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Abstract: This paper deals with a novel magnetic microactuator. Its moving part is a 
permanent magnet in unstable levitation between two stable positions, and thus its central 
position must be precisely controlled. A cm-scale prototype was built to test the dynamic 
behaviour of the device. The quaternion algebra is used to describe the 3D movement of 
the moving magnet. A PD controller for position control is determined by a pole 
placement; it is then tested on the complex model and the theoretical results are 
satisfactory.   Copyright © 2002 IFAC 
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1. INTRODUCTION  

 
With the growing world of MEMS, new challenges 
are appearing in the field of robotics. The potential 
applications of our device are for instance the precise 
micro-manipulation in biotechnology or in other 
fields (Cugat et al., 2003; Rostaing et al., 2004). In 
this case the requirements are µm-scale precision and 
a “high” reaction speed. The control of such a micro-
actuator raises problems of position sensing, 
robustness against pertubations, and controller speed. 
 
This article presents such a magnetic micro-actuator. 
The application (device and position sensor) is first 
presented, the simplified and complete description of 
the system is given; the controller synthesis and 
some simulated results are shown in the end. 
 

2. APPLICATION  
 

The structure shown in Fig. 1, 2 and 3 is used for 
micro-positioning, and is protected by an 
international patent (Delamare et al., 2001). The 
actuating part is a free-moving magnet (2), which is 
captive of the magnetic field of two neighboring 
fixed magnets (1). 
 
Here, all three magnets are magnetized in the same 
direction. The mobile magnet has two stable 
positions, against either one of the fixed magnets. 
Commutation between the stable positions is forced 
by current pulses through the conductors (3). 
 
 
 
 



 

     

 
 
 
 
 
 
 
 
Fig. 1. Magnetic micro-actuator  
 
The position of the mobile magnet should be 
controlled anywhere between these two stable 
positions, including the unstable equilibrium point in 
the middle of the device, where any small 
perturbation will provoke its attraction back to one of 
the stable positions. We control this position by 
modulating the current in the conductors, using 
feedback from the position sensor (4). 
 
In order to achieve real-time position control, it is 
first necessary to determine its dynamic behaviour by 
calculating the 3D forces and torques which affect 
the mobile magnet in any position and/or orientation 
(Stepanek et al, 2004). 
 
 
2.1 Microrelay realisation 
 
A µm-scale prototype is actually fabricated in the 
Laboratoire d'Electronique de Technologie de 
l'Information (LETI) in Grenoble, France. The 
actuator operates in bistable mode as a micro-relay 
(Fig. 2).  
 

 
 
Fig. 2. Realisation of µ-relay - LETI 
 
The dimensions of the device are 50 x 200 µm. 
  
 
2.2 Macroscopic prototype 

 
A cm-scale prototype has been built to validate the 
functionality and validate the model of the complete 
system. The prototype has two major parts: the 
actuator itself (Fig. 3) and a position sensor. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3. Macroscopic prototype of the micro-actuator 
 

The overall length of the prototype is 4 cm. The 
conductor is made by 30 loops of copper wire. The 
magnets are standard ferrites, and mobile magnet in 
the middle can move in 0.5 mm. Here the gap is 
widened with plastic stoppers so as to adjust for the 
strength of the magnets at this large scale. 
 
 
2.3 Position sensor 
 
The position of the mobile magnet is captured with a 
differential capacitive position sensor (Fig. 4). Each 
half-sensor is composed of a pair of fixed electrodes 
(1) facing a mobile electrode (2). 
 

 
 
Fig. 4. Principle of the position sensor 
 
The electronic circuit shown on Fig. 5 produces a 
signal proportional to the position of the moving 
magnet. 
 

 
 
Fig. 5. Electrical diagram of the position sensor 
 
The overall set-up is shown on Fig. 6. One of the 
fixed magnets (1) and the moving magnet (2) stuck 
on the adjustable console (5) can be seen. This 
configuration allows us to characterise the sensor’s 
performance. The position signal is captured with the  
split electrodes (4a) and processed by the electronics 
(4b). The present sensor has a good resolution (100 
mV / 100 µm), but still exhibits some linearity 
problems. Work is in progress on its improvement. 
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Fig. 6. Actuator & sensor set-up 
 
 

3. SIMPLIFIED MECHANICAL SYSTEM 
DESCRIPTION 

 
The micro-actuator will be levitating in the magnetic 
field. It will possess six degrees of freedom. As there 
is a risk of possible mechanic oscillations, the 
complete translation / rotation movements must be 
modelled.  
 
As the complete model is non-linear and too complex 
and cannot be fully described analytically (only 
linearised), a simplified description of the actuator is  
used to synthetise the controller and make the first 
tests. The developed corrector will be then tested on 
the complex model described in section 4, to verify 
all the performance.  
 
Let us first study the system without rotations and 
moving only along the x direction. 
 
The overall force exerted on the moving magnet is 
composed of the forces from the fixed magnets and 
from the coil. Dieppedale et al. (2004) showed that 
in the middle position, the composed force from the 
symmetrical fixed magnet is proportional to the 
moving magnet displacement. The force from the 
coil is proportional to the current in the coil: 
 

IkxkFx 21 +=    (1) 
 

with: 
 x.. the moving magnet’s position 
 I.. the current in the coil 
 
The constants k1 and k2 are the electromagnetic 
constants which can be easily estimated with 
electromagnetic calculus. 
 
The differential equation describing the dynamics is: 
 

Ikxkxm 21 +=&&   (2) 
 

where m is the moving magnet’s mass. 
 
The resulting transfer function is given by: 
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(3) corresponds to a second order unstable system. 
The phase is 1800 for all frequencies.  

 
 

4. COMPLEX ACTUATOR MODELING  
 
Among different approaches, the Euler angles or the 
quaternion formulation can be chosen in order to 
model a free three dimensions (3D) rotation. 
However, in this work, the quaternion approach has 
been chosen to avoid the Gimbal lock effect 
(Guiziou, 2002; Chou, 1992). 
 
Let us define a fixed coordinate system (Xs, Ys, Zs), 
called Ro and a moving coordinate system (Xi, Yi, 
Zi) as specified in Fig. 7. 
 
The levitating magnet is made of a homogeneous 
material in the form of a rectangular parallelepiped. 
Its dimensions are length a, width b and height c.  
 

 
 
Fig. 7. Coordinate systems 
 
The inertial moment tensor in the moving 
coordinates can be calculated as: 
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with m the mass of the moving magnet. 
 
 
4.1. Dynamics: introduction 
 
The dynamic system contains four unknown vectors, 
namely: 
- the translation position vector R

r
 (3 components) 

- the translation speed vector V
r

 (3 components) 
- the quaternion Q

r
 (4 components) 

- the angular speed Ω
r

 (3 components) 
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Their components are respectively: 
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4.2. Force and torque calculation 
 
The calculation is based on the magnetostatic 
calculus of forces exerted on a magnet in a magnetic 
field. If the magnet exact position, rotation and the 
current in the coil are known, the magnetic force and 
torque can be found. The magnetic force is 
formulated in the fixed coordinate system, the torque 
must be recalculated in the moving coordinate 
system. 
 
Note that the calculus based upon the “simple” 
magnetostatic hypothesis; the magneto-dynamics 
effects on the systems are not considered because the 
Eddy currents can be neglected. 
 
The calculus of the force F

r
 and the torque Γ

r
 can be 

seen as a “black box”, function of the magnet 
position and rotation. They are not described in this 
paper and the reader can consult Stepanek et al. 
(2003); (2004).  
 
f
r

 and C
r

 are the normalised force and torque: 
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4.3. Translation equations 
 
The translation equations (8) and (9) are easy to 
understand. They obey Newton’s law, using the 
initial conditions (10), (11): 
 

v
dt
Rd r
r

=    (8) f
dt
vd rr

=    (9) 
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4.4. Rotation equations – movement around the 
centre of gravity 
 
The problem to be solved is given by: 
 

Ω⋅×Ω+Ω⋅=Γ Ii
dt
dIi

r
r

r   (12) 

 
The equation (12) can be rewritten:  
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where the initial conditions are (14) : 
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4.5. Quaternions 
 
The quaternion Q

r
 represents the geometric rotation 

transforming the basis R0 into the basis R. The 
quaternion multiplication is used in order to 
determine the elements of one vector in both 
coordinate systems. 
 
The quaternion evolution has to be calculated in 
parallel with the instantaneous angular speed 
(Giuziou, 2002). These computations with initial 
conditions give:  
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Note that the quaternion must be unitary in order to 
represent a rotation. Therefore, it must satisfy: 
 

13210 2222 =+++ qqqq       (17) 
 
 
4.6. Complete  system 
 
The applied torque depends on the translation and the 

rotation of the moving magnet in the fixed field. No 

equation can be uncoupled, and the problem will 



 

     

contain 13 differential equations  (Eqs. (8), (9), (13), 

(15)) with 13 unknowns namely: 

 
)3,2,1,0,,,,,,,,,( qqqqrqpvzvyvxzyx  

 
One algebraic constraint (17) must also be dealt with. 
The complete system is numerically solved with a 
Matlab-Simulink block-diagram. A 4th order fixed-
step Runge-Kutta integration scheme has been 
chosen. Note that a variable-step method based on an 
explicit Runge-Kutta (4, 5) formula (ODE45 in 
Matlab) has also been tested. The fixed step has been 
carefully chosen thanks to the results obtained with 
the variable-step method. 
 
 

5. CLOSED LOOP SYSTEM  
 
Different works on bistable levitating systems 
control still exist. Faure et al. (1999) showed a 
corrector synthesis for a magnetic bearing where the 
controller zeros are chosen thanks to the system 
poles. 
 
In this paper, the controller synthesis is made by the 
pole-placement technique (DeLarminat, 2002). The 
denominator of the closed-loop transfer function in 
then simplified to a 3rd order non-oscillating system. 
 
The closed loop from the Fig. 8 will be used for the 
synthesis.  
 
 
 
 
Fig. 8. Generalised closed loop system 
 
 5.1. Controller choice and determination 
 
The role of the controller is firstly to regulate the 
moving magnet of the system in the middle position. 
It will also compensate the perturbations. On a 
further level, the controller should also be able to 
stabilise the moving magnet in any required position 
on the x axis (Fig.1). The other axes are not 
controlled in this configuration.  
 
For the present application, a (filtered) PD controller 
can satisfy these constraints. It can reduce the 180° 
phase of the system. Its transfer function is given by: 
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Note that this transfer function is composed by the  
(filtered) PD controller and a first-order system 
which represents the limitation of the controller to 
supply the electric current at high frequencies. 
Actually, τc << τ2.  
 
 
 

5.2. Position sensor 
 
The x position sensor has been described in section 
2.3. Its transfer function is given by: 
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Note that its characteristics satisfy τf << τ2. 
 
 

6. PD CONTROLLER SYNTHESIS 
 
 
6.1. Controller for the simplified mechanical model 
 
The description of the simplified mechanical system 
is used for the controller synthesis. 
The closed-loop system transfer function is 
calculated with the controller transfer function (18), 
the mechanical system transfer function (3) and the 
position sensor transfer function (19). The 
denominator of the closed loop transfer function is a 
6th order polynom: 
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As stated previously, . .C LDen  is simplified to as 3rd 
order polynom with: 
 

3
.. )1( += pDen PP α    (22) 

 
Because of the application context, an overshoot on 
the position of the magnet is not suitable, the 
response time being of second order interest. This 
main requirement can justify the choice of (22). 
Using and optimisation solver, (for instance the 
MATLAB function fsolve), the unknown coefficients 
defining the controller k0, τ1 and τ2 are computed for 
any chosen α. Actually, the validity of the 
simplification hypothesis (21) depends on the 
numerical value set for α. Therefore, after the 
optimisation step, the validity of the hypothesis (22) 
must be a posteriori checked.  
 
 
 

Controller Position 
sensor 

c Mechanical 
system 

+

- 



 

     

6.2. Application of the obtained controller onto the 
complex actuator model 
 
The controller obtained is now tested on the 
complete quaternion model to validate the behaviour 
of the whole actuator. Some results are shown on 
Fig. 9 : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Simulation results : X, Y and Z translations 

and control current versus time 
 
The position on the x-axis is successfully controlled 
from 0mm; at t = 50 ms a step of 0.1mm has been 
applied. The actuator oscillates in the z-axis direction 
with an amplitude of  0.1 mm. The oscillation is 
generated by coupled forces created by conductor 3, 
(Fig. 1.) and are not attenuated because there is no 
friction in the model. However, in practice it may be 
dampened by air. A similar phenomenon can be 
observed in the y-axis since 50ms. 
 
An x-position overshoot can be seen on Fig. 9. It is 
due to two non-linear events: current saturation and 
position saturation. There is no overshoot in the step 
response at 50ms. 
 
The rotation movement is represented in Fig. 10. 
Quaternions make it difficult to imagine the actuator 
behaviour from the graphs – but it is clearly visible 
on animations. The actuator exercises a complicated 
"Lissajoux-type" periodic rotation around its centre 
of gravity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Simulation results – quaternions vs time 

7. CONCLUSION 
 

The complete description of the kinematics and 
dynamics of the novel levitating magnetic micro-
actuator has been shown. The modelling is made on a 
cm-scale prototype, but can be easily applied on the 
micrometric integrated device. The complex actuator 
movement can be simulated with this tool.  
A PD controller was then established to control the 
actuator movement. A simplified model was used for 
the synthesis. The resulting controller was tested on 
the quaternion model and the results are promising.  
The controller has been realised in electronics and 
tested on the magnetic system. The mobile magnet is 
successfully maintained in levitation. 
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