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Abstract: The properties of delta model approximations of time delay systems obtained by 
means of first and second order numerical methods are investigated. A particular attention 
is paid to the relationship between the spectra of continuous and corresponding delta 
model. Based on the convergence between the delta model and the Laplace transform of 
the continuous time model, the convergence of the trajectories of the delta model poles to 
the spectrum of continuous time model is illustrated in the application example. 
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1 INTRODUCTION 
 

The delta transform has been developed as a united 
framework for describing both the linear continuous 
and the discrete dynamic systems (Middleton and 
Goodwin, 1990). The original aim of this transform 
was to build up a bridge between the traditional 
Laplace and Z transforms admitting the infinitesimal 
transition from a discrete to a continuous description. 
So far, a relatively weak attention has been paid to 
applying the delta transform to a sampled-data 
representation of time delay systems (TDS) where 
the discretization issues are more involved than in 
the usual linear delay-free models due to discrete 
representations of time delay segments. As the 
structure of TDS is concerned a significantly wider 
variability is to be expected and particularly the 
retarded and neutral systems are to be distinguished 
(Górecki, et al., 1989). In addition, one of the most 
specific properties of TDS is their infinite spectrum 
of eigenvalues. As the discrete approximation is 

applied to TDS the infinite spectrum is transformed 
to a finite spectrum the order of which depends on 
the sampling period and on the numerical method 
used for the discretization. As will be shown, for 
investigating the relationship between the spectrum 
of continuous system and its sampled-data 
approximation the delta transform is a proper tool.  
 
Consider an autonomous TDS of the retarded type 
and of the following form  ∑
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where x∈∈∈∈Rn is the vector of state variables, A j∈∈∈∈Rn×n , 
j=0..N, are the constant coefficient matrices and 

NN ττττ <<<< −121 ...  are the time delays .    
 
The state of system (1) is given by the vector of 
functional segments  
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in the Banach space )R],0,([ nTC −=C  provided 
with the supremum norm. The state xt of system (1) 
at time t is uniquely determined by the initial 
condition function C∈ϕϕϕϕ  by the following formula 

tt x=ϕϕϕϕ)(T  
(2) 

where )(tT  is the solution operator of (1) (Hale and 
Verduyn Lunel, 1993). 
 
 
1.1 Features of TDS spectrum 
 

The spectrum of poles is  of system (1) is determined 
by the roots of the following characteristic equation 
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Note that the exponential terms arise from Laplace 
transform of the time shifting of the state variables 
involved in (1). Also note that the spectrum of )(tT  

is given by the exponential transform )exp( tsi , see 
(Hale and Verduyn Lunel, 1993). The spectrum of 
roots of quasipolynomial (3) is infinite with a 
specific character of the root distribution (Bellman 
and Cooke, 1963). An important feature of the 
spectrum of retarded system (1) is that the number of 
roots satisfying R,)( ∈>ℜ aasi  is finite. The 
system spectrum tends to form a finite number          
of asymptotic chains with the following         
features: −∞→ℜ )( is , ∞→ℜℑ )(/)( ii ss  and 

2/)arg( π→is  as ∞→is .  Thus, the stability and 

the system dynamics are determined by a finite 
number of rightmost poles. 
 
 
1.2 Numerical computing of the spectrum 
 
The rigthmost poles of (1) can be computed by the 
numerical methods based on discretization of the 
solution operator or on discretization of the 
infinitesimal generator of the semigroup, see 
(Engelborghs and Roose, 2002) (using Linear Multi-
step methods), (Breda, et al., 2004) (using Runge-
Kutta methods). Note that in such methods, the 
quality of the approximation decays with increasing 
modules of the poles. An alternative to these 
approaches is to compute the roots of 
quasipolynomial M(s) using a method developed for 
computing roots of analytic functions, see e.g. 
(Kravanja, 2002). A powerful tool for computing the 

roots of (3) is a quasipolynomial mapping based 
technique (Vyhlídal, 2003), (Vyhlídal and Zítek, 
2003).  Using this technique, it is possible to 
compute large number of roots within the same 
predefined accuracy. This allows us to investigate the 
whole character of the spectrum including the 
asymptotic features of the spectrum root chains 
(Zítek and Vyhlídal, 2004). 
 
 

2 DISCRETE MODELS OF TDS 
 

In order to obtain a plain form of the delta model, 
only first and second order numerical methods are 
used for the discretization of TDS. Discrete 
approximations of TDS using more advanced 
methods can be found in (Engelborghs and Roose, 
2002) or (Breda, et al., 2004). 
 
 
2.1 Discrete approximation of TDS  
 
As the delay values cannot be expected as an integer 
multiples of the discretization step t∆ , the delayed 
variables have to be expressed by applying an 
interpolation method. If the first order interpolation 
is considered, the following formula is used to 
interpolate the delay variables  
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where dj  is an integer satisfying 
( ) tdtd jjj ∆−≥≥∆ 1τ  and ]1,0[∈jµ are the 

weighting coefficients. Thus, the right-hand side of 
(1) is to be substituted by  ∑∑
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where )max( jdH =  and, according to (4), lA
~

 are 

the linear combinations of particular matrices A j.   
 
Applying the numerical method of the following 
specific form 

)( 0111 kkkk fft ββ +∆+= +−+ xx  
(6) 

where 101 =+− ββ , the discrete approximation of 
(1) acquires the following generic form 
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For the Euler explicit method β-1=0, β0=1, Euler 
implicit method β-1=1, β0=0 and Trapezoidal method 
β-1=0.5, β0=0.5.  
 



 

     

2.2 Discrete approximation of the solution operator 
 
Let the system state xt be approximated by the  
discrete state xk given by a sequence of the discrete 
state variables  
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the discrete approximation of TDS (7) can be 
transformed into the form 

kk xx ΦΦΦΦ=+1  
(8) 

where 
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which is a discrete approximation of the equation 

ttt t xx )(∆=∆+ T  
(9) 

Similarly as in (2), the solution operator )( t∆T  maps 

xt into xt+∆t. Thus, the matrix ΦΦΦΦ is a discrete 
approximation of the solution operator )( t∆T .  
 
 

3 DELTA MODEL AND ITS SPECTRUM 
 

The delta transform has been introduced by 
(Middleton and Goodwin, 1990) as an alternative to 
the Z-transform to analyze the dynamics of discrete 
time systems. The fundamental feature of the delta 
transform is that as 0→∆t  the delta model of the 
system converges to its Laplace transform. The 
relation between the operators of the Z-transform z, 
the Laplace transform s and the delta transform 
δ  can be expressed by the following formula        

δtstz ∆+=∆= 1)exp(  (10) 

As 0→∆t ,according to the following limit  
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the operator δ  converges to the operator s. 
 
The model of system (1) can be considered in the 
following form 

)()()( δδδ FX I=  (12) 

where )(,)( δδ FX  are the transforms of )(tx and of 

the right-hand side of the TDS approximated by (5), 
respectively, and )(δI is a delta transfer function of 

the discrete time integrator, see (Comeau and Hori, 
1997), (Zítek and Petrová, 2002). To obtain a delta 
model corresponding to (6), the delta transfer 
function is considered as follows  
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where c0 and c1 are continuous functions of t∆  
( 010 ββ += −c  and 11 −∆= βtc ). The model (12) is a 
valid delta model of system (1) if  

0limand1lim 1000 == →∆→∆ cc tt   (14) 

see (Comeau and Hori, 1997). Taking into account 
that )1( δt∆+  represents a t∆  time shifting 
(Middleton and Goodwin, 1990), considering the 
zero initial conditions, the delta model of system (1) 
is given by 
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which is also the delta transform of (7). 
Simultaneously, a delta transform of (8) and (9), 
respectively, can directly be expressed as   
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=
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where X(δ) is the delta transform of xk.  
 
 
3.1 Basic features of TDS delta model 
 
Order of TDS delta model. Unlike the case of a delay 
free linear system see (Comeau and Hori,1997), the 
order of the delta model of TDS given by (15) or (16) 
depends not only on n (dimension of the state vector)  
and on the numerical method used, but also on the 
ration of the maximum system delay Nτ  and t∆  as 
follows  + ∆

= 2int
t

nn Nτ
δ  (17) 

 
Convergence to Laplace transform model.  As it is 
shown below, the convergence of the delta model to 
its Laplace transform as 0→∆t  is preserved also for 
TDS. 
 



 

     

For the zero initial conditions, the Laplace transform 
of  (1) is given by  
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where )(sX  is the Laplace transform of )(tx .  
Taking into account (11) and (14) the delta transfer 
function (13) has the following limit    
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which is the Laplace transform of the continuous 
time integrator. The Laplace transform of a time 
shifting by jτ  results from its delta transform as the 

following limit 
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Decomposing the matrices lA
~

 back into A j 
according to (4) and (5) and taking into account (19) 
and (20), the delta model of TDS (15) converges to 
the Laplace transform (18) as 0→∆t .   
 
Stability region. The stability region in the δ−plane is 
enclosed by a circle with a midpoint at -∆t-1 and a 
diameter 2∆t-1 (Middleton and Goodwin, 1990). 
Obviously, in the limit case, as 0→∆t , in agreement 
with (11), the stability region covers the whole left 
half of the complex plane.    
   
 
3.2 Computing  the delta model spectrum 
 
Spectrum as the polynomial roots. The first 
possibility to compute the spectrum of delta model of 
TDS given by (15) is to compute the roots of the 
delta model characteristic equation   
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where Q(δ) is a polynomial. However, this approach 
is not safe because of the numerical reasons. It is due 
to the fact that the higher order polynomials, which 
are likely to be encountered in this case, are often ill-
conditioned (Wilkinson, 1984).  
 
Spectrum as the matrix eigenvalues. From the 
numerical point of view, it is much safer to compute 
the spectrum of the delta model as the eigenvalues of 

the matrix ( )IΦ−∆ −1t  taken from (16). It allows us 
to handle the delta model even of a very high order 
using a relatively small t∆ . 

3.3 Spectrum of the delta model 
 
As has been shown in (Comeau and Hori, 1998) the 
modes of the discretized model can be divided into 
two groups. The first group consists of modes with 
the counterparts in the dynamics of the continuous 
time model. The second group consists of modes 
introduced by the discretization process. Note that, as 
a rule, the modes in the second group are much faster 
than the modes in the first group.  
 
In the δ - plane, provided that t∆  is chosen well 
according to the system dynamics, the poles 
introduced by the discretization are distributed close 
to the midpoint of the stability region while the poles 
with the counterparts in the continuous spectrum are 
distributed in a finite number of chains located rather 
close to the stability boundary circle. Transforming 
the poles of the delta model into the s-plane by the 
following formulas  ∆+
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which result from the mutual relation between the 
operators (10), those jŝ  which have the counterparts 

in the continuous time model are transformed by (22) 
into their vicinities. Note that the distances of the 
pairs jŝ  and js , which correspond each to other, are 

increasing with increasing modules of the poles. 
Thus, the dominant system modes are the best fitted 
ones. If the poles introduced by the discretization are 
transformed by (22) into the s – plane, according to 
the fact that these poles are located close to the 
midpoint of the stability boundary of the δ - plane, it 
results from the first formula of (22) that these poles 
are transformed much farther to the left than the 
poles from the first group.  
 
According to (17), as t∆  decreases from a certain 
starting value, the order of the delta model is 
gradually growing by factor n. Thus the number of 
poles in both groups of poles gradually increases. 
This feature will be illustrated in the following 
example. It will be shown that as the new poles 
emerge they become the poles of the second group. 
Simultaneously and also gradually, some of the poles 
leave the second group and along continuous 
trajectories become the poles with the counterparts in 
the continuous time model spectrum. It will also be 
illustrated that as t∆  continually decreases the poles 
of the delta model converge, along continuous 
trajectories, to the poles of continuous time model.     
 
 
 
 



 

     

4 APPLICATION EXAMPLE 
 

A laboratory heating system, (Vyhlídal, 2003), is 
described by TDS model (1) with the following 
dynamics matrix 
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Using the trapezoidal rule for the discretization, a 
delta model of the form (16) is obtained. With 
respect to the shortest delay τ1=2.8 and the smallest 
time constant T=1.5, the sampling period is chosen 
∆t=1.4.  
 
The spectrum of the continuous time TDS model 
with dynamics matrix (23) in the s-plane (black 
circles), the spectrum of the delta model in the δ-
plane (asterisks) and the delta model spectrum 
transformed to the s-plane by (22) (empty large 
circles) are seen in Fig. 1. Note that the poles of the 
continuous TDS are computed by mapping based 
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Fig. 1 Spectra of the continuous TDS (black circles) 

and its delta model (asterisks), (Trapezoidal 
method, ∆t=1.4); empty circles – spectrum of the 
delta model transformed into the s-plane, 
trajectories of the poles of the delta model for 
∆t∈[0.1, 1.4], circle – stability boundary of 
δ−plane for ∆t=1.4, dashed circle - stability 
boundary of δ−plane for ∆t=0.1 
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Fig. 2 The trajectories of a single couple of poles 
emerging from the region of poles introduced by 
the discretization for the discretization step  
decreasing from ∆t=0.8 to ∆t=0.1.  
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Fig. 3 Spectrum of delta model for ∆t=0.8 (asterisks), 
spectrum of continuous TDS (black circles) 
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Fig. 4  The trajectories of the real poles of the delta 
model emerging from the region of poles 
introduced by the discretization, dahsed – 
boundary of the region, dash-dotted – midpoint of 
the stability boundary circle.  



 

     

rootfinder (Vyhlídal and Zítek, 2003) while the 
eigenvalues of the large sparse matrix    

( ) 1201201 R ×− ∈−∆ IΦt  are computed using Lapac 
subroutines in Matlab. The curves also seen in Fig. 1 
are the trajectories of the poles of the delta model 
with the discretization step continually decreasing 
from ∆t=1.4 to ∆t=0.1 (for which 1608=δn ). As 
can clearly be seen from the course of the 
trajectories, as 0→∆t , the trajectories will reach the 
positions of the continuous TDS poles.  
 
Note that as ∆t decreases, gradually, from the region 
of poles introduced by the discretization process, 
additional poles emerge and along continuous 
trajectories become poles with the counterparts in the 
spectrum of the continuous time model. The 
trajectories of a single couple of poles are seen in 
Fig. 2 for ∆t decreasing from ∆t=0.8 to ∆t=0.1, see 
also the whole spectrum of the delta model for 
∆t=0.8 in Fig. 3. As can be seen, the poles leave the 
group of poles introduced by the discretization, one 
by one, as real poles. They gradually become the 
couples of poles and leave the real axis at the 
rightmost positions of the trajectories seen in Fig. 4.  
    
 

CONCLUSIONS 
 
The features of the delta model of TDS have been 
investigated. Even though only first and second order 
numerical methods were considered for the 
discretization, the results obtained reveal the 
fundamental properties of TDS delta models. It has 
been shown that as 0→∆t , the delta model 
obtained converges to the Laplace transform of the 
system. The particular attention has been paid to the 
relationship between the spectrum of continuous 
TDS and the spectrum of its delta model.  Next to the 
delta model poles which have the counterparts in the 
spectrum of TDS, the delta model spectrum involves 
a group of ‘fast’ poles, which are introduced by the 
discretization process. The movement of the poles 
subject to decreasing discretization step has been 
demonstrated in the application example. It has been 
shown that as the delta model order increases, the 
poles are introduced into the group of fast poles and 
then, gradually, on the continuous trajectories, they 
become the poles which have the counterparts in the 
continuous TDS spectrum. It has also been shown 
that the rightmost poles of TDS are covered with the 
highest accuracy by the corresponding poles in the  
discretized model spectrum. To sum up, it has been 
shown that the delta transform can also be utilized in 
the analysis of TDS dynamics, e.g. in the process of 
selecting suitable ∆t for which the dominant 
continuous TDS modes are sufficiently covered by 
the discretized model. 
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