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1. INTRODUCTION

 In a physical switching system (PSS) the topology
may change instantaneously depending on some
discrete parameters (Van der Schaft, and
Schumacher, 2000; Zaytoon, et al., 2001). The goal
of this paper is to extend a systematic structured
method to model and analyse the admissible and
constrained configurations of a wide class of physical
switching systems (PSS) from a model based on
mathematical representations of network graphs. The
algebro-differential equations associated with the set
of PSS� configurations are deduced from the
parameterized incidence matrices and they are
written as a non minimal parameterized implicit port
Hamiltonian formulation using a kernel
representation. The modeling method does not
include the conditions of switching. It leads to a
family of hybrid (parameterized) incidence matrices
representing a primal dynamic network graph and its
dual graph, associated with the PSS. This paper is the
continuation of (Magos, et al., 2004-b) and (Valentin,
et al., 2004) which presented how to obtain these

matrices. (Magos, et al., 2004-a) presented how to
express the flow constraint representation and to
carry out the analysis of the admissible
configurations related to effort sources. After some
brief recalls, this paper presents how to perform the
analysis of the admissible configurations related to
flow sources and the constrained configurations.

This approach, based on an energetic view, is related
to other works on linear switched systems (Gerritsen,
et al., 2002), hybrid Hamiltonian systems for
electrical circuits (Jeltsema, et al., 2001), mechanical
systems (Haddad,  et al., 2003) or different power
converters (Escobar, et al., 1999), and hybrid models
based on bond graphs where the switches are
modeled by effort or flow sources (Buisson, 1993;
Cormerais, et al., 2002) or by nonlinear resistors
(Dauphin-Tanguy, et al., 1989).

The method presented in this paper is illustrated on
electrical power converters. One may notice that they
could be seen as the equivalent physical systems
from a different field by energetic analogy. Indeed, it



is important to point out that some mechanical
systems or hydraulical systems have an equivalent
network representation. Therefore, they may be
represented as circuits or more generally modelled by
bond graphs (Paynter, 1961; Karnopp, et al., 1990).

Paragraph 2 recalls the definitions of a dynamic
network graph and of a hybrid parameterized
incidence matrix. Paragraph 3 defines the non-
admissible configurations of a physical switching
system (PSS) and paragraph 4 the PSS� constrained
configurations. Paragraph 5 deals with the
application on a power converter with a flow source.
The last paragraph presents a non minimal hybrid
parameterized implicit port Hamiltonian
representation.

2. DYNAMIC NETWORK GRAPHS
MATHEMATICAL REPRESENTATION

Network graphs (Recski, 1989) have been used to
model physical switching systems in different
domains (DeMarco, 2001; Frigioni, and Italiano,
2000). From these references, we got the idea to see
the switches like ideal elements whose function is to
change the interconnection of the functional
elements. Then, switching is considered as a graph
transformation in a dynamic network graph context
(Magos, et al., 2004-a, 2004-b; Valentin, et al.,
2004). In a PSS, when a switch is closed, the edges
connected to its starting vertex are disconnected and
reconnected to its ending vertex. Then, its starting
vertex is isolated.

Definition 1: A dynamic network graph
Gw = (V, E, Ew) consists of an oriented graph where:
* V is a nonempty finite set of nv vertices (vx ∈  V),
* E is a nonempty finite set of ne pairs of elements of
V called edges (ei ∈  E / ei = (vx , vy), vx being the
starting vertex and vy  being the ending vertex). The
port of a functional element is associated with every
of the ne oriented edges of this graph.
* Ew is a nonempty finite set of ns pairs of elements of
V called virtual edges (ewi ∈  Ew / ewi = (vx , vy), (vx,vy)
∈  V2 ). The port of a switching element is associated
with every of the ns oriented virtual edges of this
graph.

Each edge is associated with a dipole which is linear
or not and then, with an effort variable and a flow
variable. Edges orientation is a convention: usually it
is flow orientation. If vy = vx, the edge is a self-loop.
For electrical circuits the functional elements might
be inductors, resistors, capacitors for mechanical
systems, masses, frictions, springs, ...

The most suitable mathematical representation of the
dynamic network graph for a systematic modelling
and analysis of the system structure, especially if it is
varying, is the incidence matrix. A physical
switching system is a multiconfiguration system

which is mathematically represented by a family of
models. The hybrid (parameterized) incidence matrix
defined in (Magos, et al., 2004-a) gives the geometric
interconnection structures of all these configurations
in a single matrix parameterized by the discrete state
of the switches. For each switch Swk, a discrete
variable wk ∈  {0, 1} is defined, such that: wk=1 if the
switch is closed and wk=0 if the switch is open. Thus
the discrete state of the model is given by: W = [w1,
w2, ..., wns]T.

Let recall here the definition of a hybrid incidence
matrix, following (Magos, et al., 2004-a, 2004-b;
Valentin, et al., 2004).

Definition 2: Let us consider a dynamic oriented
network graph Gw.
* The term ( )( )kwTkn w)G(MI

v
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transformations of the geometric interconnections
between the functional elements produced in closing
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* The transformation matrix, MT(Gw)(W), depends on
W and represents the graph transformation from the
reference configuration Gr (network graph without
the virtual edges i.e. with all switches open) to
another configuration given by the discrete state of
the ns switches, W. MT(Gw)(W) is the following
ordered product (from k=1 to k=ns):
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* The hybrid parameterized incidence matrix
IM(Gw)(W) of the 2ns PSS’ configurations,  is given by
IM(Gw)(W) = MT (Gw)(W)⋅IM(Gr), W ∈  {0, 1}ns  (2)

Each row of the hybrid incidence matrix gives the
edges connected to the corresponding vertex and
each column gives the two vertices connected to an
edge associated with a functional element.

Proposition 1: The hybrid parameterized incidence
matrix is correct as calculated in definition 2 if the
oriented dynamic network graph associated with the
PSS satisfies the following two assumptions:

Assumption 1. The outdegree of each vertex of the
subgraph composed of all virtual edges with their
incident vertices is below or equal to 1.

Assumption 2. All virtual edges are indexed such that
an oriented sequence of virtual edges is decreasing.



Proposition 1 defines the class of physical switching
systems (PSS) studied in this paper. The hybrid
incidence matrices of a primal dynamic network
graph and its dual graph point out several interesting
features of the corresponding PSS: functional
elements� short-circuits and/or open-circuits and
devices connected in parallel or in series.

It is also interesting to notice that the edges�
orientation in the network graphs is not unique and
predefined by the structure or the logic of the system
as in Petri nets based models for example, and that a
PSS may be modelled by a family of hybrid
incidence matrices depending on the edges�
orientation of its network graphs.

To illustrate these definitions, let now give the hybrid
incidence matrices of the dynamic network graph and
its dynamic dual graph (figure 2) associated with the
simplified Buck converter schemed figure 1.

Fig. 1. simplified Buck converter
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Fig. 2. the primal and dual dynamic network graphs
of the Buck converter: Gwa and Gwa

*

The primal network graph Gwa is represented with
full lines and virtual edges with thin lines, and the
dual network graph Gwa

*
 is represented with dotted

lines and dual virtual edges with thin dotted lines.
Their orientation is chosen in accordance with
proposition 1. It is not unique.
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with (w1, w2) ∈  {0, 1}2.

3. ADMISSIBLE CONFIGURATIONS ANALYSIS

Some states of the switches, may lead to non-
admissible configurations of the physical system with
variable topology. Indeed, a problem arises if there
exist conflicts between generalized Kirchhoff�s laws
and independent non zero effort or flow sources.
Thus, it is of prime importance to remove them for
the control synthesis procedure.

Proposition 2: a non-admissible configuration
corresponds to:
i) An effort source in short-circuit or several

independent effort sources connected in parallel.
ii) A flow source connected in an open-circuit or

several independent flow sources connected in
series.

A main advantage of the incidence matrix IM(Gw)(W)
is that its direct analysis gives all the admissible
configurations dealing with effort sources, because it
leads to the generalized Kirchhoff�s flow laws. Non-
admissible configurations dealing with flow sources
may be deduced from the dual dynamic network
graph and then the dual hybrid incidence matrix
defined in (Magos, et al., 2004-b; Valentin, et al.,
2004) which lead to the generalized Kirchhoff�s
effort laws. If a flow source is connected in an open-
circuit, its dual edge shows a short-circuit. If several
independent flow sources are connected in series,
their dual edges are connected in parallel.
Then, to allow a systematic analysis of the hybrid
incidence matrices, the edges in the reference
network graph Gr are indexed in gathering the
elements of each type together. The following edges
indexation is arbitrarily chosen: effort sources,
capacitors, inductors, dissipative elements and flow
sources. Thus, the characterization of non-admissible
configurations is:

Definition 3: If the physical switching system Σw, the
geometric structure of which is modelled by hybrid
incidence matrices IM(Gw)(W) and IM(Gw*)(W),
includes nes effort sources and nfs flow sources, a
non-admissible configuration defined by a vector
W∈  {0, 1}ns fulfills one of the four following
conditions:
1) If nes≠0, ∃   j ∈  {1, …, nes}  / IM

! j(Gw)(W) = 0 .

2) If nes>1, ∃   (i, j) ∈  {1, …, nes}2 with i≠ j /

 |IM
! j(Gw)(W)| = |IM

! i(Gw)(W)|.

3) If nfs≠0, ∃    j ∈  {ne-nfs+1, …, ne} /

IM
! j(Gw

*)(W) = 0.

4) If nfs>1, ∃  (i, j) ∈   {ne-nfs+1, …, ne}2 with i≠ j /

 |IM
! j(Gw

*)(W)| = |IM
! i(Gw

*)(W)|.

 |V| represents the vector where each component is
the absolute value of each component of V. Condition
1) detects effort sources in short-circuit, condition 2)
effort sources connected in parallel, condition 3) flow
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sources connected in open circuit and condition 4)
flow sources connected in series in the configuration
characterized by W. The set of admissible
configurations (according to proposition 2) of the
physical switching system Σw is denoted A(Σw). Note
that: A(Σw) ⊂  {0, 1}ns.

Let now consider the simplified Buck converter
presented figure 1. Its primal and dual dynamic
network graphs Gwa and Gwa

*, given figure 2, respect
the index order of the functional elements proposed
in this section and there is only one effort source.
This source is represented by the first column in
IM(Gwa)(W) (eq. (3)). And:
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Then, the only non-admissible configuration among
the four possible is: Wa=[1 1]T. Therefore, as there
are no flow sources in the circuit:
                    A(Σwa) =  {0, 1}2 - {[1 1]T}.

4. CONSTRAINED CONFIGURATIONS
ANALYSIS

 One may notice that some configurations of a
physical switching system lead to implicit state space
representations with dynamic modes and algebraic
modes which introduce constraints. As a
consequence, state variables� jumps may happen
when entering into these configurations at a time
when the constraint is not satisfied. Then, it is
interesting to be aware of these constrained
configurations for the control synthesis procedure.

Proposition 3: a constrained configuration
corresponds to inductors connected in series or in
open-circuit or capacitors connected in parallel or in
short-circuit.

Definition 4: If the physical switching system, Σw,
includes nes effort sources, nc capacitors and nL
inductors, a constrained configuration is defined by
vector W∈  {0, 1}ns if one of the four following
conditions is satisfied:
1) If nc≠0,∃   j ∈  {nes+1, …, nes+nc}  /

IM
! j(Gw)(W) = 0 . .

2) If nc>1, ∃   (i, j) ∈  {nes+1, …, nes+nc}2 with i≠ j /

 |IM
!j(Gw)(W)| = |IM

!i(Gw)(W)|.

3) If nL≠0,∃    j ∈  {nes+nc+1, …, nes+nc+nL} /

 IM
! j(Gw

*)(W) = 0. .

4) If nL>1, ∃  (i, j) ∈   {nes+nc+1, …, nes+nc+nL}2 with

i≠ j / |IM
! j(Gw

*)(W)| = |IM
!i(Gw

*)(W)|.

Condition 1) detects capacitors in short-circuit,
condition 2) capacitors connected in parallel
condition 3) inductors connected in open-circuit and
condition 4) inductors connected in series in the
configuration characterized by W. The set of
constrained configurations of the physical switching
system Σw is denoted C(Σw). A constrained
configuration is admissible, then C(Σw) ⊂  A(Σw).

Let for example study all the cases of potential jumps
in the simplified Buck converter. If the only inductor
is in open-circuit, the third column in IM(Gwa

*)(W)
(eq. (4)) satisfies the following equations:
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If the only capacitor is in short-circuit, the second
column in IM(Gwa)(W) satisfies the following
equations:
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Then, only one configuration among the three
admissible is constrained. Therefore:

C(Σwa) = A(Σwa) - {[0 0]T}.

5. APPLICATION TO ANOTHER CONVERTER

The electrical power converter outlined figure 3
controls the power provided to the load by the current
source through the control of the switches Swi.
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Fig. 3. simplified power converter

The hybrid incidence matrices of this simplified
power converter are:



















−
−+−

+−−
−−−−

=

01110
00w10w1

w1000w1
w11w1ww

)W)(G(IM
22

11

1221

bw
(5)

( )( ) ( )( )
( ) ( )























−
−−

−−−−−
−−−−−−−+−

=

01010
00ww0
00w1ww1ww
10w1w1w1w1w1

11101

)W)(G(IM                                 

22

21211

21211

*
bw

 (6)

with (w1, w2) ∈  {0, 1}2.



The only flow source is represented by IM(Gwb
*)(W)

last column (eq. (6)). And IM
!5(Gwb

*)(W) ≠ 0, for all
W, then the four possible configurations are
admissible in this power converter (system Σwb).
Therefore, A(Σwb) =  {0, 1}2.

Let study all the constrained configurations of this
power converter. If the only inductor is in open-
circuit, the third column in IM(Gwb

*)(W) (eq. (6))
satisfies the following equations:
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If one of the two capacitors is in short-circuit or if
they are in parallel, the first or second columns in
IM(Gwb)(W) satisfy the three equations� sets:
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Then, only one configuration among the four
admissible is constrained. Therefore:

C(Σwb) = A(Σwb) - {[1 1]T} = {0, 1}2 - {[1 1]T}.

6.  NON MINIMAL PARAMETERIZED PORT
HAMILTONIAN FORMULATION

A non minimal implicit parameterized port
Hamiltonian formulation of a PSS can be deduced
from the hybrid incidence matrices of their primal
and dual dynamic network graphs (Magos, et al.,
2004-b). The so-called kernel representation (Dalsmo
and Van der Schaft, 1998) has been extended to
admissible configurations of a physical switching
system Σw as follows:
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Note that flow and effort vectors are composed of
both derivative states variables and state variables.

For the simplified Buck converter we get:
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This non minimal kernel representation of the
parameterized implicit port Hamiltonian formulation
of a PSS may be rewritten, after reduction of
variables related to resistors, to express a non
minimal set of equations, of descriptor type. For the
simplified Buck converter we get:
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with W∈  {[0 0]T, [0 1]T, [1 0]T}

A minimal implicit port Hamiltonian formulation of
each PSS�s configuration is obtained from this non
minimal single representation after instantiation of
W. Notice that the discrete dynamics of W will be
determined by the conditions of autonomous
switching (diodes, ...) and the control (transistors,
valves, ...) which synthesize the sequence of
configurations of the system depending on time
(Manon, et al., 2002; Fibrianto, and Dochain, 2003).

7. CONCLUSION AND PERSPECTIVES

A systematic method to analyse all the admissible
and the non-constrained configurations of a large
class of dissipative physical systems with sources and
switching topology has been proposed. It is based on
hybrid incidence matrices associated with a primal



dynamic network graph of the physical switching
system (PSS) and its dual graph. Indeed, it is of
prime importance to remove the non-admissible
configurations from the control synthesis procedure
and to be aware of constrained configurations which
may lead to state jumps in the trajectory. This
method has been illustrated on the examples of the
simplified Buck converter and of another power
converter with a flow source.

The approach presented here is particularly well-
suited to the context of a modular analysis of
complex non-regular systems. Indeed, the hybrid
(parameterized) incidence matrices can be calculated
for all the subsystems (regular or not) and then
connected through the ports.

A continuation of this work can be to extend control
synthesis methods based on continuous Hamiltonian
systems such as Interconnection Damping
Assignment Passivity Based Control (Ortega, et al.,
2001; Maschke, et al., 1999) and continuous control
synthesis method for hybrid port-controlled
Hamiltonian systems with autonomous switching as
impacts (Haddad, et al., 2003) to dissipative physical
switching system with sources and controlled
switches.
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