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Abstract: The properties of delta model approximatidrigre delay systems obtained by
means of first and second order numerical methods argtigated. A particular attention
is paid to the relationship between the spectra of moaotis and corresponding delta
model. Based on the convergence between the delta mutithe Laplace transform of
the continuous time model, the convergence of the toajestof the delta model poles to
the spectrum of continuous time model is illustrated ie #pplication example.
Copyright©2005 IFAC

Keywords: time delay system, solution operator, deltdeh®ystem spectrum

1 INTRODUCTION applied to TDS the infinite spectrum is transformed
to a finite spectrum the order of which depends on

The delta transform has been developed as a unitethe sampling period and on the numerical method
framework for describing both the linear continuous used for the discretization. As will be shown, for
and the discrete dynamic systems (Middleton andinvestigating the relationship between the spectrum
Goodwin, 1990). The original aim of this transform of continuous system and its sampled-data
was to build up a bridge between the traditional approximation the delta transform is a proper tool.
Laplace and Z transforms admitting the infinitesimal
transition from a discrete to a continuous description.Consider an autonomous TDS of the retarded type
So far, a relatively weak attention has been paid toand of the following form
applying the delta transform to a sampled-data
representation of time delay systems (TDS) where m_A
the discretization issues are more involved than in dt
the usual linear delay-free models due to discrete

representations of time delay segments. As theyherexOR' is the vector of state variablesOR™" ,
structure of TDS is concerned a significantly wider j=0.N, are the constant coefficient matrices and

variability is to be expected and particularly the ~ _ :
A T,<..<Ty_<Ty arethe time delays.
retarded and neutral systems are to be dlstmgwshecf1 2 N-1 N 4

(Goérecki, et al., 1989). In addition, one of the most
specific properties of TDS is their infinite spectrum
of eigenvalues. As the discrete approximation is

oX(®) +§:ij(t 7)) 1)
j=1

The state of system (1) is given by the vector of
functional segments



roots of (3) is a quasipolynomial mapping based

X (@) =x(t+d) -T<I<0 technique (Vyhlidal, 2003), (Vyhlidal and Zitek,
2003). Using this technique, it is possible to

in the Banach spac€ =C([-T, 0],R") provided compute large number of roots within the same
with the supremum norm. The stateof system (1) predefined accuracy. This allows us to investigate the

at time t is uniquely determined by the initial whole character of the spectrum including the

totic feat f th t t chai
condition function ¢ 0C by thefollowing formula ?Zsi)t/&pa?uleVyi?igglaszo%4). © Specirum Togt chains

(1) = %, )
2 DISCRETE MODELS OF TDS
where 7°(t ) is the solution operator of (1) (Hale and
Verduyn Lunel, 1993). In order to obtain a plain form of the delta model,
only first and second order numerical methods are
used for the discretization of TDS. Discrete
1.1 Features of TDS spectrum approximations of TDS using more advanced

) i methods can be found in (Engelborghs and Roose,
The spectrum of poles, of system (1) is determined 2002) or (Breda, et al., 2004).

by the roots of the following characteristic equation

M (s) = det(sl —A(s)) =0 (3) 2.1 Discrete approximation of TDS
where As the delay values cannot be expected as an integer
N multiples of the discretization stefit, the delayed
A(s) = Ao + 2 A jexp(-sT;) variables have to be expressed by applying an
1= interpolation method. If the first order interpolation

is considered, the following formula is used to

Note that the exponential terms arise from Laplaceinterpolate the delay variables

transform of the time shifting of the state variables

fnvollved in (1). Also note .that the spectrumBft ) Xt ‘Tj)|t:km 0@- )% (k=d,) +
is given by the exponential transforexp(st , Jee . ked. +1) =12

(Hale and Verduyn Lunel, 1993). The spectrum of Hi % j*h,i=12..n

roots of quasipolynomial (3) is infinite witta . L
specific character of the root distribution (Bellman Where d is an integer  satisfying
and Cooke, 1963). An important feature of the d;At=7; Z(dj -1At  and 4;0[01] are the
spectrum of retarded system (1) is that the number ofveighting coefficients. Thus, the right-hand side of
roots satisfying 0(s)>a, ald R is finite. The (1) is to be substituted by

system spectrum tends to form a finite number N y

of asymptotic chains with the following on(t)+Zij(t—rj) L :Z;\lxk—l (5)
features: 0(g) - —e, |O(s)/0(s)| -« and ia =0

(4)

largls)| - 77/2 as|s| - « . Thus, the stability and

the system dynamics are determined by a finiteWNere H =max(@;) and, according to (4)A, are

number of rightmost poles. the linear combinations of particular matriégs

, . Applying the numerical method of the following
1.2 Numerical computing of the spectrum specific form
The rigthmost poles of (1) can be computed by the Xios = Xy + DBy Fray + Boti) (6)

numerical methods based on discretization of the

solution operator or on discretization of the ) .
infinitesimal generator of the semigroup, see Where S+ /5, =1 the discrete approximation of
(Engelborghs and Roose, 2002) (using Linear Multi- (1) acquires the following generic form

step methods), (Breda, et al., 2004) (using Runge- y y

Kutta methods). Note that in such methods, the _ ~ ~

quality of the approximation decays with increasing *k+1 ~ Xk +At (5—1;)A|Xk_|+1+ﬁol§A,xk_,) (7
modules of the poles. An alternative to these - -

approaches is to compute the roots Of o e Eyer explicit methog?,=0, S=1, Euler

guasipolynomiaM(s) using a method developed for implicit method3,=1, =0 and Trapezoidal method
computing roots of analytic functions, see e.g. B1=0.5,4=0.5 -
_1—VU. O, Pp—VY.O.

(Kravanja, 2002). A powerful tool for computing the



2.2 Discrete approximation of the solution operator

Let the system state; be approximated by the
discrete state, given by a sequence of the discrete
state variables

- T
Xt —’Xk_[xk, Xi=15 s Xk=H+1s Xk—H]

the discrete approximation of TDS (7) can be
transformed into the form

Xye1 = P X, (8)
where
PQ, PQ PQua PQy
| 0 0 0
®=| 0 | 0 0
| 0 0 | 0 |

X (9) = 1(3)F(J) (12)

where X(Jd), F(9) are the transforms of(t) and of

the right-hand side of the TDS approximated by (5),
respectively, and (9) is a delta transfer function of
the discrete time integrator, see (Comeau and Hori,
1997), (Zitek and Petrova, 2002). To obtain a delta
model corresponding to (6), the delta transfer
function is considered as follows

I(5)= %0 (13)

o

where ¢, and ¢; are continuous functions of\t
(co =B+ 5, andc, =AtS_;). The model (12) is a
valid delta model of system (1) if

lim, _o¢ =1 and lim,,_,c, =0 (14)

see (Comeau and Hori, 1997). Taking into account

that (L+Ato) represents aAt time shifting
(Middleton and Goodwin, 1990), considering the
zero initial conditions, the delta model of system (1)
is given by

P= (I _Atﬂ—l'ao)_llQO =1 +At(ﬂ—1lz\1 + ﬂo/&o)
Qm= At([),—l’&m+1 + ﬂo'&m)' m=1.H

which is a discrete approximation of the equation H
X(3) =(co +e10) YA L+A)X(9) | (19)
Xeape = T (A0 ) 1=0

which is also the delta transform of (7).
Simultaneously, a delta transform of (8) and (9),
respectively, can directly be expressed as

Similarly as in (2), the solution operatsi(At naps

Xt INt0 Xwar. Thus, the matrixd® is a discrete
approximation of the solution operat@i(At . )

(@)= ([@-1)X(3) (16)

3 DELTA MODEL AND ITS SPECTRUM
whereX(J) is the delta transform of.
The delta transform has been introduced by
(Middleton and Goodwin, 1990) as an alternative to
the Z-transform to analyze the dynamics of discrete3.1 Basic features of TDS delta model
time systems. The fundamental feature of the delta
transform is that a&t . 0 the delta model of the Order of TDS delta modelnlike the case of a delay
system converges to its Laplace transform. Thefree linear system see (Comeau and Hori,1997), the
relation between the operators of the Z-transfarm order of the delta model of TDS given by (15) or (16)
the Laplace transforms and the delta transform depends not only on (dimension of the state vector)
& can be expressed by the following formula and on the numerical method used, but also on the
(10) ration of the maximum system delay, and At as

follows
ns = n(int(r—’“j + 2}
At

Convergence to Laplace transform modéis it is
shown below, the convergence of the delta model to

The model of system (1) can be considered in thelts Laplace transform a4t — O is preserved also for
following form DS.

z=exp(Ats) =1+ Ato
As At - 0,according to the following limit a7
17

lim & = lim SXPEA) -1 _
At-0 At-0 At

(11)

the operato® converges to the operater



For the zero initial conditions, the Laplace transform 3.3 Spectrum of the delta model
of (1) is given by
As has been shown in (Comeau and Hori, 1998) the
N modes of the discretized model can be divided into
sX(s) :{AO + ZAJ- exp(—srj)}X(s) (18) two groups. The first group consists of modes with
j=1 the counterparts in the dynamics of the continuous
time model. The second group consists of modes

where X(s) is the Laplace transform ofk(t). introduced by the discretization process. Note that, as
Taking into account (11) and (14) the delta transfer@ rule, the modes in the second group are much faster
function (13) has the following limit than the modes in the first group.
im % +cd_1 (19) In the 5 plane, provided thafAt is .chosen well
A-0 O < according to the system dynamics, the poles

introduced by the discretization are distributed close
which is the Laplace transform of the continuous to the midpoint of the stability region while the poles
time integrator. The Laplace transform of a time with the counterparts in the continuous spectrum are
shifting by 7; results from its delta transform as the distributed in a finite number of chains located rather

close to the stability boundary circle. Transforming
the poles of the delta model into th@lane by the
following formulas

following limit

L

lim (L+At3) & = exp(-s7,) (20) )
-0 Re@) = —In(1+Atd))),
- At (22)
Decomposing the matricesA; back into A Im(&) = atg) = Lat Im(L+ Atd,)
according to (4) and (5) and taking into account (19) m(§) =argd )= e Re(l+ Atd,)
and (20), the delta model of TDS (15) converges to
the Laplace transform (18) @ - 0. which result from the mutual relation between the

operators (10), thos§, which have the counterparts

in the continuous time model are transformed by (22)
into their vicinities. Note that the distances of the

pairs §; ands; , which correspond each to other, are

Stability region.The stability region in thé-plane is
enclosed by a circle with a midpoint @t? and a
diameter At! (Middleton and Goodwin, 1990).
Obviously, in the limit case, @& - 0, in agreement

with (11), the stability region covers the whole left increasing with increasing modules of the poles.
half of the complex plane. Thus, the dominant system modes are the best fitted

ones. If the poles introduced by the discretization are

transformed by (22) into the— plane, according to
3.2 Computing the delta model spectrum the fact that these poles are located close to the
midpoint of the stability boundary of thie- plane, it
results from the first formula of (22) that these poles
are transformed much farther to the left than the
poles from the first group.

Spectrum as the polynomial rootsThe first
possibility to compute the spectrum of delta model of
TDS given by (15) is to compute the roots of the
delta model characteristic equation

According to (17), asAt decreases from a certain

Q(d) = 1+ Ato)" det[5 I - starting value, the order of the delta model is
H o (21) gradually growing by facton. Thus the number of

- (e +015)2A,(1+At5)" =0 poles in both groups of poles gradually increases.
1=0 This feature will be illustrated in the following

example. It will be shown that as the new poles

whereQ(J) is a polynomial. However, this approach emerge they become the poles of the second group.
is not safe because of the numerical reasons. It is dugimultaneously and also gradually, some of the poles
to the fact that the hlgher order polynomials, which leave the second group and a|0ng continuous
are likely to be encountered in this case, are often ill trajectories become the poles with the counterparts in
conditioned (Wilkinson, 1984). the continuous time model spectrum. It will also be

. illustrated that ag\t continually decreases the poles
Spectrum as the matrix eigenvalueBtom the  of the delta model converge, along continuous
numerical point of view, it is much safer to compute {rajectories, to the poles of continuous time model.
the spectrum of the delta model as the eigenvalues of
the matrix At (® - 1) taken from (16). It allows us

to handle the delta model even of a very high order
using a relatively smalfit .



4 APPLICATION EXAMPLE

A laboratory heating system, (Vyhlidal, 2003), is
described by TDS model (1) with the following
dynamics matrix

[_ ,-65s -40s ]
e 024e 0 0
14 14
05 -1 0 0.56**
A(s)=| 15 15 15
0 094e -1 0
! ! 2.8 92
-28s _ A 92s
0 0 081e e
L 25 25

(23)

region of poles introduced
by discretization for At=0.8

-1 n n n n n n n N n
-2.8 -26 -24 -22 -2 -18 -16 -14 -1.2 -1 -08

0(s), D)

Using the trapezoidal rule for the discretization, a Fig. 2 The trajectories of a single couple of poles

delta model of the form (16) is obtained. With
respect to the shortest delgz2.8 and the smallest
time constanfl=1.5, the sampling period is chosen
At=1.4.

The spectrum of the continuous time TDS model
with dynamics matrix (23) in thes-plane (black
circles), the spectrum of the delta model in the

plane (asterisks) and the delta model spectrum

transformed to thesplane by (22) (empty large

S
circles) are seen in Fig. 1. Note that the poles of the &
continuous TDS are computed by mapping based g
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Fig. 1 Spectra of the continuous TDS (black circles)
and its delta model (asterisks), (Trapezoidal

emerging from the region of poles introduced by
the discretization for the discretization step
decreasing fronAt=0.8 toAt=0.1.

14 ‘ ‘ T T T T T T
12' """ b'
.

KoKy o N -k - o

*% %

s

DR xR RRT

7 S S S S R S .
~2.6-2.4-2.2 -2 ~1.8-1.6-1.4-1.2 -1 0.8-0.6-0.4-0.2 0 0.2
O(s), 0¥

Fig. 3 Spectrum of delta model fAt=0.8 (asterisks),
spectrum of continuous TDS (black circles)

model order 4x
42| 43) 44)45/46) 148 50) 152 54 15 |5
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=T=1_

1 0.9 0.8 0.7
At

method,At=1.4); empty circles — spectrum of the Fig. 4 The trajectories of the real poles of the delta

delta model transformed into the-plane,
trajectories of the poles of the delta model for
At[J]0.1, 1.4], circle — stability boundary of
o-plane for At=1.4, dashed circle - stability
boundary ofd-plane forAt=0.1

model emerging from the region of poles
introduced by the discretization, dahsed -
boundary of the region, dash-dotted — midpoint of
the stability boundary circle.
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