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Abstract: A repetitive control scheme is proposed for constrained nonlinear optimal control problems.
The lower level algorithm adjusts switching times for bang control arcs and parameters of interval
polynomial approximations for interior control arcs. It is based on a linearization of optimal controller
and performs reduced optimization with changes of control structure. The upper level finds the
optimal control and recalculates the linearization each time the deviation from the optimal solution
becomes too large. The linearized controller is analytically derived. The upper level uses the MSE
method to determine the reference optimal control structure. Simulation and experimental tests show
that the proposed approach yields an optimizing nonlinear controller, able both to ensure close to
minimum-time point-to-point transition as well as to stabilize the state. Copyright © 2005 IFAC
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1. INTRODUCTION

The purpose of this paper is to improve the adaptive
control algorithm, first presented in (Korytowski, et
al., 2001). It is an extension of the neighboring
optimum feedback (Bryson Jr., 1999; Pesch, 1989a,
b). The controller reacts to state disturbances on two
levels. The lower level adjusts control parameters
basing on a linearization of optimal controller and
performs reduced optimization whereas the upper
level detects changes in the optimal control structure
and recalculates the linearization each time the
deviation of trajectory from the optimal one becomes
too large. Both the reduced and full optimization rely
on forced changes of control structure, which take
place if suitable tests are satisfied. The linearized
controller is described by an explicit linear relation-
ship between the measured or computed deviations
of state and the corrections of control parameters. It
is analytically derived with the use of discontinuous
matrix solutions of the canonical variational system.
The modifications of the results of (Korytowski, et
al., 2001) include:

- introduction of the horizon as a decision variable,

- limitation of amplitude of control variations in the

vicinity of the target state,

- improved convergence due to stronger stabilization
requirements.

The sequence of boundary/interior arcs determines
the structure of optimal control. Pesch’s approach
(Pesch, 1989b), known as the repeated correction
method, relies on the assumption of fixed control
structure. This limitation is overcome using pre-
computed neighboring extremals (Pesch, 1989a), at a
high computational cost. The approach proposed
below applies also to varying control structure. This
is achieved by combining the linearized feedback
scheme with the monotonous structure evolution
(MSE) method (Szymkat, et al., 2003), which makes
it possible to generate or reduce arcs without
considerable computational effort. Comparisons with
the repeated correction scheme (Pesch, 1989b) and
full repetitive optimization show that the new method
gives good disturbance rejection at a low
computational cost.

2. OPTIMAL CONTROL PROBLEM

Consider the minimum time problem of steering the
state of the system



H0)= f(x(@),u(@) = £ (x0) + [ (@) u)

t>t,, x(ty)=x,, x@)eR", u(®eR (1)
to an ¢ -neighborhood of a given state x! (e>0)
(x(T)=x")'(x(T)-x") <¢. ()

T >0 is the control horizon. The functions f° and

7' are twice continuously differentiable. The set of

admissible controls U consists of all right-continuous
functions u :[ty,0[ — [-], 1]. Define the Hamilton-

ian H(x,y,u)=y' f(x,u) where the adjoint vari-
able w(t) e R" satisfies

v =—H (xy.u), 1[0T] (3)
(1) =x" —x(T). @)
Let
gy =H,(xyu) =y f'(x). (5
The respective switching function is defined as
$(0) = g(x(),y (1)) - Q)

Its projection onto U at an admissible point u is given
by

&0 :{ 0, u(?)sgneg(r)=1 (7)

#(t), otherwise.

By the Maximum Principle, ¢U is identically zero

on an optimal control. The optimal control satisfies
u=vix,y)=sgng(xy), gx,y)#0. (8)

The switching function ¢ is continuously differenti-
able (Korytowski, et al., 2001). We assume that ¢

takes zero value at most at a finite number of points

(switching times) 7y,...,7,,, to <7;<...<7, <T,

and its derivative is different from zero at every point
T,i=1..,m.

The canonical system of equations is obtained by
substituting the control (8) in (1) and (3)

X =F(X,»(X)), te[0,T], X =col(x,y),
F(X7 u) = COl(f(xa u)) _Hx (x’ v, u))
with the boundary conditions as in (1), (4).

The variational equation for the canonical system,
with jump conditions at switching moments was
given in (Lastman, 1978)

SX(1)=J(@)5X (1) )
A(t) 0 10
B(t) —A@®)' (19)

where ¢ €lt),T[\{7),75,...,T )}

J(0) =V y F(X(0),u(t)' = {

A =V f (x(0),u()’
B(1) = =VLH (x(0),y/(0),u(t)) - (11)

The terminal condition results from (4)
[1 1] sx()=0. (12)

O0X 1is in general discontinuous at 7,75, ...,7,

X (1,2)=Z+0X (1, ¥), i=12,...m (13)
AF, Vg(X(z;))

CAN VAN A CICH) (14)

AF; = F(X(z;),u(7;-)) - F(X(z;),u(z;+))

Zo=1%

i+

where [f O,f "1 is the Lie bracket. Obviously

Z,_=(Z, )"'. The dependence of the switching time
variation 07; on 60X is determined from the identity
g(X(7;)) =0, see (Korytowski, et al., 2001)

I = Vg(X(Ti))T5X(Tii) .
EZCHN VAN A €7C)

Note that the function f 4> Vg(X () 6X(¢) is
continuous at every switching time.

(15)

Define a 2nxn matrix solution V of the variational
equation, satisfying
V(y=J@)V(1), t €]0,T[\ {z,,75,...,7,,} (16)
V(T)=col(l,-1I). 17)
The jumps at the switching moments are given by
Vie,-)=2.V(r;+), i=12,..m (18)

Let V =col(V},V,) with square matrices ¥} and V,.
Thus for any solution of (9), (12), (13) and every ¢

Sx(t) =V, ()0x(T) , Sw(t) =V, (0)dx(T) . (19)

3. LINEARIZED CONTROLLER

The construction of the linearized controller is based
on (15) and the relationship between the variations of
state and adjoint trajectories

Sy (1) =V, (W1 (6) 5x(2) . (20)

From now on it is assumed that V|(¢) is nonsingular

for every ¢. This crucial assumption is generically
satisfied in practical control problems. The co-
efficient matrix K(¢) =V, )V, ()" is symmetric for
every ¢t and differentiable everywhere, except for the
switching times. It satisfies a linear Riccati equation
(Korytowski, et al., 2001). According to formula
(19), the matrix

W)=V (1) Q1)

represents the sensitivity of the terminal state of the
optimal solution with respect to the state at ¢.

Formulas (15) and (20) yield a relationship between
the variation of the state trajectory and the variations
of the switching times

ot =N, ox(r;x), i=L2,..m (22)



w (@) V! (@) + ' (x(7,)) K(7,%)
w(@) L 1 1(x(z,)) '

Suppose that the state increment Jx satisfies the

Ay =

variational equation in the interval [¢,7] for some
te[t,,T[ and is the result of a perturbation of the
state at # by a known value Jx(¢). The values of
ox(r;£) can be computed in advance by solving

equations (9), (12), (13), and the respective
corrections Jtr; of the switching times r; > ¢ can be

applied during the control process, provided

T;+01; <1y +01,,, if 7, +07; <t (23)

for i e€{0,l,...,m}. By definition 7,,, +07,,, =T,
7y + 07y =ty. If 7; >t and 7; +J7; <t, the control

at ¢t should change sign. To avoid too frequent
switchings, the intervals between the time moments ¢
at which the control in [¢, T] is corrected, have a
fixed length Ar.

From (19), 5x(r;%) =V, (r,£)V;(f)"'Sx(¢) . Putting

this into (22) and using (21) we obtain the general
form of the linearized switching controller

St; =TL,W()ox(t), i=1,2,..,m (24)
L Ve(X @)V (5
L@ ()
Ve(X (1) V(z,%) =y (z) VI (x(2) Vi (7, %)
+ [ (@) Vs (7, 5)

The value of II; does not depend on which limit is

taken in the right-hand side of (24). The variation of
the horizon due to a variation of state at the time ¢ is
obtained in a similar way

o (x(T)—_);f)TVla)‘l 5x(0).
(X(T) = x")' f(x(T),u(T))

If ox(¢r) is known at ¢€]r,_+07,,7;+07;[, for

some i, 1<i<m, the correction Jr; can be

computed in another way. Define the continuous
nxn  matrix  solution of the equation
0D(t,s)/ 0t = A(t) D(t,s), D(s,s)=1, for every t,s
in [0,7]. The equality o7, = A;,D(z;,1)0x(t) is
then equivalent to (24), where A;_ is taken for
t<r; and A;, for ¢>7;. The decision about the
value of the correction J7; should be taken as late as
possible. This critical, last moment ¢ fulfils ¢ —7z; =
A D(r;,0)0x(t) = T1, W (£)Ox(¢) .

4. BASIC REPETITIVE SCHEME

The overall repetitive computational scheme has two
levels. On the lower level the linearized controller is
applied, combined with reduced optimization. In
each time step it additionally calculates two
quantities for the remaining part of the control time

interval. These are the norm of the projection || ¢"||

in the control space, see (7), and the expected
value of the auxiliary cost functional

Lx(T)-x")'(x(T)~x"). When both of them

exceed some predetermined thresholds, the upper
level algorithm is activated. On the upper level, the
MSE method (Szymkat, et al., 2003) is adopted. This
dynamic optimization algorithm in the variant
applicable here uses switching times as decision
variables. It automatically adjusts the control
structure by generating and reducing switchings. The
upper level algorithm is continued until the
projection norm decreases below another threshold.
If the auxiliary cost is not below its threshold value at
that time, the MSE algorithm has to be reinitialized.
After a successful completion of the upper level
computations, the linearized controller is recalculated
and the lower level algorithm restarted. The
distinctive feature of this adaptive scheme is that the
control structure is adapted in the course of the
control process. This distinguishes the approach
described here from the repeated correction method
of (Pesch, 1989a, b).

Recall that the derivative of the performance index
with respect to a switching time 7; is equal to

(Szymkat, et al., 2003)
V.S =24z u(z,). (25)

The repetitive control scheme consists of the
following steps.

1°Set #,:=0.

2" Find optimal solution using MSE started with
current control approximation, i.e. determine horizon
T, reference control u and switching times t;,

i =1,...,m; calculate matrix V, and vectors I1; for all
switching times.

3" Choose time step Ar<T —ty (update interval),
execute control u in [¢),f,+A¢], and substitute
ty =ty+At .

4° Determine state deviation Ax(ty) . Calculate AT
and Az, =TIV (t,) ' Ax(t,) for all 7,>1,. Set
corrected values 7; =7, +Ar;, T:=T+AT and thus
determine new control u.

5" Update initial state. Compute the norm of ¢U in
control space (7), and the expected value of the
auxiliary cost functional +(x(7) —xY((T)-x").
If thresholds for both are exceeded, return to 2°.
Otherwise go to 6°.

6" If ¢(ty)u(ty) <0, ie., the derivative (25) would
be negative, add a control switching at ¢, and

perform reduced (fixed structure) optimization. Stop
when a switching time hits the boundary of the
admissible set or the gradient norm termination
conditions are met. Return to 3°. ®



The introduction of an additional switching time at
t, (step 6”) does not initially change the control, but

creates the possibility of improving the value of
performance index by moving this switching time to
the right. For a more detailed treatment of MSE
including control switching generations and re-
ductions, see (Szymkat, et al., 2003). The restraining
of optimization in step 6” to fixed structure (with the
additional initial switching) yields relatively good
results at low computational cost.

The area of application of the algorithm can be
extended to cases where conditions (23) are not
fulfilled in [f,,7] (step 4°). Denote i, =

min{i:z; >¢,} . For s increasing from 0 to 1,

successively remove every switching for which the
respective value of 7/(s)= 7, +sAzr;, iy <i<m,

T'(s)=T +sAT hits the boundary of the admissible
set. Every time the constraint 7/(s) > ¢, is hit, the

control initial value u(#;) changes its sign.

5. EXAMPLE

We show the application of the repetitive optimizing
scheme to the well-known benchmark problem of
steering a pendulum hinged on a cart, which is a
strongly nonlinear fourth order system. Denote the
cart position by x;, its velocity by x;, the angle
between the upward direction and the pendulum by
X, , and the angular velocity of the pendulum by x,.

Put x= col(x,...,x4), f=col(fi,...fs), s=sinx,,
c=c08x,, S=sin2x,, C=cos2x,, 0=tanhl10x;,

w, :k1x3+k2u—k3c9—les, Wy =kyS+ksxy, D=

(1-ec)™". Then

fl(x,u):x3, fz(x»”):x4
f300,u) =D(w+Iwye), fu(x,u)=D(aw,c+w,)
with &k =-1.0785, k&, =6.6046, k;=0.98794,
ky =22.432, ks=-0.057389, [=0.043715, e=
0.099961, a=2.2866.

Consider the optimization problem of section 2 with
X =co0l(0,,0,0) and open-loop unstable target state

x/ =0. Assume £=5-10". By (8), the optimal
control satisfies u(t)=sgng(t) where ¢=
kyD(w3+ acy,) . The adjoint equation has the form

w =—A"y where A defined in (11) has the following
nonzero elements

A3 = Ay =1,

Ayy =ID (—x2c +k,C —kyxus —afyS)
433 = D (k= 10k;(1-6°))

Ay =ID(2x4s + ksc)

Ay = D(—exfcz— aws + ke —ef,S)

Ay =acAyy, Ay = D(ks—alx,S).

The performance of the repetitive control scheme is
evaluated in a series of simulation experiments, with
modeling of time discretization of control (with
constant hold intervals), and stochastic state
disturbances. The length of the update interval in step
3% of the algorithm is constant, equal to 0.1.
Gaussian state disturbances with zero mean
generated by the MATLAB  expression
p*[4,2,4,2]-*randn(1,4) are added to the
current state at every time moment of update. Typical
trajectories and controls are shown in Figures 1 and
2. For p<0.009 the periods of effective

stabilization are long (Fig. 1 shows the results for
p=0.009), and for greater p, the probability of

failure rapidly increases (see Fig. 2 where p =0.01).

Observe that the process of Fig. 1 can be divided into
two stages: swinging the pendulum up, and
stabilizing it in the upper position. Although the use
of bang-bang controls is fully justified in the first
stage and guarantees a close to minimum time
transition to the neighborhood of the unstable upper
position, it may seem purposeful to seek a more
relaxed control behavior in the stabilization stage,
resulting in smaller oscillations. This will be realized
by adding an integral of squared control to the
auxiliary cost functional, with a weight factor
growing as the distance to the target state decreases.
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Fig. 1. Example of effective stabilization.
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Fig. 2. Example of failure.



In most analyzed simulation runs and real-time
experiments the above proposed control scheme
ensures stabilization of the system in a vicinity of the
open-loop unstable equilibrium. However, in some
cases we observe large oscillations that cannot be
solely explained by the disturbances. A more detailed
analysis leads to the disclosure of a “trap
phenomenon”. It consists in the failure of the MSE
algorithm employed in step 2° to properly identify
the true minimizer of the auxiliary cost functional,
due to the presence of a competing solution with a
low value of the criterion for the given horizon T.
Independently of control, this solution departs from
the vicinity of target state shortly after 7. In order to
avoid such candidate solutions in the course of
monotonous MSE search, a “tail term” in the form of
an integral over an additional interval [7,7 +7;] will

be introduced.

To give some hints how to handle the trap
phenomenon, consider the situation when a new
starting point for the MSE algorithm has to be
generated. This occurs, e.g., after a step with the
optimal horizon smaller than the update interval. The
proposed new value of the horizon has to be
sufficiently large, to avoid local minima at which the
target is missed. An appropriate increase of the
penalty coefficient also proves helpful. However,
such measures are problem specific, and not always
efficient. A more general solution is suggested
below.

6. ROBUSTIFIED REPETITIVE SCHEME

The auxiliary optimal control problem consists now
in the minimization of the following -criterion
functional on the trajectories of (1)

T
S, T)=T+La(x) [u()’de+
0

T+4
+5p{||x(T)—xf||2+ [Ix@)=x" | de |. (26)
T

The decision variables, that is, the control u and
horizon 7' are subject to constraints: 7'>¢,,

lu(t)|<1 for t<T, u(t)=0 for t>T. (27)

The constant 7; is nonnegative and p is positive.
The weight factor a(x;) monotonously decreases as
x, departs from the target state, starting from a

positive value. For ||x0—xf | greater than a certain

threshold wvalue, it is identically zero. Such a
construction guarantees appropriate regularity of the
structure evolution for the transition from the point-
to-point to the stabilizing feedback type control. The
hamiltonian for the basic optimal control problem is
as follows

H=y )" f(x(t),u()~
~Jau@)? ~fpor@|xo-2'I7  (@28)

where o, (t)=0 for t<T,and o, (t)=1 for t > T.

The adjoint variable v satisfies the adjoint equation

y=—f(x)y+por(x—x')  (29)

with a terminal condition w(7+7;) =0 and a jump

w(T )=y(T )+ p(T)-x").

If a(xy)=0, the extremal control, i.e., the control

that maximizes the hamiltonian (28) subject to (27) is
given by

u(t) =sgn(y (@) /' (x(t), 1<T.  (30)

If a(xy) >0, the extremal control satisfies

u(t) =sat(e 'y (@) f'(x(t)), t<T. (31)
The sat function is defined by

sat(&) = { s s1=<1 (32)

sgn &, otherwise.

The idea of the robustified repetitive scheme of
section 4 remains generally unchanged with the
following modifications. In step 2°, each time the
MSE procedure is recalled the value of a(x,) is

updated. If the current value is zero the rest of the
algorithm is executed without any essential change
for bang-bang type controls. If a(x,) is nonzero the

control is continuous for ¢ <7, and may have both
boundary and interior (non-saturated) arcs. Its first
derivative may be discontinuous only at the ends of
the boundary arcs. We assume that approximations of
optimal control also have these properties. Let
ty=0y<o0,<...<oy=T Dbe end points of
subsequent control approximation arcs. Some o
coincide with 7, dividing boundary and interior arcs.

Let in every interior arc
()= p} wt,0:1,0,) (33)

where p; is a vector of parameters and w, a vector of
Hermite cubic polynomials

w(t,0,4,0,)= w3(1,0,,0,1) =

(t-0,) (2t+0,-30, ) (o;~0, )’

W2(tao—i—l’o-i) = W4(t,0_l',0-1'_]) =

2 2
(t=0,)"(t=0,) (o;=0,4)" .
Thus  u(o; ) =py, w0 +)=pn, u(o;)=ps,
u(o;—) = p;4. To ensure continuity at division points
and smoothness between neighboring interior arcs,
some parameters p; are fixed or made identical.

Let £ denote the performance index as a function of
the parameters, division points and horizon. Its
derivative w.r.t. p; reads

V=" VMH((//,x,u)Vpiku det 34)
Qi



where the derivatives of u are determined by (33),
and Q is the union of [o;_;,0;] and, possibly, one
of its neighboring interior intervals. The derivative
w.rt. o; #0)y, being the right-hand end of an

interior interval is given by

sz = —d(o-i—)VmZ - ii(U,-—)VZMZ N 1'4'(0[+)V;[42

where V, ¥ and V* 3 are computed according to
i4 Pia

(34), but with Q,;, equal to [o,_;,0;] and [0;,0,,,],

respectively. For the left-hand end points we have

V, 3=

—i(cH)V,  T—ii(c-)V,

.. .
Pi+12 - u(o-i+)vpf+|,z z.

DPi+l1,1

If o; is an end point of a boundary arc, the terms

with vanishing control derivatives are dropped. The
derivative w.r.t. horizon

Vi =1+ Ta(x)u(T™) +a(x) jN u(t)V pu(t)de

ON-1

+ pl|x(T) = x7 || £ ((T),u(T7))
L p(jlx 1) =5 2 = 1x(T) =57 |P).

For step 4° of the scheme in the case of a(xy)#0

we consider controls parameterized with division
points and vectors p; (33) for segments within the

interior arcs. A variational approach analogous to
that described in section 3 can be employed to get
linearized parametric controllers.

An example of solution optimal according to the
performance index (26) is given in Fig. 3. For
comparison, the minimum time solution for the same
initial condition is shown in Fig. 4.

7. CONCLUSIONS

The construction of optimal closed-loop controller
for systems with non-linear state equations is a com-
plex computational task. The adaptive optimizing
controller is a practical solution, which can be
applied in real time, in a vicinity of a reference
trajectory computed beforehand. A combination with
repetitive optimization using the MSE method
enlarges the area of application, at the cost of more
on-line computations. An important observation is
that the implementation of reduced optimization
largely decreases the computational cost of the
algorithm, with insignificant deterioration of its
performance. The inclusion of the horizon into the
optimization process improves the overall efficiency
of the repetitive control scheme. The use of relaxed
minimum  time criterion (26) forces the
computational procedure to reject certain “unsafe”
controls and assures required robustness by restrain-
ing the control amplitude in the neighborhood of the
target state.
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Fig. 4. Minimum time solution.
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