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Abstract: The design of complex systems, consisting of several subsystems and with 
performance specifications from multiple disciplines, in parallel was addressed in a 
previous publication using a Robust Parallel Design (RPD) approach. In this paper, RPD 
is extended and a Probabilistic Robust Parallel Design (PRPD) approach is proposed to 
handle cases where the statistical properties of uncertainties are known. Monte Carlo 
simulation is used to determine the value of a subsystem objective, given the known 
statistical distributions of uncertainties. Random search techniques (e.g., Simulated 
Annealing) can then be used to minimize the subsystem objective. PRPD is illustrated 
using a passive suspension design example of a half-car model.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
A complex system is often decomposed into smaller 
subsystems that can be designed in parallel. This 
requires that performance specifications, usually 
known at the system-level, be cascaded down to 
subsystem design targets. The process of target 
cascading should be performed in an “efficient” and 
“consistent” manner to avoid iterations at later stages 
of the design process and to ensure that once 
subsystem targets are met, the desired system-level 
specifications are achieved (Kim, 2001). Once the 
values of subsystem targets are determined, design 
teams work in parallel to achieve these targets. 
  
Subsystem optimal design problems are solved in the 
presence of uncertainties. The Robust Parallel 
Design (RPD) approach introduced in a previous 
publication, (Mahmoud et al., 2004b), deals with the 
worst-case values of the uncertainties present in a 
subsystem optimal design problem, i.e., the 
subsystem objective function is minimized assuming 
worst-case uncertainties. This results in a mini-max 
optimization problem that is computationally 
intractable. 
 
In this paper, a new Probabilistic Robust Parallel 
Design (PRPD) approach is proposed to handle 
situations where the probability density functions 
(PDFs) of uncertainties are known. Rather than 
minimizing the value of a subsystem’s objective 
function assuming worst-case uncertainties, a 

subsystem’s objective function is minimized 
considering the PDFs of the present uncertainties. 
 

2. LITERATURE REVIEW 
 
The mathematical statement of an Optimal Design 
Problem (ODP) is (Krishnamachari and 
Papalambros, 1997): 
 
Minimize (f x, p, w )  
   x X∈      (1) 
subject to (g x, p )  ≤  0 
where 
x  vector of design variables 
p  vector of design parameters 
X   set constraint  

(g x, p )  inequality constraints 
w vector of weights for different 

performance measures 
 
This optimal design problem is NP-hard, i.e., 
solution times grow exponentially with the number 
of variables. Thus, it is desirable to decompose this 
problem into a set of smaller sub-problems where 
each sub-problem can be handled more efficiently. 
Other benefits of system decomposition include 
reducing a product’s design-cycle time, by solving 
the subsystem design problems in parallel, and 
allowing companies to outsource some of their 
design tasks to their suppliers (Kim, 2001).  
 



 

     

In the context of designing subsystems in parallel 
and having a subsystem design team account for the 
uncertainties in the values of the design variables of 
other subsystems, Chen and Lewis (1999) distinguish 
between two types of robust designs. A Type I robust 
design refers to the robustness of one subsystem to 
changes in the design variables of other subsystems, 
whereas a type II robust design refers to specifying 
values of design variables that can be allowed to vary 
within a range. Conceptual robustness and game 
theory are two approaches used to design subsystems 
that are robust with respect to the values of the 
design variables in other subsystems. 
 
Conceptual robustness is based on the use of 
Taguchi’s parameter design principles for 
minimizing the effects of noise factors on an 
engineering system (Chang and Ward, 1995; Chang 
et al., 1994). Design variables of other subsystems 
are treated as “conceptual” noise factors. Taguchi’s 
parameter design approach can then be used to 
design subsystems that are robust with respect to 
both physical noise factors and to the “conceptual” 
noise factors, i.e., the design variables of other 
subsystem. In their formulation, Chang and Ward 
(1995), assume that the design teams can 
communicate at certain intervals. A cost of delay is 
calculated to determine whether a design team 
should decide on the values of its design variables 
immediately or wait for more information from other 
design teams. 
 
Although conceptual robustness is a promising 
approach for the parallel design of subsystems, there 
are several issues that need to be addressed. First, 
conceptual robustness assumes “reasonable 
independence” of the design variables (Chang and 
Ward, 1995). This allows a design team to optimize 
the subsystem objective with respect to each design 
variable independently, thereby greatly simplifying 
the optimization problem. However, the authors do 
not provide a measure of “reasonable independence” 
or how to formulate a problem so that the variables 
are independent. In the present work, the assumption 
of independence between the design variables within 
a subsystem is not required. Independence between 
the design variables of the different subsystems is 
achieved by solving a target cascading problem and 
specifying ranges for the values of the different 
design variables. 
 
Chen and Lewis, (1999), used a game theoretic 
approach to solve multi-disciplinary optimization 
problems and design robust subsystems. A 
Stackelberg leader/follower protocol was used to 
achieve type II robustness and allow variables that 
are coupled between multiple players (disciplines) to 
vary within certain ranges. A multi-objective 
optimization problem was constructed to account for 
the needs of optimizing performance, minimizing 
performance deviations and maximizing flexibility at 
different priority levels. This approach is claimed to 
minimize the effects of decisions made by one 
discipline upon other disciplines, thereby saving 

iteration time. It also allows for better ability to make 
decisions concurrently. In general, game theoretic 
approaches are mathematically intractable and thus 
not suitable for large scale problems. 
 

3. PROBABILISTIC ROBUST PARALLEL 
DESIGN (PRPD) APPROACH 

 
In this paper a new Probabilistic Robust Parallel 
Design (PRPD) approach is proposed that enables 
subsystems to be designed in parallel while 
accounting for the uncertainties present in the 
subsystem design problems. First, the system is 
decomposed into several subsystems. Decomposing a 
system into subsystems reveals interconnections 
between the subsystems where the outputs of one 
subsystem are used as inputs to other subsystems. 
This is illustrated in Figure 1 for a system that is 
decomposed into three subsystems. 

In Figure 1, Z is a vector of shared design variables, 
xi is a vector of local design variables for subsystem i 
and together they comprise the vector x of (1), p is a 
vector of design parameters and yij is a vector of 
outputs to subsystem i from subsystem j. System-
level specifications may include outputs from several 
subsystems, i.e., (f x, p, w )  in (1) includes outputs 
from several subsystems. 
 
Target cascading is used to specify nominal values 
for subsystem design targets and shared design 
variables, Z, using surrogate models. The use of 
higher fidelity models in the subsystem design stage 
may result in the values of some of the design 
variables and parameters deviating from their 
nominal values. The deviation of design variables 
and parameters around their nominal values can be 
described using statistical properties, e.g., Probability 
Density Function (PDF). Since the subsystems are 
designed in parallel, the design team working on a 
particular subsystem design problem treats the design 
variables in other subsystems as uncertainties. 
 
The objective of a subsystem optimization problem, 
assuming probabilistic uncertainties, is to minimize 
the kth percentile value of the subsystem objective 
function. This problem can be stated as: 
 

kxi

ϕmin  

subject to (g x, p )  ≤  0 
( )δ−1  x0 ≤  xi ( )δ+≤ 1  x0 

where 

Subsystem 1 

Subsystem 2 Subsystem 3 

y1,2 

y2,1 y3,1 
y1,3 

x1 

x3 

Z 

x2 

Z 

y2,3 

y3,2 

p

Z

Fig. 1. Multi-Disciplinary Design Problem 



 

     

kφ  is such that k  % of (f x, p, w kφ≤)  
x vector of design variables with 

perturbations, δ , about their nominal 
values x0 

xi vector of design variables for subsystem i 
p design parameters having uncertainties ∆  

with known probability density functions 
 
Monte Carlo simulation is used to evaluate a 
subsystem’s objective function given the distribution 
of uncertainties. In Monte Carlo simulation, the 
random variables are sampled. The function of 
interest is then evaluated for the different sampled 
values. An estimate of the value of the function of 
interest is obtained by averaging the values 
corresponding to different samples. For further 
details on Monte Carlo simulation, the reader is 
referred to Kalos (1986). 
 
A random search algorithm is used to minimize a 
subsystem’s objective function with respect to design 
variables. Monte Carlo simulation is used to evaluate 
the subsystem objective function using the known 
PDFs of uncertainties. The random search algorithm 
used in the present work is Simulated Annealing. 
However, the proposed PRPD is not limited to the 
use of Simulated Annealing and other random search 
algorithms, e.g., Genetic Algorithm and Reactive 
Taboo Search, can be used.  
 
In Simulated Annealing, a cooling law, resembling 
Boltzmann’s law for energy states for atoms, is used 
to assign probabilities of accepting moves that result 
in an increase in the value of the objective function. 
The probability of accepting moves that increase the 
value of the objective function decreases uniformly 
over the course of the minimization process. The 
proposed Probabilistic Robust Parallel Design 
Approach will now be described and illustrated using 
a simple example consisting of a half-car suspension 
model. 
 
In this paper, the system-level and subsystem 
objectives are assumed to be aligned, i.e., improving 
on subsystem objectives improves the system level 
objective. Having subsystem objectives aligned with 
system-level objectives can be done by weighting 
each subsystem objective with the derivative of the 
system-level objective with respect to the respective 
subsystem objective. Mahmoud et al. (2004b) 
propose an algorithm to efficiently calculate the 
sensitivity of a Noise-Vibration-Harshness (NVH) 
system-level objective with respect to subsystem 
objectives for linear systems. In the present work, the 
subsystem objective is assumed to be the same as the 
system-level objective, i.e., the sensitivity of the 
system-level objective with respect to subsystem 
objectives is unity. 
 
The design teams working on the different 
subsystems are minimizing the (same) objective and 
hence are likely to select values for their local design 
variables that are minimizers of this objective. The 
Probability Density Function of design variables of 

other subsystems should reflect this, i.e., there should 
be a higher probability of values that improve on the 
objective function. The Probability Density 
Functions of design parameters can follow any form. 
 
Each subsystem optimization problem minimizes the 
system-level objective at a certain percentile with 
respect to local design variables, a subset of the set of 
design variables. Thus the system-level performance 
is expected to be better than the best performance 
achieved in any of the subsystem design problems, 
i.e., kφ  for the overall system is expected to be less 
than, or equal to, the minimum kφ  achieved in any 
subsystem design. 
 

4. CASE STUDY: VEHICLE SUSPENSION 
DESIGN 

 
The design of active, passive and semi-active vehicle 
suspension systems using various vehicle models, 
corner-car, half-car and full-car, has been reported in 
the literature, e.g., Hrovat (1997), Sharp and Crolla 
(1987) and Ulsoy et al. (1994). Performance 
measures for a vehicle suspension include passenger 
comfort, suspension stroke (“rattlespace”) and road 
handling. These are quantified by the acceleration of 
the sprung mass, the relative displacement of the 
sprung and unsprung masses, and the dynamic forces 
at the tires, respectively. In this paper, a passive 
suspension is decomposed into two subsystem design 
problems that can be solved in parallel using PRPD. 
 
4.1 Road Excitation Model 
A vehicle’s suspension is subjected to various 
sources of excitations (e.g., road roughness, tire-
wheel assembly imperfections and 
engine/transmission excitation). In the present work, 
road excitation is considered to be the only source of 
disturbance. The Power Spectral Density (PSD) of 
road roughness is obtained by applying a first-order 
filter to unit variance white noise. The first-order 
filter used is given by Zuo and Nayfeh (2003b):  

( )
( )0

2
1

2
2

)(
zVs

VA
sG r

π
π

+
=    (2) 

where 
rA  is the road roughness coefficient. A value of 

71016 −×  m2cycle/m is used corresponding 
to a class B road. 

V  is the longitudinal vehicle velocity, 30 mph 

0z  spatial cutoff frequency of 0.005 cycle/m to 
avoid infinite PSD at low frequencies. 

 
4.2 Half-car Model 

The four-degree-of-freedom (4 DOF) half car 
model shown in Figure 2 is used in this study. The 
equations of motion for the half-car model are 
provided in Mahmoud et al. (2004a). Nominal values 
of the different design variables and system 
parameters are given in Table 1, obtained from 
Mahmoud et al., (2004a). 



 

     

 
TABLE 1: NOMINAL VALUES AND UNCERTAINTIES FOR DESIGN 

VARIABLES AND DESIGN PARAMETERS 
 

Description Symbol Value 
Sprung mass ms 688 kg +/- 10 % 
Sprung moment of 
inertia 

I 1172 kg.m2 
+/- 10 % 

Unsprung masses 
(front/rear) 

muf/mur 40/40 kg 
+/- 10 % 

Tire Stiffness 
(front/rear) 

kuf/kur 182/182 kN/m  
+/- 10 % 

Suspension stiffness 
(front/rear) 

ksf/ksr 20985/19122 N/m 
 +/- 20 % 

Suspension damping 
(front/rear) 

csf/csr 1306/1470 N.s/m 
+/- 44 % 

Distance between c.g 
and front/rear tires 

lf/lr 1.125/1.511 m 

 
4.3 Passenger Comfort 
Passenger comfort is proportional to the amount of 
acceleration experienced by the vehicle passengers. 
International Standard ISO 2631-1 provides 
frequency weights that can be used to modify 
measured accelerations to account for human 
sensitivities to acceleration forces of various 
frequencies. The following second order filter is used 
to approximate ISO 2631-1 frequency weighting 
curves (Zuo and Nayfeh, 2003a). 
 

120050
50050)( 2 ++

+=
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The performance index (f x, p, w )  consists of a 
weighted sum of the root-mean-square values of 
signals of interest. These include; the frequency-
weighted acceleration of the sprung mass, the 
velocity of the sprung mass, the rotational velocity of 
the sprung mass, the suspension stroke and the tire 
dynamic forces, i.e.,   
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The values of the weights used, obtained from are 
Weight r1 r2 r3 r4 r5 
Value 1 8.3 120 120 8.3e-3 
 
4.4 Application of PRPD Approach 
The half-car suspension model is decomposed into 
two subsystems to be designed in parallel; front and 
rear suspension. Subsystem A consists of the front 
suspension stiffness and damping and subsystem B 
consists of the rear suspension stiffness and damping. 
Uncertain parameters in a subsystem design problem 
consist of the design parameters, whereas design 
variables of other subsystems are treated as 
constants. The subsystem design problems consist of 
minimizing the subsystems’ objective functions with 
respect to local subsystem design variables. The 
optimization problem for subsystem A is given 
below, a similar optimization problem was obtained 
for subsystem B. 
 
Subsystem A 

A
A

kx
φmin  

subject to  Equations of motion 
( )δ−1  xA0 ≤  xA ( )δ+≤ 1  xA0 

where 

Akφ  is such that Ak  % of (f xA, p, w
Akφ≤)  

xA design variables for subsystem A with 
nominal values xA0 

p uncertain parameters for subsystem A 
including design parameters and subsystem 
B design variables 

 
In the present paper, the PDFs of the design variables 
of other subsystems are excluded from the uncertain 
parameters in a subsystem optimization problem. As 
mentioned earlier, the subsystem objective functions 
are the same but minimized with respect to different 
local design variables. This means that, in a 
subsystem optimization problem, the values of other 
subsystems’ design variables have higher likelihoods 
of being minimizers of the subsystem objective 
function. Rather than using a PDF to reflect this, 
other subsystem design variables are treated as 
constants. This can be modified if suitable PDFs for 
other subsystems’ design variables are available. The 
uncertain parameters are assumed to follow a normal 
distribution with means, µ , equal to the nominal 

values in Table 1 and variances, 2σ , such that 
σµ 3±  is equal to the limits in Table 1. 

 
Simulated annealing was used to solve the subsystem 
optimization problems. Monte Carlo Simulation was 
used to calculate the value of the subsystem objective 
function for different values of design variables. An 
outer loop was used to update the temperature used 
to assign probabilities of accepting moves that result 
in an increase in the value of the objective function. 
The cooling law used was of the form: 
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Fig. 2. Half-car suspension model 



 

     

At each temperature, a number of metropolis 
simulations were performed. In each metropolis 
simulation, the design variables were randomly 
sampled. Based on the value of the objective 
function corresponding to the sampled design 
variables and the temperature of the simulation, a 
decision was made whether to move to the new point 
or not. If the sampled design variables resulted in a 
lower value for the objective function, a move to the 
new point was accepted. If the sampled design 
variables resulted in an increase in the value of the 
objective function, a move to new point was 
accepted if the following condition was true: 
 

( )







 −
−≤ −

t
xfxf

r ii 1)(
exp  

 
where 
r  random number between 0 and 1 
t  temperature 

( )ixf  value of objective function evaluated using 
Monte Carlo simulation 

 
The following parameters were for Simulated 
Annealing: 
Parameter Value 
Number of outer loop iterations 20 
Number of metropolis simulations 200 
α  0.95 
Number of Monte Carlo simulations 100 
 
Although only a 100 Monte Carlo simulation were 
used to evaluate the 95th percentile of a subsystem 
objective function when solving the subsystem 
optimization problems, the number of Monte Carlo 
simulations used to evaluate subsystem performance 
was increased to 2500.  
 
Using the Probabilistic Robust Parallel Design 
approach, the following values for the design 
variables of subsystems A and B are obtained for the 
case when the uncertainty in the values of design 
parameters = 25 %. 
 

5. RESULTS 
 
The passive suspension design problem is solved by 
determining values for the design variables of 
subsystems A and B, respectively. 
 
Subsystem A 
For subsystem A the design variables are the front 
suspension stiffness and damping. Solving the 
optimization problem for subsystem A results in the 
following values for the front suspension stiffness 
and damping. 
 
ksf = 22,903 N/m, csf = 1,881 N.s/m  
 
These new values of the design variables for 
subsystem A result in a 12 % decrease in the 95th 
percentile value of objective function for subsystem 

A, from 1,564 ±  2 to 1,373 ±  2, with a 95 % 
confidence level. 
 
Subsystem B 
For subsystem B the design variables are the rear 
suspension stiffness and damping. Solving the 
optimization problem for subsystem B results in the 
following values for the rear suspension stiffness and 
damping. 
 
ksr = 19,360 N/m, csr = 2,046 N.s/m 
 
The new values of the design variables for subsystem 
B result in a 10 % reduction in the 95th percentile 
value of the objective function for subsystem B, from 
1,564 ±  2 to 1,408 ±  2 at the 95 % confidence 
level. 
 
The solution obtained by the PRPD approach is 
compared to the solutions of an All-At-Once (AAO) 
optimization and Parallel Design (PD), designing 
subsystems in parallel without accounting for 
uncertainties, in Table 2. The expected value of the 
performance index and its 95th percentile value are 
evaluated for the overall system, i.e., the solutions 
from both subsystem design problems are combined 
to obtain x for the overall system for the cases of 
PRPD and PD.  
 

TABLE 2: COMPARISON OF PRPD TO AAO OPTIMIZATION AND 
PARALLEL DESIGN WHEN UNCERTAINTY = 25 % 

 
 Nominal AAO PRPD PD 

ksf (N/m) 20,985 16,788 22,903 16,788 
csf (N.s/m) 1,306 1,881 1,881 1,881 
ksr (N/m) 19,122 18,394 19,360 19,228 
csr (N.s/m) 1,470 2,117 2,117 2,117 
E[P.I]  
(% change) 
Std Error 

1,331 
2.85 

1,183  
(-11.1) 
2.29 

1,188  
(-10.7) 
2.22 

1,188 
(-10.7) 
2.35 

95 % P.I  
(% change) 1,564 1,374 

(-12.2) 
1,377 
(12.0) 

1,387 
(-11.3) 

 
The half-car suspension model was solved again 
using PRPD assuming the magnitude of uncertainties 
is 50 %. The results are reported in Table 3. 
 

TABLE 3: COMPARISON OF PRPD TO AAO OPTIMIZATION AND 
PARALLEL DESIGN WHEN UNCERTAINTY = 50 % 

 
 Nom. AAO PRPD PD 

ksf (N/m) 20,985 16,788 21,426 16,788 
csf (N.s/m) 1,306 1,881 1,881 1,881 
ksr (N/m) 19,122 17,394 24,445 19,228 
csr (N.s/m) 1,470 2,117 2,094 2,117 
E[P.I]  
(% change) 
Std error 

1,353 
5.76 

1,195  
(-11.68) 
4.69 

1,221  
(-9.76) 
4.53 

1,204  
(-11.07) 
4.67 

95 % P.I  
(% change) 1,859 1,612  

(-13.3) 
1,609  
(-13.4) 

1,611  
(-13.36) 

 



 

     

The main motivation for the present work was to be 
able to decompose a system into subsystems, design 
the subsystems independently and guarantee 
achieving satisfactory system-level performance 
upon assembly of the subsystem. In such a situation, 
the use of AAO optimization may not be possible. 
The results reported in Tables 2 and 3 do not show a 
significant difference between PRPD and PD. This is 
caused by the large standard error of the Monte Carlo 
simulation used within the optimization loop to 
evaluate the 95th percentile of the value of a 
subsystem objective function. Increasing the number 
of Monte Carlo simulation, and of Simulated 
Annealing iterations, is expected to yield more 
significant difference between the results obtained 
using PRPD and PD. 
 

6. CONCLUSIONS 
 
The proposed PRPD approach allows a system 
design task to be decomposed into several subsystem 
design tasks that can be performed in parallel. A 
half-car example was used to illustrate the proposed 
approach. PRPD has the following three advantages 
over the RPD approach proposed by Mahmoud et al., 
(2004a): 
 
1. PRPD does not suffer from the curse of 

dimensionality to which RPD is suspect. Using 
the PRPD approach, subsystem optimization 
problems can be solved in polynomial time. This 
makes PRPD suitable for large scale problems.  

2. PRPD approach is less conservative than the 
RPD approach. This can be seen by comparing 
the 95th percentile value of the system-level 
objective function to the worst-case value 
obtained using RPD. As the magnitude of 
uncertainty increases, the conservatism of the 
RPD approach becomes larger. 

3. The use of random search and Monte Carlo 
simulation in PRPD makes it amenable to 
parallel computing, another feature that makes 
PRPD design suitable for large scale problems. 
Implementing PRPD design in a parallel 
computing environment can be done easily by 
using several computers to evaluate the Monte 
Carlo simulations for different values of design 
variables and/or parameters. 

 
7. FUTURE WORK 

 
The solution obtained using PRPD may deviate from 
the true solution due to the uncertainty in the results 
of Monte Carlo simulation. Monte Carlo simulation 
may return a value for a subsystem’s objective 
function at the lower end of the confidence interval 
for a set of values of design variables and a value at 
the upper end of the confidence interval for a 
different set of values of design variables, possibly 
closer to the true solution. In this case, the solution 
returned by the random search algorithm will include 
the first set of values of design variables. Future 
work is needed to quantify the deviation of the 

solution obtained using the PRPD approach from the 
true solution. 
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