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Abstract: This paper deals with estimation and rejection of unknown non-smooth
disturbances in nonlinear systems in the output feedback form. The specific non-
smooth disturbances considered in this paper are the square-wave disturbances
with known frequencies. The other information such as the amplitudes and
phases are unknown. The rejection takes an indirect approach by estimating the
disturbance first and then designing the feedback control based on the estimated
disturbances. To estimate the disturbance, filters are designed to extract the
contribution to the state from the disturbances and a novel nonlinear internal
model is constructed using the integrals over half of the period and nonlinear
functions. The proposed control design asymptotically rejects the unknown square-
wave disturbances and ensures the boundedness of all the variables. Copyright
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1. INTRODUCTION

Recently, tremendous progresses have been re-
ported in rejecting sinusoidal disturbances. Even
for the case of unknown frequencies, a series of
results have been published for rejecting distur-
bances (Bodson et al., 1994; Bodson and Dou-
glas, 1997; Marino et al., 2003; Ding, 2003). The
key to the success is the internal model princi-
ple, ie, an internal model is used in the control
algorithm to generate the disturbance or its con-
tribution to the critical system state variable in
some way. It is easy to model the sinusoidal distur-
bances as the output of linear exosystems, and the
internal model can then be designed accordingly.
This is not the case for the non-smooth periodical
disturbances such as square-wave disturbances.

Until now there is not any report on asymp-
totically rejecting the square-wave disturbance.
If the period is long enough, integral actions in
the system may reject the disturbance, but it is
not in the sense of asymptotic rejection, ie, after
the disturbance changes value, it will take some
time to settle down again. Therefore the integral
action is not good enough to reject square-wave
disturbances.

This paper will address the problem of asymptot-
ically rejecting square-wave disturbances in non-
linear systems which are in the output feedback
form. A dynamic model for square-wave distur-
bance is first introduced. In this model, there are
strong nonlinear functions which prevent the di-
rect application of the existing results using linear



internal model such as one shown in (Ding, 2001)
and even the nonlinear internal model method
recently introduced in (Ding, 2004). The idea of
the internal model principle is exploited in the
sense that an asymptotic estimate of the unknown
disturbance is needed for the control design in one
way or another. A novel structure of generating
an estimate of disturbance is proposed, which
exploits the periodical nature of the disturbances.
The integrals over half of the period, delay and
the sign function are used in the construction
of estimator for the disturbance. The estimate is
then used in the control design for disturbance
rejection and stability. The proposed control guar-
antees the complete rejection of the square-wave
disturbances and the boundedness of the variables
in the closed-loop control system. An example
is included to illustrate the proposed estimation
and control design, together with the simulation
results.

2. PROBLEM FORMULATION

Consider a single-input-single-output nonlinear
system which can be transformed into the output
feedback form

ẋ = Acx + φ(y) + b(u − µ)

y = Cx (1)

with
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where x ∈ Rn is the state vector, u ∈ R is the
control, φ, is a known nonlinear smooth vector
field in Rn with φ(0) = 0, µ ∈ R is a periodical
disturbance.

Assumption 1. the system is minimum phase, ie,
the zeros of polynomial B(s) =

∑n
i=ρ bis

n−i have
negative real parts.

Assumption 2. The period and the pattern of the
disturbances are known.

To simplify the presentation, only the square-
wave disturbance is considered in this paper. The
pattern information is the square wave, which
means that the disturbance only changes values
among the positive and negative amplitude. The
disturbance frequency is assumed known, from
Assumption 2. However, there is no information
of the phase and amplitude of the disturbances.

The disturbance rejection problem considered in
this paper is to design a feedback control algo-
rithm so that the unknown disturbance is com-
pletely rejected. An indirect approach is adopted,
ie, the disturbance is explicitly estimated first
and then control algorithm is designed using the
estimate to reject the disturbance.

3. DISTURBANCE ESTIMATION

An important concept in disturbance rejection is
the internal model principle, ie, an internal model
is designed to regenerate the unknown disturbance
from the output measure. But there is not a ready
dynamic model for a square-wave disturbance. A
square-wave disturbance can be described by

µ(t) = asign(sin ωt + φ) (2)

where sign(·) denotes a function of taking the sign
of its operant, a and φ denote the amplitude and
the phase respectively. Since a sinusoidal function
can be modeled as the output of a second order
critically stable linear system, with reference to
(2), a dynamic model can be created for the
square-wave disturbance as:

[

ẇ1

ẇ2

]

=

[

0 ω
−ω 0

] [

w1

w2

]

,

[

w1(0)
w2(0)

]

=

[

w1,0

w2,0

]

µ(t) = sign(w1) (3)

where the initial values w1,0 and w2,0 decide
the amplitude and the phase of the disturbance.
Hence the square-wave disturbance can be con-
sidered as the output of the above nonlinear
exosystem. Since the function sign() is strongly
nonlinear, the existing methods for rejection of
sinusoidal disturbance with known frequencies in
(Ding, 2001) and (Ding, 2004) are not applicable.
Even though the nonlinear exosystem does not
lead to a direct design of the internal model for
disturbance rejection, it provides useful hints to
the properties of square-wave disturbances.

Define a half-period integration operator IT/2 and
a quarter-period delay operator DT/4 as

IT/2 ◦ f(t) := IT/2(f(t)) =

t
∫

t−T/2

f(s)ds

DT/4 ◦ f(t) := DT/4(f(t)) = f(t − T/4) (4)

It is easy to show the following property for
square-wave disturbances

µ(t) =−DT/4 ◦ sign(IT/2 ◦ µ(t))
T 2

8

= D3
T/4 ◦ sign(IT/2 ◦ µ(t))

T 2

8
(5)



where T is the period of the disturbance with
T = 2π

ω . This property provides the foundation
for the disturbance estimation algorithm in this
paper.

In order to extract the contribution in system
state due to the disturbances, the following filter
is designed:

ṗ = (Ac + kC)p + φ(y) + bu− ky (6)

where p ∈ Rn, k ∈ Rn is chosen so that

K(s) := sn −

n
∑

i=1

kis
n−i

= B(s)

ρ
∏

i=1

(s + λi)/bρ (7)

with λi being positive real design parameters.

Now it is ready to introduce the estimate of
unknown disturbances. The estimation algorithm
depends on the relative degree of the system.
Consider the relative degree one case, ie, ρ = 1,

ν̂(t) = (I − D2
T/4 + λ1IT/2) ◦ (p1 − y) (8)

µ̂(t) =
8

T 2
sign(D2

T/4 ◦ ν̂(t))IT/2 ◦ ν̂(t) (9)

where µ̂ is the estimate of disturbance, and I
denotes the identity operator, ie, I ◦ f(t) = f(t).
The disturbance estimates for the cases of high
relative degrees can be obtained similarly.

Lemma 3.1 The estimate given in (9) converges
to the actual disturbance in Lp, ie µ− µ̂ ∈ Lp for
p = 1, 2 and ∞.

Proof: It is easy to see that both µ and µ̂ are
bounded signals, and therefore µ − µ̂ ∈ L∞. To
complete the proof, it only needs to show the case
for L1, as µ − µ̂ ∈ L1 ∩ L∞ implies µ − µ̂ ∈ L2

Consider a dummy filter

q̇ = (Ac + kC)q + bµ (10)

where q denotes the steady state only. Let e = x−
(p − q), then it is easy to show that

ė = (Ac + kC)e (11)

Since (Ac + kC) is Hurwitz, it can be shown that

‖e(t)‖ ≤ Kee
−λet (12)

for some positive real constants Ke and λe. From
the special structure of k chosen in (7), it can be
shown that, for the relative degree one case,

q̇1 = −λ1q1 + b1µ (13)

Define

ν(t) = (I − D2
T/4 + λ1IT/2) ◦ (q1/b1) (14)

It can be shown that

a =
8

T 2
IT/2 ◦ ν(t) (15)

µ(t) =
8

T 2
sign(D2

T/4 ◦ ν(t))IT/2 ◦ ν(t) (16)

From (8) and (14), it follows that

ν̃(t) := ν(t) − ν̂(t)

= (I − D2
T/4 + λ1IT/2) ◦ e(t) (17)

From (12), it can be obtained that

‖ν̃(t)‖ ≤ Kνe−λνt (18)

for some positive real constants Kν and λν . Now
consider

µ̃ := µ − µ̂

=
8

T 2
{sign(D2

T/4 ◦ ν(t))IT/2 ◦ ν(t)

− sign(D2
T/4 ◦ ν̂(t))IT/2 ◦ ν̂(t)}

= a[sign(D2
T/4 ◦ ν(t)) − sign(D2

T/4 ◦ ν̂(t))]

+
8

T 2
sign(D2

T/4 ◦ ν̂(t))IT/2 ◦ ν̃(t)] (19)

From (18) it can be shown that the second term in
(19) is in L1, and therefore the proof is completed
if one can show the first term is in L1, which is
equivalent to show that

I∞ =

∞
∫

0

|sign(ν(t)) − sign(ν̂(t))|dt < ∞ (20)

Define

Ji =

iT
∫

(i−1)T

|sign(ν(t))

− sign(ν(t) − ν̃(t))|dt (21)

It follows that

I∞ =
∞
∑

i=0

Ji (22)

Notice that ν(t) is a triangular wave with the
peak value aT/2. Since |ν̃(t)| is bounded by an
exponentially decaying function, there exists an ī
such that |ν̃ (̄iT )| < aT/2 for all i > ī. Therefore,
for i > ī, it can be shown that

Ji <
4

a
Kνe−iλνT (23)

Finally, it can be obtained that



I∞ ≤ 2īT +
∞
∑

i=ī+1

4

a
Kνe−iλνT < ∞ (24)

This completes the proof of Lemma 3.1.

Remark 1: Although the results shown so far are
for the systems with relative degree one, a similar
result can be obtained for systems with high rel-
ative degrees. The control design for disturbance
rejection with stabilization in the next section will
assume that there exists a disturbance estimate µ̂
which satisfies the conditions specified in Lemma
3.1.

4. DISTURBANCE REJECTION WITH
STABILIZATION

A control algorithm is to be presented for distur-
bance rejection for a disturbance estimate µ̂ which
satisfes µ̃ ∈ Lp with p = 1, 2,∞. A state observer
is designed as

˙̂x = (Ac + kC)x̂ + φ(y) + b(u − µ̂) − ky (25)

Let

x̃ := x − x̂ (26)

It follows that

˙̃x := (Ac + kC)x̃ − bµ̃ (27)

Control design can then be carried out using
backstepping based on (25). For the backstepping
design, the following notations are used:

z1 = y = x1 (28)

zi = x̂i − αi−1, i = 2, . . . ρ (29)

where αi are the stabilizing functions designed in
the backstepping procedures. The design starts
from the dynamics of z1 given by

ż1 = x2 + φ1(y)

= z2 + α1 + φ1(y) + x̃1 (30)

The first stabilizing function α1 is designed as

α1 = −c1z1 − d1z1 − φ1(y) (31)

where ci and di are the positive real design param-
eters, for i = 1, . . . , ρ. The subsequent stabilizing
functions are designed as

αi = zi−1 − cizi − di(
∂αi−1

∂y
)2zi

+kix̂1 − kiy − φi(y) +

i−1
∑

j=1

∂αi−1

∂x̂j

˙̂xj

+
∂αi−1

∂y
(x̂2 + φ1(y)) (32)

for ρ = 2, . . . , ρ. Finally the control input is given
by

u = µ̂ +
αρ − xρ+1

bρ
(33)

The proposed control ensures the asymptotic re-
jection of the disturbance and the boundedness of
all the variables in the closed-loop system. The
stability result is summarized in the following
theorem.

Theorem 4.1 The control input u given in (33)
with the estimated disturbance µ̂ ensures the
asymptotic rejection of the unknown disturbance
in the system (1), ie, limt→∞ y(t) = 0, and the
boundedness of the other variables in the system.

Proof: Define

Vx = x̃T P x̃ (34)

where P is a positive definite matrix satisfying

P (Ao + kC) + (Ao + kC)T P = −3I (35)

From (27), it can be obtained

V̇x =−3x̃T x̃ − 2x̃T Pbµ̃

≤−2x̃T x̃ + ‖Pb‖2µ̃2 (36)

Define

Vz =
1

2

ρ
∑

i=1

z2
i (37)

It can be shown that

V̇z =

ρ
∑

i=1

(−ciz
2
i − d1(

∂αi−1

∂y
)2z2

i

−
∂αi−1

∂y
zix̃2)

≤

ρ
∑

i=1

(−ciz
2
i ) + βx̃2

i (38)

where β =
∑ρ

i=1 1/di and ∂α
−1

∂y = −1. Let

V = Vz + βVx (39)

From (36) and (38), it can be obtained that

V̇ ≤−

ρ
∑

i=1

ciz
2
i − βx̃T x̃ + β‖Pb‖2µ̃2

≤−λV + β‖Pb‖2µ̃2 (40)

where



λ = min{2 min
i=1,...,ρ

ci,
β

λmax(P )
} (41)

with λmax(P ) being the maximum eigenvalue of
P . it can be concluded, using the comparison
lemma (Khalil, 2002), that

V (t) ≤ V̄ (t) (42)

where V̄ (t) is generated by

˙̄V = −λV̄ + β‖Pb‖2µ̃2, V̄ (0) = V (0) (43)

With µ̃2 ∈ L1 ∩ L∞, as from Lemma 3.1, it
can be concluded that V̄ ∈ L1 ∩ L∞, and hence
V ∈ L1 ∩ L∞. The boundedness of V implies the
boundedness of x̃ and zi for i = 1, . . . ρ. Since
V̇ ∈ L∞, it can be concluded from Babalat’s
lemma limt→∞ V (t) = 0, which further implies
limt→∞ x̃(t) = 0, and limt→∞ zi(t) = 0. The
boundedness of y and limt→∞ y(t) = 0 follow
the results of zi with i = 1. The boundedness
of other state variables can be established using
the boundedness of y and the minimum phase
assumption in Assumption 1. This concludes the
proof of the theorem.

If the system (1) is linear, a simpler control design
without invoking backstepping can be proposed.
For the linear system,

φ(y) = fy (44)

with f ∈ Rn. In this case, the following control
design is proposed

ul = kT
l x̂ + µ̂ (45)

where kl is chosen so that Al = (Ac + fC +
bkT

l ) is Hurwitz. The following theorem addresses
the stability of the proposed control for linear
systems.

Theorem 4.2: The control input shown in (45)
stabilizes the system (1) and completely rejects
the unknown disturbance if φ(y) = fy.

Proof: Under the control (45), the system dy-
namics are given by

ẋ = Alx + bkT
l x̃ − bµ̃ (46)

Consider

Vl = xT Plx (47)

where Pl satisfies

AT
l Pl + PlA

T
l = −2I (48)

its derivative along (46) is given by

V̇l =−2xT x + 2xT Pb(kT
l x̃ − µ̃

≤−xT x + ‖Pb[kT
l x̃ − µ̃]‖2

≤−
1

λmax(Pl)
V + ‖Pb[kT

l x̃ − µ̃]‖2 (49)

where λmax(Pl) denotes the maximum eigenvalue
of Pl. Notice that ‖Plb[k

T
l x̃ − µ̃]‖2 can be shown

in Lp for p = 1,∞. The remaining proof follows
in a similar way as in the later part of the proof
of Theorem 4.1.

5. AN EXAMPLE

Consider a nonlinear system in output feedback
form

ẋ1 = x2 − y3 + (u − µ)

ẋ2 = (u − µ)

y = x1 (50)

where µ is a square-wave disturbance. It is easy to
see that the system (50) are in the format of (1)
with φ(y) = [y3 0]T and b = [1 1]T . The system is
minimum phase.

The filters for disturbance estimation are designed
as

ṗ =

[

k1 1
k2 0

]

p +

[

y3

0

]

−

[

k1

k2

]

y (51)

+

[

1
1

]

u (52)

˙̃x =

[

k1 1
k2 0

]

x̃ +

[

y3

0

]

−

[

k1

k2

]

y (53)

+

[

1
1

]

(u − µ̂) (54)

with µ̂ being generated in exactly the same way
as shown in Section 3. Following the control de-
sign introduced in Section 4, the control input is
designed as

u = µ̂ − c1y − d1y − y3 − x̂2 (55)

The simulation study has been carried out for
the estimation and control design shown in this
example. The simulation results shown below are
for the settings k1 = −2, k2 = −1, c1 = d1 = λ1 =
1. The settings for the disturbance are the period
T = 2, and the amplitude a = 1. The control
input and the system output are shown in Figure
1, in which the output converges to zero with the
input to asymptotically cancel the disturbance.
The disturbance µ and its estimate µ̂ are shown
in Figure 2.



6. CONCLUSIONS

An novel estimation algorithm is proposed for
regenerating the unknown square-wave distur-
bances, and the estimated disturbance is then
used in the proposed control design for complete
disturbance rejection with stabilization of the
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Fig. 1. Control input and system output
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Fig. 2. Disturbance and its estimate

closed-loop system. The proposed estimation algo-
rithm makes good use of nonlinearities in the sys-
tems, and the proposed control design still follows
the internal principle, with a novel interpretation
of the internal model. The enclosed simulation
results demonstrate the efficiency of the proposed
design in rejecting non-smooth disturbances. Al-
though the proposed estimation and control al-
gorithms only consider the case of square-wave
disturbances, the results can be easily extended
to other non-smooth periodical disturbances such
as triangular disturbances.
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