ADAPTING CONTROL SOFTWARE SYSTEMS
THROUGH ASPECT-ORIENTED
PROGRAMMING

Iwan Birrer * Philippe Chevalley ** Ondfej Rohlik *

* Institut fiir Automatik, ETH Ziirich, Switzerland
** Buropean Space Agency, Noordwijk, The Netherlands

Abstract: The current practice in the development of control systems shows
an increasing demand on software reuse. This paper addresses this issue and
describes a prototype tool, called XWEAVER, which is based on the aspect-
oriented programming technology to achieve the adaptability of reusable software
components in an automated way. XWEAVER is an aspect weaver for C/C++ that
is specifically designed for adapting software with high criticality requirements, as
it is for a majority of control applications. Copyright ©2005 IFAC

Keywords: Software tools, embedded systems, safety-critical, program costs

1. INTRODUCTION

If software-related costs account for a growing
share of total development costs of control sys-
tems, the simplest and most effective way to con-
tain these costs is to increase the level of software
reuse i.e. to reuse the same software component in
different operational contexts. In practice, differ-
ent contexts will always impose different require-
ments and hence a software component will only
be reusable if it can be adapted to these different
contexts. In this sense, adaptability is the key to
reusability: a software component is reusable only
to the extent that it can be adapted to different
operational environments.

Embedded control software is often developed
in programming languages using a procedural
or a modular design paradigm. The adaptability
mechanisms offered by this type of approach are
very limited. Essentially, adaptability is restricted
to the parameterization of routines and functions
and to the use of compiler flags to control the
selection of software configuration. This low level
of adaptability was arguably the main reason for

the difficulty in introducing a reuse culture in the
world of control systems.

The transition to the object-oriented (OO) tech-
nology addresses this deficiency (Pasetti, 2002)
with features such as object composition and
inheritance. However, these features only cover
functional adaptability, namely adaptability with
respect to the algorithms implemented by the
software (i.e. control algorithm). Adaptability to
changes in non-functional aspects (i.e. aspects
that covers software features not directly related
to its primer purpose) is difficult or impossible to
model and implement. Thus, for instance, changes
in the error handling policy, in the concurrency
and sychronization model, or in the balance be-
tween memory and CPU efficiency can hardly
be covered by OO features. This is a serious
shortcoming because non-functional aspects often
play an important role in control applications
where product differentiation is often rooted in
non-functional differences in the software. Aspect-
Oriented Programming (AOP) is a recent concept
that allows a designer to model a software ac-
cording to different functional and non-functional
views.

The paper is organised as follows. Section 2 intro-
duces the aspect-oriented programming as a way
to handle adaptability to non-functional aspects.
Section 3 discusses AOP in the context of control
applications and presents in details X WEAVER.
Section 4 discusses some concrete applications of
the tool and relates first experiences in its usage.

2. ASPECT-ORIENTED PROGRAMMING

Aspect-oriented programming is a relatively new
software paradigm (Czarnecki and Eisenecker,
2000) that allows uniform treatment of aspects
of a software application, which, when a conven-
tional design approach is used, are distributed
over the entire code base. The AOP approach
allows these aspects to be modularized and then
makes it possible to easily change the way these
aspects are implemented to adapt them to chang-
ing operational circumstances.

2.1 An Aspect Definition

A software application can be seen from different
perspectives and an aspect designates one partic-
ular perspective and its associated model. As an
example, two obvious perspectives can at least be
considered for a real-time application: the func-
tional perspective and the real-time perspective.
The former perspective privileges the description
of the control algorithms and logic that are imple-
mented by the application. A suitable model for
it could be a UML (Uniform Modeling Language)
class diagram that shows how the modules making
up the application are organized and describes
the functional behaviour that each of them im-
plements. The real-time perspective instead priv-
ileges its timing-related properties (e.g. execution
times, output deadlines). Both perspectives define
an aspect and a model of the application. In the
case of control systems where fault-tolerance is
crucial, the error handling policy provides an-
other example of aspect. It should be stressed
that the aspects of importance depends on each
application. Those outlined above are just ex-
amples of potential aspects but, clearly, different
applications have different concerns and therefore
different sets of applicable aspects. In order to
capture the entire behaviour of an application,
it will normally be necessary to consider several
aspects. Traditional engineering approaches have
privileged the functional aspect but, except for
trivial cases, this needs to be complemented with
other aspects. This point is especially acute in
control systems where tight memory and CPU
budgets and close interaction with the physical en-
vironment impose non-functional constraints that
must be handled through non-functional aspects
in the software.

2.2 Aspects and Separation of Concerns

The principle of separation of concerns states that
a model of an application should be organized
as a set of lower level units where each unit
encapsulates one particular feature (or view) of
the application. The advantage of this approach
is that the description of a software feature is
localized and is therefore more easily controllable.
Localization and controllability of implementation
taken together support adaptability because they
allow the implemented feature to be easily mod-
ified in response to changes in the operational
context.

Aspect (model) A Aspect (model) B

Unit A1

Model B superimposed
upon Model A

]

2\

Unit B1

Fig. 1. Aspects as perspectives on models of an
application

The problem addressed by AOP arises from the
fact that the application of the principle of sepa-
ration of concerns to different aspects of the same
software typically gives rise to organizations of
the associated models that are difficult to map to
each other. This is illustrated in Figure 1 where
two models of the same application are repre-
sented. Each model addresses a particular aspect
of the application and is organized according to
the principle of separation of concerns. This means
that each model represents the application as a
set of lower-level units (the small darker boxes).
Since the two models are intended to represent
the same application, there must exist some kind
of mapping between them. Ideally, one would like
this mapping to hold both at the level of the
models themselves and at the level of the modular
units into which the models are decomposed (i.e.
one would like features that are encapsulated in a
single modular unit in one model to be mapped to
features that are encapsulated in a single modular
unit in the other model). Unfortunately, this is
usually not possible. The more common situation
is the one shown in the figure where a modular
unit of Aspect A is mapped to several modular
units of Aspect B and vice versa. This is schemat-
ically shown in the right-hand side of the figure
where the two models are “superimposed” and
where a feature of Aspect B is shown to affect
several modular units of Aspect A. Using the
terminology of AOP, this fact is often expressed
by saying that Aspect B cross-cuts Aspect A.

Procedural and object-oriented programming tech-
niques have privileged the functional aspect of ap-
plications. The modelling techniques upon which
they are based are targeted at modelling func-
tional behaviour and the principle of separation
of concerns is applied by organizing an application
as a set of cooperating functional units.

Modelling techniques have also been developed for
some other typical aspects but, traditionally, it
has been impossible to enforce the principle of
separation of concerns with respect to more than
one aspect at the same time. To illustrate and with
reference to the examples given above, consider
the case of an application where both functional
and error handling aspects are important and
assume that the application is implemented in
an object-oriented language. In that case, the
principle of separation of concerns can be applied
to its functional aspect by suitably designing the
classes and their interactions. It will then often
be possible to localize the code that implements a
particular functional requirement.

Assume for instance that all application functions
return an error code that indicates whether the
function completed successfully or not. Then, sim-
ple examples of error handling policies at compo-
nent level are:

e Recovery action: Always check the return
values of functions and, if an error is re-
ported, perform a reset of the application;

e Logging action: Always check the return
values of functions and, if an error is re-
ported, create an entry in a log file;

e No action: Never check the return values of
methods (i.e. ignore all errors).

The code that implements the above policies is
spread over the entire structure of the target ap-
plication (i.e. the error handling aspect cross-cuts
the functional aspect). This means that adapting
the implementation of the aspect to a new opera-
tional constraint (i.e. changing the error handling
policy) requires global changes to the source code.
This is far more expensive and error-prone than
would be the case if the implementation of the
aspect was localized in a dedicated “module” (i.e.
if the principle of separation of concerns was ap-
plied to both the functional and error handling
aspects).

2.3 Aspect Languages and Aspect Weavers

The AOP paradigm provides efficient ways to
express aspects and to implement specifications
of aspects into application code in a manner that
preserves the principle of separation of concerns.
The process of modifying an existing source code
to reflect the implementation of a certain aspect

is called aspect weaving. Several AOP languages
exist but they are often based on different aspect
weaving strategies. At its most basic, aspect weav-
ing can be seen as a source code transformation
process and the aspect-oriented language can be
seen as a sort of meta-language that specifies the
code transformation. AOP then becomes a form
of automatic code generation where both the in-
put and the output code are written in the same
language. Figure 2 illustrates the weaving process.

Aspect Aspect
Program Specification
1 Modified Code
Base Code

Fig. 2. Aspect weaving as automatic code trans-
formation

The boxes at the bottom left corner represent the
starting base code organized as a set of modules.
The box at the top left corner represents an as-
pect program that defines a particular code trans-
formation. The aspect weaver is a compiler-like
program that uses the aspect program to modify
the base code and automatically generate a new
source code implementing the desired aspect. Note
that the base code and the modified code are both
written in the same language.

To illustrate, consider again the previous example
dealing with the implementation of different error
handling policies in a certain piece of code. All
existing aspect languages would allow the error
handling policies considered in the examples to be
encapsulated in a single aspect program. The base
code could be developed independently of any
particular error handling policy and the aspect
weaving process could be used to project a par-
ticular error handling policy upon it. Adaptation
could be achieved by modifying only the meta-
code localized in the aspect program.

3. THE XWEAVER ASPECT WEAVER

Although several aspect weavers already exist
for the most commonly used languages (C++
(Spinczyk et al., 2002) and Java (Gradecki and
Lesiecki, 2003)), as will be argued below, these
weavers are targeted at desktop applications and
would be unsuitable for control systems. In order
to offer an AOP tool to the adaptation of embed-
ded control applications, the authors have devel-

oped XWEAVER as an aspect weaver specifically
targeted at critical embedded applications.

3.1 Motivation

The inadequacy of conventional aspect weavers
for embedded applications is due to the fact that
these weavers operate upon the abstract syntax
tree representation of the base code. The weaving
process, in other words, is performed upon the
output of the parser rather than on the source
code. This means that the aspect modifications
are introduced at the level of the object code
rather than of the source code. A modified source
code can usually be generated but it is normally
unreadable because it has lost both the layout and
the comments that were present in the original
code. In the embedded world, it is normally un-
acceptable not to have visibility over the source
code. Among other things, a poor visibility makes
debugging and code inspection far complicated.

Especially serious problems arise in the case of
critical applications, which must be subject to
some kind of qualification programme to certify
that they have reached some minimal level of
quality. Since an aspect weaver is a tool to weave
new code into existing code, the question arises
as to whether the qualification process should be
performed upon the tool or the woven code.

If the qualification process is performed upon the
base code, the aspect weaver and the code to be
woven, then this ensures that the modified code is
of sufficient quality and therefore does not need
any dedicated qualification process. The other
possibility is to perform a qualification process
only on the modified code and in this case there
is no need to qualify the weaver. The first ap-
proach is regarded as impractical in the short term
because of the difficulty of qualifying an aspect
weaver. This difficulty is due both to the intrinsic
complexity of aspect weavers and to the lack of
experience in qualifying this type of applications.
The second approach on the other hand places
some indirect constraints on the aspect weaver,
which must be capable of producing modified code
that is amenable to qualification. At the very least
it is desirable that the modified code not be harder
to qualify than equivalent code written by hand.
In practice, this means that the modified code
must:

(1) Comply with the same coding rules laid down
for manually written code,

(2) Adhere to the same language subset specified
for manually written code,

(3) Be commented to the same level as manually
written code.

Conventional aspect weavers do not satisfy the
above requirements. Arguably, their most impor-
tant shortcoming is that they are unable to handle
comments. This is an important drawback be-
cause in many cases the code documentation is
directly embedded in the source code in the form
of JavaDoc-like comments. The code documen-
tation is automatically generated by processing
these comments. If aspect weavers do not update
the code comments, then the code documenta-
tion becomes invalid and this clearly makes the
qualification process of the modified code more
expensive. Other shortcomings concern the visual
structure of the modified code that is often harder
to read than the original base code (the original
code layout and structure is normally lost during
the weaving process) and the presence of extra-
neous code that is “pulled in” by the weaver.
The XWEAVER tool was developed to address
these concerns. More specifically, it is intended to
implement a weaving process that does not change
in any way the base code and that is capable
of generating comments to document the newly
woven code. Broadly speaking, the intention of
XWEAVER is to produce a modified code that
”looks like” manually written code and that is
therefore as easy to qualify as code that had been
modified by hand.

Additionally, XWEAVER was developed to satisfy
two further requirements that are of importance in
the software reuse domain, namely customisabil-
ity and extensibility. Customisability refers to the
possibility of tailoring the rules that are used to
weave new code into existing code. Extensibility
refers to the possibility of adding new rules to
handle new types of aspects. Both are important
for control applications, which are often charac-
terized by idiosyncratic requirements. In order to
accomodate them, the aspect language and the
weaving process must be correspondingly flexible
and adaptable. Extensibility and adaptability are
also important for another reason. Developing a
comprehensive aspect language and aspect weaver
for a base language of the complexity of C++
is a daunting task. It is believed that a more
practical approach is to begin by developing an
aspect language and weaver that only cover a
core of functionalities of the base language but
to ensure that these are extensible so as to allow
the language and the weaver to grow gradually.
Sometimes, on the other hand, it may be necessary
to avoid using some language constructs, e.g., for
safety reasons.

3.2 XWEAVER Approach
The shortcomings of traditional aspect weav-

ing approaches highlighted in the previous sec-
tion stem from the fact that conventional aspect

weavers operate upon an abstract representation
of the base code. They parse the base code, con-
struct its abstract syntax tree, and apply the mod-
ifications defined by the aspect program upon this
abstract form of the base code. A code-generating
back-end then constructs the modified code. The
base code is entirely re-generated. This model
allows aspect weavers to carry out sophisticated
modifications of the base code but it also destroys
some secondary but valuable information about
the base code, most notably its comments.

XWEAVER takes a different approach in that it
operates upon a model of the code that preserves
all the information in the base code, including for-
matting, layout and comments. Following recent
work by several authors (Badros, 2000; Mamas
and Kontogiannis, 2000), an XML-based model
of the code is used. In particular, among the sev-
eral offerings currently available, the XWEAVER
project selected sccML (Collard et al., 2002). The
main attraction of srcML is that it preserves all
the information in the base code and it offers a
“round trip” facility that allows the source code
to be re-generated from its XML model in its
exact original form. A drawback of srcML is that
its model of the base code is more coarse-grained
than would be the case if full parsing were car-
ried out. Dedicated XML elements are only used
for high-level structures (e.g. classes, methods, if-
then-else clauses) and this poses a fundamental
limit to the kind of transformations that can be
performed by XWEAVER. However, srcML may
be upgraded in the future to produce a finer-
grained representation of the base code. In order
to be ready to take advantage of these upgrades,
XWEAVER was designed to be extensible.

The use of an XML representation of the code
suggests the use of XSL (Extensible Stylesheet
Language) as an implementation language of the
weaver, but this imposes the aspect program to
be written in XML. For this reason, an XML-
based language, called AspectX, was defined to
express the aspects to be woven. The choice of
an XML-based representation of the base code
as the starting point for the weaving process has
the further advantage of partially decoupling the
aspect weaver and the aspect language from the
language of the base code. XWEAVER is targeted
at C/C++ applications but it only operates upon
the srcML representation of C/C++. It is con-
ceivable that srcML may be extended to rep-
resent other object-oriented languages (notably
Java). The upgrade of XWEAVER and AspectX
to handle this case would probably be significantly
simpler than if the weaver and its language were
directly operating upon the base code. Complete
decoupling from the base language may not be a
realistic option but the presence of an XML layer

between the base code and the weaving process
helps insulate the latter from the former.

.Cpp - CpPpP
.h Base Code Modified Code .h

srcML
Transformation

Inverse srcML
Transformation

XML Model
xml XML Model of Modified | .xml
of Base Code Code
AspectX
-2ml | program

Fig. 3. Mode of operation of XWEAVER

As illustrated in Figure 3, the weaving process has
two inputs: the base code and the AspectX pro-
gram that specifies the target transformation. The
weaving of the transformation is performed by
the XWEAVER program that acts upon an XML-
based model of the base code that is constructed
by the srcML application. The XWEAVER pro-
duces an XML-based model of the modified code.
The modified code is finally derived by applying
to this model the inverse srcML transformation.

Since XWEAVER operates upon an XML-based
model of the base code, one could argue that there
is no need for a dedicated aspect language since an
aspect transformation can be directly expressed
as an XSL transformation. This position is correct
but impractical. Writing an aspect transformation
directly in XSL would be a difficult and rather te-
dious task requiring a detailed knowledge of XSL.
AspectX is intended to provide a higher-level way
of describing an aspect transformation to be easily
accessible by non-specialist users. Indeed, one can
recognize two primary components in X WEAVER.
The first one is essentially a compiler that trans-
lates the AspectX program into an equivalent XSL
program. This compiler is implemented as a set of
rules that defines transformations to be performed
in the srcML model of the base code. The sec-
ond component of XWEAVER provides an engine
that can implement the transformation defined
by these rules. The advantage of using AspectX
rather than directly XSL is the same advantage
that one has from using a high-level language
instead of assembler. Moreover, syntax and se-
mantics of AspectX is based on state-of-the-art
aspect language AspectJ (Gradecki and Lesiecki,
2003), which further ease mastering AspectX.

4. USAGE EXPERIENCE

XWEAVER is a research prototype tool avail-
able (XWeaver Project Web Site, 2004) under the
terms of the GPL license. At current time, it has
a somewhat limited scope in that it is restricted
to the object-oriented part of C++ and, among
the C++ constructs, it only covers those used by
the Embedded C++ (or simply EC++) subset
of the language. EC++ is a language of choice
for many critical control applications, especially
in the space and avionic industry. The weaver is
already capable of dealing with concrete problems
such as the insertion of:

e Pre- and post-conditions code in selected
methods of the base code,

e Synchronization code to ensure access in mu-
tual exclusion to selected methods,

e Code to transform a passive object into an
active object with its thread of execution,

The above and other types of aspect transforma-
tions were demonstrated on a library of sample
aspect programs that is delivered together with
the XWEAVER tool to provide guidelines to users
on how to implement aspect programs in AspectX.
The aspect programs in this library operate upon
two distinct code bases. The first one is the OBS
Framework (OBS Framework Web Site, 2004),
which is a repository of reusable components for
embedded control systems. This code base is in-
tended to be representative of typical embedded
control application code. The second code base
is a simple but complete application (the “car
application”), which can be compiled, linked and
run both before and after an aspect weaving so as
to check the effect of the transformation.

XWEAVER has proved to be a very satisfactory
tool. The range of transformations it can handle at
present is limited when compared to other aspect
weavers (AspectJ, AspectC++) but, within these
limits, it gives full control to the programmer over
the transformation process.

5. CONCLUSIONS AND FUTURE WORK

This paper starts from one premise and makes two
claims. The premise is that reduction of software-
related costs in embedded control systems can
only be achieved by increasing software reusabil-
ity and that this only can be done by making
software artefacts more adaptable. Based on this
premise, the first claim made by this paper is that
aspect oriented techniques are essential to increase
the adaptability of embedded control software
because they are the only means to control the
implementation of various non-functional aspects.
The second claim is that existing aspect weavers

are not well suited to embedded applications be-
cause they operate on an abstract representation
of the base code and therefore do not offer suffi-
cient control over the transformation process. If
one accepts these two claims, then the XWEAVER
tool will be seen as an important means to control
software development costs.

Even if first evaluation results allowed us to draw
promising conclusions, the prototype tool has still
to be improved. Two areas are considered. The
first one concerns the possible difficulty to handle
the AspectX language. Although sample programs
delivered with the tool greatly simplify the task
of writing AspectX programs, it remains true
that writing such programs can be error-prone for
beginners. In order to address this shortcoming,
XWEAVER will be upgraded to perform more er-
ror checking and to have improved error-reporting
facilities to help users rapidly debug their aspect
programs. Additionally, a graphical user inter-
face is being developed to replace the current
command line interface. The second area of im-
provement concerns the range of aspect transfor-
mations implemented. In particular, XWEAVER
is currently biased towards C++ rather than C.
Given the prevalence of C in control systems,
this imbalance needs to be corrected with more
emphasis on C-specific transformations.

REFERENCES

Badros, J. (2000). JavaML: A Markup Language
for Java Source Code. In: Proc. 9th Int. World
Wide Web Conference.

Collard, M., J. Maletic and A. Marcus (2002).
Supporting Document and Data Views of
Source Code. In: Proc. 2nd Symposium on
Document Engineering.

Czarnecki, K. and U. Eisenecker (2000). Genera-
tive Programming — Methods, Tools, and Ap-
plications. Addison-Wesley.

Gradecki, J.D. and N. Lesiecki (2003). Master-
ing AspectJ: Aspect-Oriented Programming in
Java. Wiley Publishing.

Mamas, E. and K. Kontogiannis (2000). Towards
Portable Source Code Representations Using
XML. In: Proc. Working Conference on Re-
verse Engineering.

OBS Framework Web Site (2004). http://
pnp-software.com/0ObsFramework/.

Pasetti, A. (2002). Software Frameworks and Em-
bedded Control Systems. LNCS. Springer.
Spinczyk, O., A. Gal and W. Schréder-Preikschat
(2002). AspectC++: An Aspect-Oriented Ex-
tension to C++. In: Proc. 40th Int. Confer-
ence on Technology of Object-Oriented Lan-

guages and Systems.

XWeaver Project Web Site (2004). http://www.

pnp-software.com/XWeaver/.

