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6 Av. du Ponceau, 95014 Cergy-Pontoise Cedex,

FRANCE. {djemai,barbot}@ensea.fr
∗∗ CReSTIC, University of Reims, Moulin de la Housse BP

1039, 51687 REIMS cedex 2 - FRANCE,
noureddine.manamanni@univ-reims.fr

Abstract: In this paper a methodology to design an observer for a class of hybrid
nonlinear systems with no continuous state reset is proposed. By using hybrid
systems techniques for modelling and synthesis, we propose a solution to the
challenging observer problem related to such system. Some simulations illustrate
the proposed approach.Copyright c©2005 IFAC.
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1. INTRODUCTION

Physical system behavior follows the general prin-
ciples of conservation of energy and continuity of
power. They may exhibit nonlinearities that result
from small parasitic effects or occur on a time
scale much smaller than the time scale of interest.
At a macroscopic level, the detailed continuous
behavior may appear to be discontinuous. In fact,
switching or impacting behaviors are met in many
systems in engineering and applied science. Such
systems describe special dynamical processes of
mixed continuous and discrete natures and in-
herently combine logical and continuous process,
usually coupled with finite automata and differ-
ential equations. Hence, those systems which are
capable of exhibiting simultaneously several kinds
of dynamic behavior in different parts of the sys-
tem (e.g. continuous time dynamics, discrete-time
dynamics, jump phenomena, logic commands, ...)
are of great interest. In the literature such systems
are called Hybrid Systems (HS).

Recently, there has been an increased interest
in the study of HS. By this way considerable
research effort has been devoted to fundamental
topics such as modelling and simulation of HS.
Among the main issues in hybrid systems (as it
is the case of linear and nonlinear continuous and
discrete time case) are the synthesis of control,
observer, supervisory control schemes, and the
formal verification for safety analysis, which aims
at certifying that the hybrid system behaves as
desired. Recently, some works devoted to algebraic
properties of observability and controllability of
HS have been developed.

In (Balluchi et al., 1999) was highlighted the
complexity of observability properties for hybrid
systems through examples on MLD (Mixed Logic
Dynamical) systems and PWA (Piecewise affine).
Sontag in (Sontag, 1979) introduces a set of ob-
servability related definitions and examines the
implications among the various concept of ob-
servability. In (Balluchi et al., 2003), the authors
focused on the property of the generic final state



determinability of HS to construct an asymptotic
state observer. They showed that this property
can be verified even if each of the continuous
subsystems of the HS is not observable. In (Vidal
et al., 2003), the authors defined the so called
extended joint observability matrix to analyze the
observability of jump linear systems.

Some sufficient geometrical conditions to analyze
the observability of hybrid dynamical systems are
given in (Boutat et al., 2004). These conditions are
refined for the particular class of the piecewise lin-
ear and nonlinear systems. In the same way other
works have treated on the design of hybrid ob-
servers. In (De la Sen and Ningsu Luo, 2000) a de-
sign of linear observers for a class of linear hybrid
systems is addressed. Two observers prototypes
based on the prediction error are proposed. The
first is based on the observation of an extended
discrete-time system. The second one estimates
the continuous-time sub-state for all time from
initial conditions. A methodology for the design
of a hybrid observer for generic hybrid plant with
no continuous sate resets is proposed in (Balluchi
et al., 2001). The structure of the proposed hybrid
observer is composed of a location observer and a
continuous observer and applied for a non linear
model of a driveline with discontinuous elastic-
ity. Despite an abundant literature on the design
of linear observers for hybrid systems, only few
works concern the design of nonlinear hybrid ob-
server for hybrid systems (see for example (Lin et
al., 2002)).

The main purpose of this paper lies in nonlin-
ear observer design for HS without jump. We
discuss the problem of designing a sliding mode
observer for a class of nonlinear hybrid systems.
In (Drakunov and Utkin, 1995) a new concept of
sliding observers is introduced. The key point is
that the equivalent control concept is extensively
used. Moreover, in (Boukhobza et al., 1996; Bar-
bot et al., 1996), we use a “classical” sliding mode
observer in order to design an observer for the a
largest class with the so-called output injection
form (Krener and Isidori, 1983). Here, our pur-
pose is to discuss the observer design by using
a triangular input observer form introduced in
(Boukhobza et al., 1996; Barbot et al., 1996) and
(Drakunov and Utkin, 1995). The idea consists in
using the step by step observer such as described
here after : The (n − 1) first step consists in
reconstructing the state vector while the step n is
used to to define in which state Pi for i = 1, ..., k
the system is found. A complete scheme of the
observer is given in figure 1.

Since the considered system is a particular class
of HS, where the interactions of time-continuous
models are governed by differential equations and
inter-connected by switching functions, then, to

characterize the system’s observability, we will use
the observability conditions developed by (Boutat
et al., 2004) for a such class of piecewise dynamical
systems.

Hence the paper is organized as follow: after a re-
call on the observability study for hybrid systems,
we present the non linear hybrid sliding mode ob-
server design. Two illustrative examples will show
the performances of the developed algorithm.
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Fig. 1 : Hybrid observer structure

2. RECALLS ON OBSERVABILITY STUDY

In the following section, let us recall the main
result of one of the authors in (Boutat et al.,
2004), on the observability of the class of hybrid
system considered in this paper. The proof of the
theorem will be found in the cited reference. Let us
consider the dynamical systems formed with two
dynamics inter-connected by a switch function :

{ .
x = f1(x) and y = h1(x) if σ(x) ≤ 0
.
x = f2(x) and y = h2(x) if σ(x) > 0 (1)

where fi(x) are smooth vector fields, hi(x) are
smooth outputs and σ(x) is a smooth switching
function.

Assumption 1. : We assume throughout this pa-
per that

a) All the evolution duration of each subsystem
of (1) are measurable.

b) Each subsystem is observable. That is, for
i = 1 : 2 the codistribution:{

dhi, dLfihi, ...., dL
(n−1)
fi

hi

}

is of rank n

The a) of assumption 1 means that systems with
Zeno phenomenon are not considered. Also, the
knew of duration of evolution τi of each system
allows us to exclude the instability due to τi.

Under conditions of assumption 1, if we know
which of the subsystem evolves, we can conclude
on the observability of the global system (1).



Using Fliess’s observability canonical form, each
subsystem of (1) can be written as:

{
.
z
1
i = z1

i+1 for i = 1 : n− 1
.
z
1
n = g1(z1

1 , z1
2 , ..., z1

n)
(2)

if σ1 := σ(z1
1 , z1

2 , ..., z1
n) ≤ 0, and

{
.
z
2
i = z2

i+1 for i = 1 : n− 1
.
z
2
n = g2(z2

1 , z2
2 , ..., z2

n)
(3)

if σ2 := σ(z2
1 , z2

2 , ..., z2
n) > 0.

Where (zj , j = 1 : 2) are the observability
coordinates given by:

zj
i+1 = L

(i)
fj

hj for 0 ≤ i ≤ n− 1

where L
(i)
fj

hj is the ith Lie derivative of σj in the
direction of fj .
One approach to analyze the observability of (1),
presented in (Boutat et al., 2004), is based on the
comparison of g1 and g2 on the one hand and
σ1 and σ2 on the other hand. For this, we need
to evaluate such functions in terms of the same
variables. These variables are given naturally by
the output y and its successive time derivatives
y(i) = diy

dti for i = 1 : n− 1.
Let us consider the two submanifolds:

M= {v ∈ IR n / g1(v) = g2(v)}
S = {v ∈ IR n / σ1(v) = σ2(v)}

and finally, the submanifold of common singular-
ities of subsystems of system (1):

L = {x ∈ IR n / f1(x) = f2(x) = 0}
The main result that we recall here is given in this
theorem.

Theorem 1.

i) If M is a discrete set then system (1) is
observable for any switch σ for which we have
σ(L) ≤ 0 or else σ(L) > 0.

ii) If dynamics (2) and (3) are transverse to M
except on a discrete subset then the system
is observable for any switch σ for which we
have σ(L) ≤ 0 or else σ(L) > 0.

iii) If S = IR n then system (1) is observable.

The reader can see (Boutat et al., 2004) for proof
and more details. He can find also some algebraic
sufficient conditions to analyze the observability
of piecewise linear systems.

3. HYBRID OBSERVER

Let us consider the canonical observer form of the
following nonlinear autonomous system





ẋ1 = x2

ẋ2 = x3

...
ẋn−1 = xn

ẋn = fi(x) i ∈ {1, .., p}
if σi(x) is verified.

(4)

where y = x1, and (4) is assumed to be bounded
state in finite time.

Remark 1. The assumption of bounded state
must concern the full system. Indeed, we can
find subsystems perfectly stable, while the global
system can be unstable.

Example 1. Consider the two stable subsystems

Σ1 :
{

ẋ1 = −x2

ẋ2 = x1
and Σ2 :

{
ẋ1 = −x2

ẋ2 = 4x1

The hybrid system will be defined as

Σ =
{

Σ1 if x1x2 > 0
Σ2 if x1x2 ≤ 0

It is easy to verify that each subsystem Σ1 and Σ2

is stable and bounded state.(see figure 2) while
the system Σ is unstable (see figure 3). This
unstability is due to the switching function.
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Fig. 2 : x1, x2 of Σ1 and x1, x2 of Σ2
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Fig. 3 : x1 and x2 and the switching indicator S

From the work (Drakunov and Utkin, 1995) and
(Boukhobza et al., 1996; Barbot et al., 1996),



we propose the following type of sliding mode
observer





˙̂x1 = x̂2 + λ1sign(x1 − x̂1)
˙̂x2 = x̂3 + E1λ2sign1(x̃2 − x̂2)
...
˙̂xn−1 = x̂n + En−2λn−1signn−2(x̃n−1 − x̂n−1)
˙̂xn = fi(x1, x̃2..., x̃n)

+En−1λnsignn−1(x̃n − x̂n)
i ∈ {1, .., p} if σi(x) is verified.

(5)
where x̃i = x̂i + Eiλi−1sign(xi−1 − x̂i−1) for
i = 2, ..., n − 1, and the sign(x) function denotes
the usual sign function. We note that we use a low
pass filter of the x variable (Drakunov and Utkin,
1995) and an anti-peaking structure (Boukhobza
et al., 1996; Barbot et al., 1996; Khalil, 1996).
This anti-peaking structure issues from the idea
that we do not inject the observation error in-
formation before reaching the sliding manifold
linked with this information. Moreover, we reach
the manifold one by one. Doing this we obtain a
subdynamic of dimension one and consequently,
we do not have peaking phenomena (Sussmann
and Kokotovic, 1991). More precisely Ei = 0 is
equal to zero if there exists j ∈ {1, i − 1} such
that x̃j − x̂j 6= 0 (by definition x̃1 = x1), else
Ei = 1.

Theorem 2. Considering the system (4) sup-
posed to be bounded state in finite time, and the
observer (5). For any initial conditions x(0), x̂(0),
there exists a choice of λi such that the observer
state x̂ converges in finite time to x, and σ(x̃)
converge to σ(x).

Proof: See (Boukhobza et al., 1996) for more
details and proof. 4

4. SIMULATIONS AND COMMENTS

Example 2. Let us consider the triangular input
observer system





ẋ1 = x2

ẋ2 = x3

ẋ3 = Fi(x)
(6)

for i = 1, 2, 3 with y = x1.
The dynamic Fi is defined as follows

Fi =
{

F1 if x2 < 0
F2 if x2 ≥ 0

with F1 = − cos(30x2)+0.4 and F2 = −40 cos(300x3+
π/2)− 0.5. The associated observer (5) takes the
form

˙̂x1 = x̂2 + λ1sign(x1 − x̂1)
˙̂x2 = x̂3 + E1λ2sign(x̃2 − x̂2) (7)
˙̂x3 = Fi(x) + E2λ3sign(x̃3 − x̂3)

with x̃2 = x̂2 + E1λ1sign(x1 − x̂1) and x̃3 = x̂3 +
λ2sign(x̃2 − x̂2).
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Fig. 4 : The states x1, x2, x3, with xi and x̂i

The performance of the proposed hybrid observer
is shown in figure 4 by the dashed line with the
true states shown by the solid line.

In the case when a law pass filter is used for
x̃2 and x̃3 during the computation of switching
condition σ(x̃) (see figure 5), the results show a
delay occurring for the switching decision. In fact
this delay is between the switching indicators S
calculated on the basis of σ(x) and So calculated
on the basis of σ(x̃). Moreover, the same delay
also held between x2 and x̃2.
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Fig. 5 : Switching indicator S and So

Figure 6 represents the same simulation without
law pass filter. The delay is completely removed
but we have a chattering phenomena which gen-
erate some widely commutations (see figure 9 of
the next example).

Example 3. Let us consider the following system
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Fig. 6 : Switching indicator S and So and switching
function σ(x) without filter

ẋ =





A1x + B1 if x1 ≥ 1
A2x + B2 if |x1| < 1
A3x + B3 if x1 ≤ −1

y = Cx =
(
0 0 1

)
x

where Aα =




α 9 0
1 −1 1

0 −100
7

0


; Bβ =




β
0
0


, with

A1 = Aα=− 18
7

, A2 = Aα= 9
7
, and A3 = Aα=− 18

7
,

and B1 = Bβ= 27
7

, B2 = Bβ=0, and B3 = Bβ=− 27
7

,.
It is easy to verify that each subsystem is observ-
able.
Now to use the canonical form, let us consider the
following diffeomorphism:
The system has the general following form:

ẋ1 = a1x1 + a2x2 + a3

ẋ2 = x1 − x2 + x3

ẋ3 = c1x2

we consider the diffeomophism:




z1

z2

z3


 =




0 0 1
0 c1 0
c1 −c1 c1







x1

x2

x3







x1

x2

x3


 =




−1
1
c1

1
c1

0
1
c1

0

1 0 0







z1

z2

z3




which gives:

ż1 = z2

ż2 = z3

ż3 = α1z1 + α2z2 + α3z3 + β

with α1 = −a1c1, α2 = a1 + a2 + c1, α3 = a1 −
1 and β = a3c1, and the switching condition:
σ(z) = 1

c1
(z3 + z2)− z1.

For all values of α and β, the observer will have
the following form

dż1

dt
= z2 + λ1sign(z1 − ẑ1)

dż2

dt
= z3 + E1λ2sign(z̃2 − ẑ2)

dż3

dt
= α1z1 + α2z2 + α3z3 + β + E2λ3sign(z̃3 − ẑ3)

with z̃2 = x̂2 + E1λ1sign(z1 − ẑ1) and z̃3 = ẑ3 +
E2λ2sign(z̃2 − ẑ2)

ż1 = z2

ż2 = z3

ż3 =





P1(z) if σ(z) ≥ 1
P2(z) if |σ(z)| < 1
P3(z) if σ(z) ≤ −1

with: P1(z) = − 1800
49 z1 − 55

7 z2 − 25
7 z3 + 2700

49 ;
P2(z) = 100

49 z1− 36
7 z2− 6

7z3; and P3(z) = − 1800
49 z1−

55
7 z2 − 25

7 z3 + 2700
49 .

The chaotic behavior of the considered system is
represented by its phase portrait in figure 7 while
figure 8 highlights the efficiency of the proposed
observer and shows the finite time step by step
convergence.
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Fig. 7 : Phase portrait of double scroll hybrid system
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Figure 9 shows respectively S, So and a zoom of
a switching manifold σ(x̃) when it is close to the



switching value −1. This justifies the undesirable
switching appearing on So (at t close to 5 s).
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5. CONCLUSION

In this paper, a sliding mode observer for a class of
hybrid systems is proposed. The considered class
is bounded state in finite time without jumps
and does’t concern Zeno phenomena. A step by
step sliding mode observer was used for the main
both reasons: the final time convergence and the
ability to take into account naturally the vari-
able structure. Nevertheless, some difficulties as
chattering phenomena occur. It induces some ir-
relevant decision of switching between the subsys-
tems when the trajectory is in the neighborhood
of the switching manifold. Obviously, this prob-
lem can be overcome by using a law pass filter
during the computation of the equivalent vector;
unfortunately, this solution introduces a delay.
For future works, the authors intend to consider
non autonomous hybrid systems with and without
jumps.
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