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Abstract: Supply chains integrate production centers with raw materials and part suppliers
and with logistics service providers, in an integrated environment in which co-ordination
aspects as well as competitive issues may take place. In this paper, a hybrid model for the
representation of a generic production center of a supply chain is presented and discussed.
The model is characterized by inventory levels and by arrival and departure processes of
raw materials and final products. The capacity of the considered resource is an upper
bounded continuous variable. In the paper, the optimization of the dynamic behaviour of
the production center is dealt with.Copyright c© 2005 IFAC
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1. INTRODUCTION

In the last years, a growing interest of different groups
of researchers has been attracted by issues concerning
design, analysis, optimization, and management of
complex production networks, characterized by the
presence of a multiplicity of sites, where production
and manufacturing operations take place. Actually, a
new concept has emerged, that is, the supply chain
model. A supply chain model is mainly characterized
by the presence of several production centers (usually
distributed over the territory), which interact with raw
material and part suppliers and with logistics service
providers, in an integrated environment in which co-
ordination aspects as well as competitive issues may
take place. Production centers, raw material and part
suppliers, and service providers represent the “nodes”
of the supply chain network.

The literature concerning the modelling and the man-
agement of supply chains may be classified according
to the objectives of the research, and to the technique
used. A first set of contributions is related to the design
issues at the network level (Goetschalckxet al., 2002),
(Lakhal et al., 2001); in this connection, the main
problems addressed are those concerning the design of
the supply chain as regards the number of warehouses,
the sizing and the location of plants, the design of
the decision structure (e.g., centralized versus decen-

tralized), the design of the information flow structure,
etc. A second research stream is focused on modelling
and analysis aspects, through the use of agent-based
models (Garcia-Floreset al., 2000), (Wu, 2001); in
this case, attention is specially paid to the design of
possible coordination mechanisms among the various
agents, with the purpose of achieving a satisfactory
performance of the overall system. Perhaps the most
effective approaches to model and to optimize the
performances of supply chains are those based on the
formalization and the solution of mathematical pro-
gramming problems (Erengucet al., 1999), (Escudero
et al., 1999). However, the dimension of real systems,
and the need of considering optimization horizons of
significant length make the application of such ap-
proaches questionable for real applications. For what
strictly concerns the modelling of the single node of a
supply chain, it is worth observing that the complex-
ity of distributed production systems inevitably leads
to the choice of a simplified model. In this connec-
tion, hybrids models have been proven their ability in
modelling and controlling systems in a large variety
of application areas, including manufacturing systems
(various authors, 2000).

The single node considered in the paper coincides
with the generic production site distributed over the
territory. However, the proposed model may be also



applied to raw material and part suppliers and to lo-
gistics service providers, as they can be considered as
specific instances of a production center. Such a model
is mainly characterized by inventory levels (both those
relevant to raw materials and those relevant to final
products) which represent the system state variables;
such variables are assumed to be continuous. The
work-capacity of the production center is an upper
bounded continuous variable. This allows to dedicate
a fraction of such a capacity to the production of final
products.

A significant optimization problem is proposed in this
paper. The decision variables are mainly those relevant
to the quantities of raw materials provided at each
arrival, to the time instant at which raw materials enter
the system, to the fractions of resource capacity ded-
icated to each production activity, to the time instants
at which finite products exit the systems and to the
amount of finite products realized. The cost functions
to be minimized take into account the order costs, the
inventory costs, the quadratic tardiness, and the cost
due to the non-fulfilment of the external demand.

This paper is organized as follows. In section 2, the
hybrid model for single node representation in supply
chains is proposed. Three optimization problems are
defined and discussed in section 3, and in section
4 the solution of a simplified version of the second
optimization problem is provided. Some concluding
remarks (section 5) end the paper.

2. THE HYBRID SINGLE NODE MODEL

The single node of a supply chain consists of a pro-
duction center where parts arriving from either part
suppliers or upstream production centers are carried
out. One part entering the single node is processed
by a single operation in order to be transformed into
one product (that is, no assembly operation is present
in the considered model). In the following, for the
sake of clarity, only one class of parts/products will
be considered.
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Fig. 1. Schematization of the single node model.

The model of the single node is mainly characterized
by the presence of inventories for parts and products.
Parts arriving from part suppliers/upstream production
centers are inserted into the part inventories; then,
after the processing, the resulting products are inserted
into the product inventories. Such a model can be
schematized as in Fig. 1, wherez(t) represents the
flow of raw materials entering the single node,ξ(t)
represents the inventory level for raw materials,x(t)
represents the inventory level for final products, and
y(t) represents the flow of products exiting from the
single node.

Moreover, letK be the overall work-capacity of the
production center,k(t) be the portion ofK which
is assigned to the production of products, andq be
the number of finite products that the site can realize
(transforming raw materials) in a time unit.
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Fig. 2. The arrival process.

The flow z(t) of parts arriving from part suppli-
ers/upstream production centers is modelled as a finite
(and discrete in time) sequence of arrivals (Fig. 2).
An arrival has to be intended as the transportation
from the external to the production center of a finite
amount of parts. In the arrival processz(t), Γ is the
considered number of raw materials arrivals, within
the considered time horizon,δi, i = 1, . . . , Γ is the
time instant at which thei-th arrival takes place, and
Θi, i = 1, . . . , Γ is the amount of raw materials enter-
ing the node at time instantδi (that is, thei-th ordered
quantity).
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Fig. 3. The departure process of finite products.

In an analogous way, the flowy(t) of products deliv-
ered to the clients of the supply chain is represented as
a finite sequence of departures (Fig. 3). A departure
has to be intended as the transportation of a finite
amount of products from the production center to the
external. Such process is characterized by the follow-
ing variables:N is the considered number of finite
products requests, within the considered time horizon,
ti, i = 1, . . . , N is the time instant at which thei-th
departure of finite products occurs,Qi, i = 1, . . . , N
is the amount of finite products leaving the system at
time instantti.

Moreover, let the external demand be characterized
by due-date of thei-th departure of finite products,
namelyt?i , i = 1, . . . , N , and by the amount of finite
products required att?i , namelyQ?

i , i = 1, . . . , N .

Then, the system state variables areξ(t) and x(t),
whereas the decision variables are

• δi, i = 1, . . . , Γ, Θi, i = 1, . . . , Γ,
• k(t), 0 ≤ t ≤ T = max{δΓ, tN},
• ti, i = 1, . . . , N , Qi, i = 1, . . . , N .



Note thatT is the considered time horizon. On the
basis of the above introduced variables, it is possible
to define the state equations of the proposed supply
chain’s single node model. In particular, the state
equation of the raw materials inventory is

ξ(δi+1) = ξ(δi)− q

∫ δi+1

δi

k(t) dt + Θi+1 (1)

i = 0, . . . , Γ − 1, whereas the state equation of the
finite products inventory is

x(ti+1) = x(ti) + q

∫ ti+1

ti

k(t) dt−Qi+1 (2)

i = 0, . . . , N − 1, whereδ0 = 0, t0 = 0, andξ(0) and
x(0) are given initial inventory levels.

3. OPTIMIZATION PROBLEMS

The optimization of the dynamic behaviour of the
production site subject to the external demand still
need the definition of a suitable cost function. An
overall optimization problem can, thus, be defined
taking into account costs due to the acquisition of parts
from part suppliers/upstream production centers, costs
relevant to the inventory occupancy, and costs related
to the non-fulfillment of external demand requisites (in
terms of tardiness and difference between the actual
amount of delivered products and the required one).

The cost due to the acquisition of parts from part
suppliers/upstream production centers can be stated
as:

CA =
Γ∑

i=1

(cfµi + cvΘi) (3)

where cf and cv are the fixed and variable unitary
order cost, respectively; and variablesµi, i = 1 . . . , Γ
are binary variables taking on value 1 if some raw
materials are ordered inδi and 0 otherwise.

Note that the binary variableµi is necessary in order
to avoid paying unnecessarily fixed cost when the opti-
mal value of the decision variableΘi is 0, that is, when
no transportation of parts from part suppliers/upstream
production centers occurs.

The cost due to the inventory occupancy is:

CI = H

∫ δΓ

0

ξ(t) dt + P

∫ tN

0

x(t) dt (4)

whereH andHP are the unitary inventory costs for
raw materials and finite products, respectively.

Finally the cost term relevant to the deviations from
the due-dates and from the required finite products
quantities are:

CT = α

N∑

i=1

(ti − t?i )
2 + β

N∑

i=1

(Qi −Q?
i )

2 (5)

beingα andβ suitable weighting coefficients.

The overall optimization problem can then be stated
as follows.

Problem 1.Given the initial conditionsδ0 = 0, t0 =
0, ξ(0) ≥ 0, andx(0) ≥ 0, find

min
δi,Θi,µi, i=1,...,Γ
ti,Qi, i=1,...,N

k(t),0≤t≤T

C1 = CA + CI + CT

subject to (1), (2), and

0 ≤ k(t) ≤ K 0 ≤ t ≤ T (6)

δi+1 ≥ δi i = 1, . . . , Γ− 1 (7)

ti+1 ≥ ti i = 1, . . . , N − 1 (8)

Θi − Ωµi ≤ 0 i = 1, . . . , Γ (9)

µi − ΩΘi ≤ 0 i = 1, . . . , Γ (10)

µi = {0, 1} i = 1, . . . , Γ (11)

ξ(t) ≥ 0 0 < t ≤ δΓ (12)

x(t) ≥ 0 0 < t ≤ tN (13)

Qi ≥ 0 i = 1, . . . , N (14)

Θi ≥ 0 i = 1, . . . , Γ (15)

whereΩ is a positive number sufficiently high.

Problem 1 is a functional optimization problem with
nonlinear cost function and nonlinear constraints,
thus, it is a quite complex problem. The approach
here followed to face the above problem is that of
decomposing it into two sub-problems:
• the first sub-problem consists in minimizing the

inventory cost for final products and the devia-
tions from the external demand with respect to
the production capacity (i.e.,k(t), 0 ≤ t ≤ T )
and to the exit process (i.e., variablesti, i =
1, . . . , N and Qi, i = 1, . . . , N ), assuming to
haveunlimited available raw materials

• the second sub-problem is relevant to the min-
imization of the inventory cost for raw materi-
als and of order costs with respect to the ar-
rival process (i.e., variablesδi, i = 1, . . . , Γ and
Θi, i = 1, . . . , Γ), with thefixed production ca-
pacitysolution of the first sub–problem.

By defining

C2 = P

∫ tN

0

x(t)dt+

+ α

N∑

i=1

(ti − t?i )
2 + β

N∑

i=1

(Qi −Q?
i )

2 (16)

and

C3 =
Γ∑

i=1

(cfµi + cvΘi) + H

∫ δΓ

0

ξ(t)dt (17)

the first sub–problem can be stated as

Problem 2.Given the initial conditionst0 = 0 and
x(0) ≥ 0, find

min
ti,Qi, i=1,...,N

k(t),0≤t≤T

C2

subject to (2), (6), (8), (13), and (14).

The second sub–problem is
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Fig. 4. Behaviour of the state variablex(t) in the
simplified version of Problem 2.

Problem 3.Given the initial conditionsδ0 = 0 and
ξ(0) ≥ 0 find

min
δi,Θi,µi i=1,...,Γ

C3

subject to (1), (7), (9), (10), (11), (12) and (15).

4. A SIMPLIFIED VERSION OF PROBLEM 2

In this section, only the part relevant to the processing
of raw materials to produce finite products will be
considered. This means that the focus of this section
will be on Problem 2. In this context, theN requests
characterizing the external demand will be indicated
asorders, since there cannot be ambiguity with orders
of raw materials/parts not taken into account now.
Problem 2 still is a functional optimization problem
with nonlinear cost function and nonlinear constraints.
A simplified, but still realistic, version of such a prob-
lem is here considered in which the production capac-
ity is constant in the time intervals included between
two subsequent exit instants, that is, the production
capacity is a piecewise constant variable defined as

k(t) = ki, ti < t ≤ ti+1, i = 1, . . . , N

With this assumption the dynamic behaviour of vari-
ablex(t) can be represented as in Fig. 4

Moreover, it is imposed that the ordered quantities
are always satisfied, which meansQi = Q?

i , i =
1, . . . , N . The cost function can, then, be restated as

C4 = P

N∑

i=1

(
x(ti−1)τi +

qkiτ
2
i

2

)
+

+ α

N∑

i=1

(τi + ti−1 − t?i )
2 (18)

where τi = ti − ti−1, i = 1, . . . , N . Problem 2
becomes

Problem 4.Given the initial conditionst0 = 0 and
x(0) ≥ 0, find

min
ki,τi, i=1,...,N

C4

subject to

x(ti−1) + qkiτi −Qi ≥ 0

ki ≤ K ki ≥ 0 τi ≥ 0
for anyi = 1, . . . , N .

Problem 4 has the structure of amathematical pro-
gramming problemwith nonlinear objective and non-
linear constraints; thus, it may be solved by standard

mathematical programming techniques yielding the
optimal control law in an open-loop form for a specific
value of the initial conditions. In this work, Problem
4 is restated as a multistage optimal control and a
optimal feedbackcontrol law is sought by applying
dynamic programming techniques. The application of
Kuhn–Tucker conditions to the problem yields some
significant properties of the optimal solution of Prob-
lem 4. In the following, such properties will be stated
together with sketches of the necessary proofs.

First of all, consider the following condition (which
guarantees that the initial inventory level is all con-
sumed at least during the firstN − 1 stages):

x(0) ≤
N−1∑

i=1

Qi (19)

The following result holds.

Proposition 1. If (19) holds true, in the optimal solu-
tion of Problem 4the inventory level at the end of the
last stage is zero, that is,x(tN ) = 0. ¤
Sketch of the proof. The application of dynamic
programming allows to state the optimization problem
to be solved at stageN as:

Problem 5.Given the initial conditionstN−1 and
x(tN−1) ≥ 0, find

min
kN ,τN

P

(
x(tN−1)τN +

qkNτ2
N

2

)
+

+ α (τN + tN−1 − t?N )2

subject to

x(tN−1) + qkNτN −QN ≥ 0

kN ≤ K kN ≥ 0 τN ≥ 0

By defining

fN = P

(
x(tN−1)τN +

qkNτ2
N

2

)
+

+ α (τN + tN−1 − t?N )2

gN,1 = x(tN−1) + qkNτN −QN

gN,2 = K − kN

The following first-order Kuhn-Tucker conditions can
be defined for Problem 5

kN

[
∂fN

∂kN
− λN,1

∂gN,1

∂kN
− λN,2

∂gN,2

∂kN

]
= 0

τN

[
∂fN

∂τN
− λN,1

∂gN,1

∂τN
− λN,2

∂gN,2

∂τN

]
= 0

λN,1 [gN,1] = 0 λN,2 [gN,2] = 0
∂fN

∂kN
− λN,1

∂gN,1

∂kN
− λN,2

∂gN,2

∂kN
≥ 0

∂fN

∂τN
− λN,1

∂gN,1

∂τN
− λN,2

∂gN,2

∂τN
≥ 0

gN,1 ≥ 0 gN,2 ≥ 0



kN ≥ 0 τN ≥ 0

λN,1 ≥ 0 λN,2 ≥ 0

The decision variables included in the above condi-
tions are the problem control variableskN and τN ,
together with the two multipliersλN,1 andλN,2. Each
of these four variables can be either equal to 0 or
not, giving rise to 16 possible configurations of the
above set of equalities and inequalities. By analyzing
in details such 16 configurations, it turns out that 4
cases boil down to not feasible solutions, 10 cases are
feasible only ifx(tN−1) ≥ QN , condition that can
be easily seen as not included in the optimal solution
due to the cost structure and to condition (19), and,
finally two cases are actually to be taken into account.
These two cases are characterized by havingkN , τN ,
and, above all,λN,1 possibly greater than zero (of
course, the difference between the two cases stands
in λN,2 = 0 or λN,2 ≥ 0). The fact that in both cases
λN,1 ≥ 0 makes it necessary thatgN,1 = 0, thus,
implying that the inventory level at the end of theN–
th stage is zero. It is also to be noted that in the two
cited cases, Problem 5 can be expressed as anequiva-
lentquadratic programming problem, thus making the
Kuhn–Tucker conditions necessary and also sufficient
conditions for the definition of the optimal solution.¥
The following two assumptions (which actually do not
limit the generality of the proposed model) will be
made concerning the data of Problem 4:

x(0) < Q1 (20)

which means that the initial inventory level is all
“consumed” during the first order. If this condition is
not verified, in the optimal solution of Problem 4 no
production is realized (ki = 0) for a certain number
of orders starting from the first one and, then, the
beginning of the sequence of orders can be simply
shifted onward till meeting condition (20);

PqK < 4α (21)

which yields agood balancebetween the two terms of
cost functionC4 by avoiding a too strong influence of
the inventory cost with respect to the cost relevant to
deviations from the pre–defined due–dates.

Moreover, it can be observed that the optimal solution
of Problem 4 yields a decomposition of the sequence
of N orders into a finite number ofsub-sequences. Let
s, 1 ≤ s ≤ N , be the number of sub-sequences; then,
the indexes of orders identifying the beginning of a
sub-sequence are gathered in setDEC = {νj , j =
1, . . . , s}, (with ν1 = 1). In the optimal solution of
Problem 4, sub-sequences have the following peculiar
features:

• the inventory level at the end of each sub-
sequence is zero, that is,x(tj−1) = 0, ∀j ∈
DEC : j 6= 1;

• the inventory level at the beginning of each sub-
sequence, apart the first one, is zero;

4t3

t

t

x(t)

1 t2 t

Fig. 5. Behaviour of the state variablex(t) in the
optimal solution of Problem 4

• in sub-sequences composed ofn > 1 stages,
production in the lastn − 1 stages is conducted
at maximum production capacity.

The optimal behaviour of variablex(t) can, then, be
depicted as in Fig. 5.

The determination of sub-sequences greatly simplifies
the application of dynamic programming to the solu-
tion of Problem 4 since it actually drives the choice of
the problem to be solved at each stage (of course as
regards the cost-to-go to be inserted in the cost func-
tion). Actually, it has not been possible to find an a-
priori rule governing the definition of sub-sequences,
but they can be easily derived by applying a math-
ematical programming software. Then, the proposed
solution procedure is composed of two steps. The first
step consists in finding, by mathematical program-
ming, the setDEC. The second step of the procedure
is devoted to he determination of the optimal solu-
tion by applying dynamic programming to the mul-
tistage control problem. The results of the second step
are summarized in the following propositions (whose
proofs, which consists in applying dynamic program-
ming techniques and Kuhn–Tucker conditions for the
solution of the control problem at each stage, are not
reported here for the sake of brevity).

Proposition 2. In the generick-th sub-sequence com-
posed ofn > 1 orders, that is orders indexed by
i = νk, . . . , νk+1 − 1 (νk, νk+1 ∈ DEC), the optimal
solution is

τ◦i =
Qi − x(ti−1)

qK
k◦i = K

for i = νk+1 − 1 whenνk+1 − 1 = N ;

τ◦i = t?i − ti−1 − P

2α
Qi k◦i = K

for i = νk + 1, . . . , νk+1 − 2, and fori = νk+1 − 1
whenνk+1 − 1 6= N ; and the optimal solution for the
first of suchn orders, that is fori = νk, is

τ◦i = t?i − ti−1 − P

2α
Qi k◦i = K

if
Qi ≥ 2P

8α2 − 4αPqK − P 2q2K2

(
4αC+

− PqK(t?i − ti−1)
)

and

τ◦i =
2P

16α2 − 8αPqK − P 2q2K2

[(
Qi+

− 4α

P
(t?i − ti−1)

)
(Pqk − 2α)− 2αqKC

]



k◦i = K +
4α

qP

(
1− t?i − ti−1

τ◦i

)
+

2Qi

qτ◦i
otherwise, with

C = P

N−1∑

j=i+1

Qj − 2α

qK




N∑

j=i+1

Qj − qKt?N




¤

Proposition 3.Consider a sub-sequence composed of
only one order. Let it be thei-th in the order sequence,
with i 6= 1 andi 6= N . The optimal solution for such
an order is

τ◦i =
Qi

qK
k◦i = K

if

4α + PqK

4α− PqK
Qi − PqK

4α− PqK

N∑

j=i+1

Qj+

− 4αqK

4α− PqK
(t?i − ti−1) ≥ 0

and

τ◦i = t?i − ti−1 − P

4α
Qi +

P

4α




N∑

j=i+1

Qj




k◦i =
4α
q Qi

4α(t?i − ti−1)− PQi + P
4α

(∑N
j=i+1 Qj

)

otherwise. ¤

Proposition 4. If the first sub-sequence is composed
of only one order, the optimal solution for the first
order is

τ◦1 =
Q1 − x(0)

qK
k◦1 = K

if

4α + PqK

4α− PqK
Q1 − PqK

4α− PqK

N∑

j=2

Qj+

− 4αqK

4α− PqK
t?1 ≥ x(0)

and

τ◦1 = t?1 −
P

4α
Q1 +

P

4α




N∑

j=2

Qj − x(0)




k◦1 =
4α
q [Q1 − x(0)]

4αt?1 − PQ1 + P
4α

(∑N
j=2 Qj − x(0)

)

otherwise. ¤

Proposition 5. If the last sub-sequence is composed
of only one order, the optimal solution for the last
order is

τ◦N =
QN

qK
k◦N = K

if
4α + PqK

4α− PqK
QN − 4αqK

4α− PqK
(t?N − tN−1) ≥ 0

and

τ◦N = t?N − tN−1 − P

4α
QN

k◦N =
4α
q QN

4α(t?N − tN−1)− PQN

otherwise. ¤

5. CONCLUSIONS

This is a preliminary work funded by the Ministry of
Education, University and Research, and, at current
state, major attention has been directed to the defin-
ition of the model of the single node in a supply chain
network. The proposed model is a hybrid model as
includes continuous variables within a discrete-event
dynamics. In addition, optimization problems have
been considered by the authors and a first solution,
relevant to a simplified, but realistic, version of one of
the problems, has been provided. The current research
work is devoted to the development of coordination
strategies for decision makers behaving in a coop-
erative way within a supply chain, and the analysis
of supply chains in presence of competing decision
agents.
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