1 20 9.4
2-8 20 9.4

parking lot network whose topology is depicted
in Fig. 2. The capacity and the propagation de-
lay of each link are reported in Table 1. Packet
size is 1500 bytes. Links between nodes 3 and 6
and between nodes 1 and 2 will play the role of
bottlenecks. The RED algorithm is deployed at
nodes 3 and 1, respectively to manage the output
queues for the link 3−6 and 1−2. In what follows
we refer to these buffers simply as node 3 buffer
and node 1 buffer, without specifying the link.
We consider TCP flows aggregates from node 5
to node 6, from node 4 to node 6 and from node
7 to node 8. We indicate the number of flows of
these aggregates respectively N5, N4 and N7. Our
RED configuration relies on the control theoretic



analysis of RED presented in (Hollot et al., 2001).
Nevertheless, we do not adopt exactly the con-
figuration rules proposed there, since their high
stability margins do not allow simple counter-
example. Then, we verify RED-configuration sta-
bility directly through the Nyquist plot of the
open loop transfer function. We recall that the
Nyquist criterion allows one to study the stability
of the closed loop system through the polar plot
of the open loop transfer function H(jω). For the
functions we are interested in, the closed loop
system is stable if and only if the plot does not en-
circle the point (−1, 0). We choose THRmin = 2,
THRmax = 20, Pmax = 9%, and wq = 0.0017.
The analysis in (Hollot et al., 2001) shows that
stability increases as the number of flows increases
and the RTT decreases. Given a network scenario
these quantities are not independent because the
queuing delay, and hence the RTT, depends on
the number of flows. In particular the higher the
number of flows the bigger the queue. In fact
in order to evaluate the equilibrium point, we
can impose the derivatives in equation system (1)
equal to zero, obtaining

pW 2 = 2,
W

R
N = C, R = R0 +

q

C
,

and from equation system (2) considering that
q > THRmin:

p = LRED(q − THRmin).

It follows that the equilibrium queue value has to
satisfy the following equation

(q − THRmin)2(q + CR0)2 = 2
N2

L2
RED

. (4)

It is easy to see that as N increases, q increases.
The previous equation shows also that the most
critical condition is the lowest number of flows.
Indeed q is approximately proportional to

√
N ,

hence the gain of H(s) is proportional to 1/
√

N .
In conclusion we expect that if stability is guar-
anteed for a value N− with a certain gain margin,
then the gain margin is greater for N > N−.
Given the RED configuration, if there are N−

5 =
N−

4 = 3 flows (and N−
7 = 0) link 3−6 is congested,

the average queue is q = 7 packets. The maximum
RTT is equal to 69 ms and the open loop trans-
fer function H(jω) does not encircle the point
(−1, 0). Hence the system is stable, in particular
the gain margin is equal to 1.35. This gain margin
assures stability even if flows number reduces to
5 and if the average queue length increases to
12 packets. As it is expected, if N5 > N−

5 and
N6 > N−

6 the gain margin increases. For example
it is equal to 2.5 when N5 = N4 = 5. Link
bandwidths and propagation delays are such that
the path from 4 to 6 and that from 7 to 8 have the
same characteristics. Hence the same numerical

results hold if only the link 1− 2 is congested due
to aggregate 5 and aggregate 7, while N4 = 0.

Let us assume that both links are congested and
N5 = N−

5 , N4 = N−
4 and N7 = N−

7 . If we evaluate
the new equilibrium point according to following
equations, it holds q4 = q2 ≈ 5.48. In comparison
to the above situation, the RTT of aggregate 5
increases due to queueing delays at both node 3
and node 1 buffers, but the maximum RTT is
always lower than 69 ms. Hence the local stability
conditions are satisfied and we would expect the
network to be stable and the gain margin should
be even greater if N5 ≥ N−

5 , N4 ≥ N−
4 and

N7 ≥ N−
7 . Conversely we are going to show that a

refined two-bottleneck model predicts instability.

3.1 Two Bottleneck Model

We extend the single bottleneck congestion model
to the case of two congested nodes. With reference
to the network topology depicted in Fig. 2,
according to notations introduced in (Han et al.,
2004) we obtain:




Ẇ4 =
1

R4
− W 2

4

2R4
p3(t−←−R34)

Ẇ5 =
1

R5
− W 2

5

2R5
(p3(t−←−R35) + p1(t−←−R15))

Ẇ7 =
1

R7
− W 2

7

2R7
p1(t−←−R17)

q̇3 =

−C3Iq>0 +
N4

R4
W4(t−−→R34) +

N5

R5
W5(t−−→R35)

q̇1 =

−C1Iq>0 +
N5

R5
W5(t−−→R15) +

N7

R7
W7(t−−→R17)

(5)

where Wj is the average window of the flows origi-
nating at node j, pi is the dropping probability at
node i buffer, ←−R ij represents the backward delay
from node i buffer to source j (including queuing
delay) and −→

R ij the forward delay from source
j to node i buffer and Iq>0 represents a logical
function that is equal to 1 if the queue q > 0 and
zero otherwise. For sake of simplicity in equation
system (5), the time dependence is indicated only
for delayed function values. Now, we linearize the
Model 5 around the equilibrium point
(Ŵ4, Ŵ7, Ŵ5, p̂3, p̂1) that is the solution of the
following system:





W 2
4 p3 = 2

W 2
5 (p1 + p3) = 2

W 2
7 p1 = 2

W4

R4
N4 +

W5

R5
N5 = C3

W5

R5
N5 +

W7

R7
N7 = C1

p3 = LRED3(q3 − THRmin)
p1 = LRED1(q1 − THRmin)

R4 = R40 +
q3

C3

R7 = R70 +
q1

C1

R5 = R50 +
q1

C1
+

q3

C3

(6)
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Fig. 3. Linearized control system for the multiple
bottleneck scenario

where Rk0 is the round trip time experienced from
source k when no congestion is present, and we
omitted the chapeau to simplify notation. In the
Laplace domain we obtain the following relations:

w(s) = −F (s)←−R (s)T p(s) (7)

q(s) = (sI + Ω)−1−→R (s)NT−1w(s) = G(s)w(s)(8)

where N = diag{Nj} and T = diag{Rj} for
j = 4, 7, 5 and

F (s) =




W 2
4

s + 2
W4R4

0 0

0
W 2

7

s + 2
W7R7

0

0 0
W 2

5

s + 2
W5R5




(9)

Ω =




N5W5

R2
5C3

+
N4W4

R2
4C3

N5W5

R2
5C1

N5W5

R2
5C3

N5W5

R2
5C1

+
N7W7

R2
7C1




In the delay matrices ←−R (s) and −→R (s) the columns
correspond to sources 4, 7 and 5, and the rows to
buffer 3 and 1. In particular

←−
R (s) =


 e−s

←−
R 34 0 e−s

←−
R 35

0 e−s
←−
R 17 e−s

←−
R 15




−→
R (s) =


 e−s

−→
R 34 0 e−s

−→
R 35

0 e−s
−→
R 17 e−s

−→
R 15




Note that −→R (s = 0) = ←−
R (s = 0) is the so called

routing matrix of our scenario.

R(0) =
[

1 0 1
0 1 1

]
(10)

The RED AQM control law that computes the
packet marking probability p as a function of
measured queue length q is p(s) = K(s)q(s),
where

K(s) =




k3LRED3

s + k3
0

0
k1LRED1

s + k1


 (11)

The overall feedback loop is depicted in Fig. 3.

3.2 Stability Analysis

Many methods have been developed in the past
fifty years to analyze the stability of time-delay
system, (i.e. see (Gu and Niculescu, 2003) for a
detailed survey), but for our purpose, the clas-
sical result of the Generalized Nyquist stability
criterion (Desoer and Wang, 1980) is sufficient
and gives us an easy analytical tool. We recall it
hereafter:

Theorem 1. (Generalized Nyquist Criterion)
If the open loop matrix L(s) has P0 unstable
poles, then the closed-loop system with return ra-
tio−kL(s) is stable if and only if the characteristic
loci of kL(s), taken together, encircle the point
(−1, 0), P0 times anticlockwise.

As proved in (Desoer and Wang, 1980), the above
theorem is valid not only for the lumped case when
L(s) is a square rational transfer matrix L(s), but
it has been extended also to the distributed case.
In the lumped case, L(s) is factorized in two part,
and P0 are the poles of the rational part. In our
case, the open loop matrix is given by

L(s) = K(s)(sI + Ω)−1−→R (s)NT−1F (s)←−R (s)T

Applying the Generalized Nyquist criterion, we
analyze the characteristic loci of L(s) in the case
of N4 = N5 = N7 = 3, reported in Fig. 4. Since

Fig. 4. L(s) characteristic loci in the case of N4 =
N5 = N7 = 3

the open loop is stable, and the characteristic
loci of L(jω) encircle the point (−1, 0), two times
anticlockwise, as shown in Fig. 5, the closed loop
system is unstable. This example shows the limits
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Fig. 5. Particular of the L(s) characteristic loci in
the case of N4 = N5 = N7 = 3



of local AQM configuration ignoring the distrib-
uted nature of TCP flows control in a multiple
bottleneck scenario. If we consider the configura-
tion rules given in (Hollot et al., 2001), instability
probably does not arise in such a simple exam-
ple, but there is a reduction of stability margins.
This modifies the system dynamic response and
reduces the system robustness with respect to the
flows number and the round trip time variation.

4. SIMULATION RESULTS

In this section we investigate through simula-
tions the previous analytical result. Firstly we
are going to discuss what instability implies as
regards network performance in the single bot-
tleneck scenario. Secondly we show that the two
bottleneck scenario with N5 = N4 = N7 = 3
(unstable according to the analysis in Sec. 3.2)
exhibits performance similar to those identified as
unstable in the single bottleneck scenario. Finally
we observe similar results even in other scenarios,
which are stable according to the two-bottleneck
model. Simulations were conducted through ns
v2.1b9a (network simuator, n.d.). We used TCP
Reno implementation.

4.1 Single Bottleneck

In order to analytically show how instability of
the linear model concretely affects the network
performance, we first present some results regard-
ing the single bottleneck scenario. When dealing
with simulation tests a first issue regards the
choice of a metric able to catch potential insta-
bility phenomena. For example (Low et al., 2002)
shows the oscillations of the TCP window and a
deterministic limit cycles in the average window,
averaged over all the flows of the same aggregate,
and (P. et al., 2002) shows nonlinear phenomena,
such as bifurcations, using Liapunov exponents as
a measure. Following the same line as in (Hollot et
al., 2001) we will look at the oscillating nature of
the queue length to distinguish between stable or
unstable behaviors. Differently from those papers,
our results suggest that the amplitude of queue
oscillations is not significant by itself when RED is
considered. As we are going to show it can be more
appropriate to consider the amplitude of queue
oscillations in relation to the average queue value.

Let us consider two aggregates, each one of five
TCP flows (N = 10), entering the network
through node 4 and node 5 with destination node
6 (solid lines in Fig. 2). The link between nodes 3
and 6 is congested. Fig. 6 shows the instantaneous
queue occupancy time-plot for the buffer at node
3. RED should be able to keep the queue occu-
pancy within the two thresholds (dotted lines).
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Fig. 6. Instantaneous buffer occupancy with num-
ber of flows N = 10
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Fig. 7. Instantaneous buffer occupancy with N =
6

Numerical results for the throughput and the
queue are shown in Table 2. In particular the av-
erage queue size is in column “queue occupancy”,
while the standard deviation is in column “queue
oscillation”. The value in parentheses is the nor-
malized queue oscillation, i.e. the ratio between
the standard deviation and the average queue
value.

Let us reduce the number of flows through the
network and see if instability occurs as claimed in
(Hollot et al., 2001). In Fig. 7 the buffer occupancy
is shown to revisit with a higher frequency the re-
gions associated to buffer underload (out of RED
thresholds). As the total flow number decreases
from 10 to 6 we note that i) the throughput
over the link 3 − 6 (Thr5 + Thr4) reduces from
9.91 Mbps to 9.74, ii) both the average queue
occupancy and the oscillation amplitude decrease,
respectively from 9.06 to 6.71 and from 4.72 to
4.09, and iii) the normalized standard deviation,
i.e. the ratio between standard deviation and
mean, increases from 0.52 to 0.61.

If we reduce drastically the number of flows to
2, the above RED configuration, turns to be too
aggressive, which is evidenced by higher frequen-
cies of buffer occupancy oscillations and further
reduction of the throughput. Even longer periods,
where buffer is underloaded results from Fig. 8. In
general, experimental results show that instability
predicted by the model in (Hollot et al., 2001)
leads to reduced link utilization and queue oscilla-
tion and higher normalized oscillations (higher jit-
ter in percentage). Hence, while one could expect
larger queue oscillations when the number of flows
decreases and the stability margins decrease, this
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Fig. 8. Instantaneous buffer occupancy with N =
2

intuition is not confirmed by simulative results.
The explanation is straightforward: RED couples
queue length and loss probability, in particular
a lower number of flows needs a lower global
dropping probability, hence a lower average queue
(from a control theoretic point of view one says
that the RED controller has steady state regula-
tion errors). As the average queue size decreases,
the physical constraint of positive queue values
can determine smaller oscillations. On the con-
trary the normalized standard deviation looks to
reflect system change from stability to instability.
So in what follows we focus on it to analyze
instability phenomena.

4.2 Two Bottlenecks

Now we consider an additional aggregate entering
the network from node 7, with destination node
8 (dotted line in Fig. 2). In Fig. 9 node 3 buffer
appears to be empty more often than in Fig. 7.
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Fig. 9. Instantaneous node 4 buffer occupancy in
a two bottleneck scenario

The numerical values stored in Table 2 support
quantitatively our claims rising from Fig. 9.

Table 2. Numerical Results

N5 N5 N7 Thr5 Thr4 Thr7 queue3 queue3 queue1 queue1

occupancy oscillation occupancy oscillation
5 5 0 5.12 4.79 - 9.06 4.72 (0.52) 0.95 0.066 (0.27)
4 4 0 5.09 4.75 - 7.93 4.48 (0.56) 0.95 0.057 (0.25)
3 3 0 5.12 4.62 - 6.71 4.09 (0.61) 0.95 0.067 (0.27)
2 2 0 5.06 4.49 - 5.32 3.57 (0.67) 0.97 0.075 (0.28)
1 1 0 4.80 4.47 - 3.49 2.64 (0.76) 0.97 0.085 (0.30)
5 5 5 3.40 6.41 6.33 7.76 5.29 (0.68) 7.83 5.47 (0.70)
4 4 4 3.43 6.28 6.20 6.85 4.98 (0.73) 6.93 5.13 (0.74)
3 3 3 3.62 5.99 5.91 5.76 4.38 (0.76) 5.94 4.59 (0.77)
2 2 2 3.80 5.60 5.52 4.72 4.01 (0.85) 4.75 4.06 (0.85)

In particular the normalized oscillation values of
queue 3 is 0.76, equal to the value stored in the
fifth row, corresponding to a single bottleneck
high instability scenario due to a low number
of flows (N5 + N4 = 2). Note that, though
the number of flows at each node and the flow
round trip time should assure stable operation,
instability arises due to the traffic aggregate from
5 to 6, which traverses both the congested links.
Moreover results in Table 2 indicate that even
stable scenarios (according to the two bottleneck
model in Sec. 3) like that corresponding to N5 =
N4 = N7 = 5 cannot be easily distinguished by
an unstable scenario. This remark suggests that
the study through linear models could provide
not significative insight on the stability of network
with TCP traffic.
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