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Abstract: This paper presents a smooth sliding mode control plus backstepping method 
for the motion/force control of a constrained robotic manipulator with flexible joints. The 
control scheme is presented based on that overall system parameters are with 
uncertainties whereas only the constrained force, positions and velocities of links and 
rotors are measurable. The smooth sliding controller can achieve zero motion and force 
tracking errors. The simulation results for a planar robot illustrate the expected 
satisfactory performance. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

In many industrial tasks such as deburring, writing, 
grinding, painting, etc, it is necessary to drive the 
robot’s end-effector to move along the environmental 
constraint and track both the desired force and the 
desired motion. The initial study on this issue was 
conducted in (Hemami and Wyman, 1979), and then 
a number of approaches were proposed. These 
theoretical frameworks and stability analysis for 
constrained robots have stemmed from the reduced-
state position/force control described by 
(McClamroch and Wang, 1988). In (Su, et al., 1995; 
Kwan, 1996; Yu and Lloyd, 1997), adaptive control 
has been proposed to deal with parametric 
uncertainty in the form of a robust approach. 
However, in most schemes the concerned force 
tracking error is either arbitrarily small at best by 
using high gain of force feedback or steered to zero 
under the condition of persistent excitation (PE). In 
order to achieve zero motion/force errors, some 
methods shown in (Lian and Lin, 1998; Yuan, 1997; 
Yao, et al., 1994) use different error space 
decomposition techniques, i.e., the motion/force 

decomposition or the nonlinear curvilinear 
coordination transformation, etc. 

Most papers on the manipulator control neglect the 
actuator dynamics. Actually, robot manipulators are 
usually with flexible joints due to gear elasticity, 
shaft windup, etc. It was pointed out in (Spong  and 
Vidyasagar, 1989; Spong, 1989) that the joint 
flexibility must be considered in designing the 
control law if high performance is to be achieved. 
For a constrained flexible joint robot (FJR), the rigid 
manipulator subsystem is driven by the rotor 
subsystem. The dynamics form performs a strictly 
feedback structure. Based on this feature, the 
integrator backstepping control technique would be 
straight forward applied in the problem. However, 
the full-order model with parametric uncertainty 
results that the controller is difficult designed by only 
using reasonable measurements, e.g. constrained 
force, positions and velocities of the manipulator and 
rotor.  
2. KINEMATICS, DYNAMICS, AND RELATED 

PROPERTIES 
 

In the section, we first give the kinematic relation 
of constrained motion and the dynamics of 



constrained FJRs. Then, some properties are 
addressed. Here we assume that all end-effectors are 
rigidly attached to the environment. Hence the 
motion of a robot is governed by the constrained 
dynamics, i.e., a dynamic system subject to algebraic 
constraint equations. 

 
2.1 Kinematics and Dynamical Models 
 

Consider the system of an n-link rigid robot with 
environmental constraints. Let  be the vector 
of generalized coordinates and let 

nq R∈
( ) 0qσ = , where 

, denote the environmental constraints. 
In order to perform the subsequent derivation, the 
following assumptions concerning the constraint 
equations 

:  Rn Rσ m

( ) 0qσ =  are made: 

     

Assumption 1: The constraint are assumed in the 
absence of friction and other disturbance. 
Assumption 2: The environmental constraints can be 
described by a smooth and exactly known equation 

( ) 0qσ = . There exists an open set n mR −Θ ⊂   and a 
function ; , so that : mRΩ Θ 1 ( )q q= Ω 2

1 2 2 2( ,  ) ( ( ),  )q q q qσ σ= Ω . Moreover, the function 

2q∂
∂Ω  and ∂

∂

2

2
2

Ω
q

 are assumed bounded in the working 

space. 
    Since the dimension of the constraint is m, the 
robot losses m degrees of freedom and is left with (n-
m) degrees of freedom. One can always partition the 
generalized coordinates to  and 1

mq R∈ 2
n mq R −∈  

such that the Jacobian matrix of the constraint 
equations ( ) ( )A q q qσ= ∂ ∂  is denoted in the form: 

 [ ]
1 2

( ) ( )
1 2 2 2( ) ( ) ( )q q

q qA q A q A qσ σ∂ ∂
∂ ∂

⎡ ⎤= ≡⎣ ⎦ , 

where  has been substituted by the kinematics 
. From Assumption 2, that the 

environmental constraints

q1

1 ( )q q= Ω 2

( ) 0qσ =   are always 
satisfied, the manipulator dynamics is constrained by 
an invariant submanifold defined 
by {( , ) :  ( ) 0,  ( ) 0}q q q A q qσ = =

q A A−= −

. Then 

velocities 1
1 1 2 2q 2

2

( )
2

q
q q∂Ω

∂=  is well-defined 

according to that  is nonsingular, 
i.e.,

1  m mA R ×∈
( )A q  is full row rank, and the boundedness of 

∂Ω
∂q2

 in working space. Consequently, we have the 

following kinematics: 

 

( )2 2

2

2 2

( ),  ;

( )

n m

q q q

q
qq q

I −

= Ω

∂Ω⎡ ⎤
⎢ ⎥∂= ⎢ ⎥
⎢ ⎥⎣ ⎦

2Jq≡

=

 (1) 

Accordingly, one has . Since   

are independent variables, it follows that: 

2( ) ( ) 0A q q A q Jq= 2q

Fact 1: . 0T TAJ J A= =
    Consider the flexible joint constrained robot which 
has been modeling as 

( ) ( , ) ( ) ( ) T
mM q q C q q q G q K q q A λ+ + = − +  (2) 

 ( )m m m dJ q K q q τ τ+ − = +  (3) 
where ,  are generalized coordinates of 
the robot and the rotor subsystem, 
respectively;

nq R∈ n
mq R∈

( )M q  is an n n×  inertia matrix, which 
is symmetric and positive definite for all ; 

 is the Coriolis/centripetal force vector; 
 and 

nq R∈
( ,  )C q q q
( )G q ( )mK q q−  are  vectors containing 

gravity force and elastic force transmitted through 
joints, respectively; K is an n  diagonal matrix 
representing the joint stiffness; 

1n×

n×
 is actuator inertial 

matrix;  is the input force vector,nRτ ∈ dτ is the 
external disturbance of the server system; and 

 is a vector that represents the generalized 
force multipliers associated with the constraints, 
namely the constrained force. Then the term 

mRλ ∈

2( )Tf A q λ= ; nf R∈  denotes the contact force due 
to of the environmental constraints. It is reasonable 
that the constrained force is required to be always 
positive under proper control. 

mJ

 
2.2 Reduced Dynamics and Some Properties 
 

Since motion equations (2) is subjected to the 
kinematic constraints (1), the reduced dynamics for 
the rigid manipulator subsystem is derived to 
facilitate the control design. Let  be a 

partition of an identity matrix 
1 2  T TE E⎡ ⎤⎣ ⎦

nI  with 

[ ]1 0 m n
mE I R ×= ∈  and [ ] ( )

2 0 n m n
n mE I R − ×

−= ∈ . 
Define 

 

2
2

( )

0

m

n m

I q
qT
I

∂
∂

−

Ω⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦ . 

Then some facts about the transformation T and 

Jacobian matrix J are stated below: 
Fact 2: . 

2 2
T T TT E E=

Fact 3: 1 ( )0 TT T
n n mAT A × −= ⎡ ⎤⎣ ⎦ . 

Fact 4: Matrix J can be factorized as 2
TJ TE= . It is 

also noted that 2
T T

n mJ E I −= . 
Then (2) can be rewritten in the form: 
 2 2( ) T

mMJq MJ CJ q G Kq B A λ+ + + = − +  
where            B Kq≡ . 

    Applying the kinematics (1), the equations of 

motion (2) can be rewritten as  
2 2( )T T T T

m
TJ MJq J MJ CJ q J G J Kq J B+ + + = − (4) 

which, by multiplying  on the both sides, further 

results in  

TT

2 2 2 2 2 2( ) (T T T T
mE ME q CE q G E T Kq T B+ + = − ) , (5) 

where 

             ;  ( );  T T TM T MT C T MT CT G T G= = + = . 



According to Fact 1, 3 and 4, the reduced 
dynamics can be written in the following form after 
multiplying  on the both sides of (5): ET

2

 2 2
T

m
TM q Cq G J Kq J B+ + = −  (6) 

where  

     

2 2 2 2 2; ;
Now, to be beneficial for the stability analysis 
and control design, some useful properties are 
addressed below: 

.

3.1 Design a Virtual Control Input z  for the First 
Stage 

1

 
Consider the stiffness matrix K is uncertainty and 

is with the unknown parameters.  T T T T TM E ME J MJ C E CE J CJ G E G J G= = = = = =

Property 1: M  is a symmetric and positive definite 
matrix. Also, 1

2( )M q−  is uniformly bounded. 
Property 2: 2( )M q  and 1

2( )M q−  are uniformly 
bounded. Further, matrix 2( )M q  is bounded 
by m n m M n mM I M M I− −≤ ≤ , with . ,  0m MM M >

Property 3: 2 2( ,  )C q q and 2 2( ,  )M q q  are uniformly 
bounded functions if  and  are uniformly 
bounded. If ,  and  are uniformly bounded, 

2q 2q

2q 2q 2q

2 2 2( ,  ,  )C q q q is a uniformly bounded function. 
Property 4: For an appropriate choice of C, 

2M C− can be a skew-symmetric matrix. This 
means that ( 2 ) 0,  Tz M C z z R− = ∀ ∈ n . 
Property 5 (Linear Parameterization): It follows 
that

( ) ( )
( )2 2                         , , ,

T
r r r r r

T

Mq Cq G T M Tq Tq C Tq G

T Y q q ν ν φ

⎡ ⎤+ + = + + +⎣ ⎦
=

 

where  will be defined later,rq rTqν = ,the 
regression matrix  is a known function and 

 is unknown but constant. 

n rY R ×∈
rRφ ∈

The hyperbolic tangent function has the following 
property 
Property 6:  The hyperbolic tangent function 
defined as ( ) ( ) ( )tanh e e e eµ µ µ µµ −= − + −  satisfies 
the following properties: 
(a) , for , this further implies for 

any odd positive integer  with 

( )tanh 0aµ µ ≥ 0a >

b ( )tanh 0baµ µ ≥  

(b)  ( ) ( )| tanh | tanh | | 0µ µ= ≥

(c).if ( )tanh | |c dµ ≥ , for ,  ,then 0c > 0 d≤ < 1

1 1| | ln
2 1

d
c d

µ +⎛≥ ⎜ −⎝ ⎠
⎞
⎟  must be satisfied. 

Let  such that the complete system (2) (3) is 
expressed in the new coordinates as 

1 mz Kq=

 2 2 1
T TM q Cq G J z J B+ + = −  

 
1

1 1m dJ K z z B τ τ− + − = +  
 
3. SMOOTH SLIDING MODE CONTROL FOR A 

CONSTRAINED FJR 
 

For a constrained FJR, the rigid manipulator 
subsystem is driven by the actuator subsystem. 
Hence the dynamical equations (1) and (2) perform 
the strictly feedback structure. In this section, a two-
stage approach,or namely the integrator backstepping 
approach is applied to design the controller. 

 

, ,M C G

2

Let us define the following error signals: 
 2p de q q= − , and dλ λ λ= −  
Define a force filter as  
 e eλ λ λα λ+ = Λ  
where  and  is positive definite. 
Then the error measure is 

me Rλ ∈ m nRλ
×Λ ∈

  2 1

2 2

( )

  

T T
p p

p p

T
r

e
s E e e E e

e e

q E q

λ
λ

⎡ ⎤
= + Λ + = ⎢ ⎥+ Λ⎣ ⎦
= −

 

where . 2 2 1
2

 ( )T T
r d p

d p

e
q E q e E e

q e
λ

λ

⎡ ⎤
= + Λ + = ⎢ ⎥+ Λ⎣ ⎦

Therefore, if the error measure can be converge to 
zero, the error signal eλ , pe , and pe  will converge 
to zero and thus our objective is achieved. To this 
end, the error dynamics of the error measure is 
rewritten as  

2 2 1
T T T T

r
TMs Mq CE q G T z T B T A λ= + + − + −  

If let  as a virtual control input, and consider the 
feedback control 

1z

1 1dz z=  with  defined as 1dz

  1
1 ( )T T T

d r rz T Mq Cq G T B T A sT λ ψ− ⎡ ⎤= + + + − +⎣ ⎦  
Because the system has the parametric uncertainty, 
the equation can not be implemented. Hence the LP 
property is used for solve above problems. Therefore, 
if assume the uncertain parameters can be partition 
into 0φ φ φ= + ∆  which are known priori, then the 
virtual control input  can be rewritten as  z d1

 
1

1 0 1

1
0 1

( )

    ( )

T T T T T T
d

T T

z T T Y T Y T B T A s

Y Y B A T s

φ ϕ λ ψ

φ ϕ λ ψ

−

−

⎡ ⎤= + + − +⎣ ⎦
= + + − +

 (7) 

where the control parameter ψ  is positive defined 

and is the robust function 
designed as follows: 

[1 11 12 1, , , T
rϕ ϕ ϕ ϕ= ]

,

1 1
, 1

( + ) tanh ( )( ( ) )
n n

T
i i i j jk ki

j k
u vt s T Yϕ φ η

=

⎡ ⎤
= ∆ +⎢ ⎥

⎣ ⎦
∑

1, 2, ,i r=  with 1 , , 0i u vη >  and |i |iφ φ∆ ≥ ∆ , then 
the error dynamics can be rewritten as follow: 
 1

T TMs Cs s T Y T Yψ φ ϕ+ + = ∆ −  
Further, using the Lyapunov function 

 1
1
2

TV s M= s  

is positive. 

1

,

1 , 1

, ,

1
1 , 1 , 1

1
2

( ( ) )

( ( ) )( + ) tanh ( )( ( )

T T

n nr
T T

j jk ki i
i j k

n n n nr
T T

j jk ki i i j jk ki
i j k j k

V s Ms s Ms

s s s T Y

s T Y u vt s T Y

ψ φ

φ η

= =

= = =

= +

= − + ∆

⎡ ⎤
− ∆ +⎢ ⎥

⎣ ⎦

∑ ∑

∑ ∑ ∑ )

 



,

1
1 , 1

, ,

1
1 , 1 , 1

| ( ) || |

| ( ) |( + ) tanh ( ) | ( )

n nr
T T

j jk ki i
i j k

n n n nr
T T

j jk ki i i j jk ki
i j k j k

V s s s T Y

s T Y u vt s T Y

ψ φ

φ η

= =

= = =

≤ − + ∆

⎡ ⎤
− ∆ +⎢ ⎥

⎣ ⎦

∑ ∑

∑ ∑ ∑ |

 

Since  is positive definite and  if (8) sustains, 
it can be concluded that all error signals 

1V 1 0V <

, and , ,s e s eλ λ λ  are all uniformly bounded. 
,

, 1 1

| |
tanh ( ) | ( ) |

+

n n
T i

j jk ki
j k i i

u vt s T Y
φ

φ η=

⎡ ⎤ ∆
+ ≥⎢ ⎥

∆⎣ ⎦
∑   (8) 

 1
TV s sψ= −  (9) 

Applying Property 6.(c), the measure of the 
ultimated ball can be described by the radius about 
the origin as  

1

1

| |1| ( ) | ( ln
2( ) | |

n
T i i i

j jk ki i
jk i i i

s T Y b
u vt

φ η φ
φ η φ

⎛ ∆ + + ∆
≥ = ⎜

Or 

     

)
⎞

⎜+ ∆ + − ∆⎝
∑ ⎟⎟

⎠

Then the terms Y , where  and 2q s  replaced by 
 signals, yields 

                       / T
ss b T Y b≥ ≡  

Equation (9) can be rewritten in the following form 

                  
( )

( )

2
1 min

min
1

2
   

M

V s

V
M

λ ψ

λ ψ

≤ −

≤ −
       

where the Property 3 had been used and integrating 
both sides of the above inequality with respect to 
time. We obtain ( )( )min2 /

1 0
MM tV V e λ ψ−≤  and this means 

using the property again, the reaching transient 
response is shaped by  

 ( ) ( )
( )min

0 M
t

MM

m

M
s t s e

M

λ ψ⎛ ⎞
−⎜ ⎟⎜

⎝≤
⎟
⎠  (10) 

As a result, the motion tracking error exponentially 
decay if ss b≥ . Obviously, the ball sb  will 
converge to zero linearly in time. Therefore , the 
error signals s will asymptotically converge to zero. 
We now show that s  also converge to zero by using 
contradiction argument. Assume that ( )s t  is small 

enough and  at some . Since ( ) 0s t ≠ 0t >
1

1( T T )M T Y T Y sφ ϕ− ∆ − ≈  is continuous, without 
loss of generality we can 
say 1

1( )T TM T Y T Yφ ϕ− ∆ − ≥ δ  for some 0δ >  in the 
time interval ( ),t t T+ ∆ . By Integrating error 
equation, it follows that 

( ) 1
1(

t T T T

t
)s t T M T Y T Y dφ ϕ

+∆ −+ ∆ = ∆ −∫ t . Thus 

( )s t T Tδ+ ∆ ≥ ⋅∆ , which contradicts with the fact 
that s  converges to zero. Hence  as . 
This mean  as . Accordingly, the 

force error 

0s → t → ∞
0eλ → t → ∞

λ  will asymptotically converge to zero as 
.  t → ∞

Now, since  is not the input, consists an error term 
related to  and is shown below the 
practical error dynamics is  

1z

1 1z dz z= − 1

 1
T T

1
TMs Cs s T Y T Y T zψ φ ϕ+ + = ∆ − +  (11) 

If  can be driven to zero, the stability can be 
obtained. 

1z

 
3.2 Regulate  Converge to  for the Second 

Stage. 
1z 1dz

 
Step 2: We now have the error dynamics of  as 1z
 1 1dz z z1= −  (12) 
where  is with the uncertainty of the manipulator, 
so  is not realizable. To let the control input be 
realized by position, velocity and force 
measurements only, the following relations are 
introduced: 

1dz

1dz

1
1 1( )T T Ts M T Y T Y T z Cs sφ ϕ ψ−= ∆ − + − −  

 1
2 1 2( )T Tq M J z J B Cq G−= − − −  

2 2,q q

2 2 2 1 2 2 0 2 2 2( , , , , , ) ( , , , , ) ( , , , , , )r r r r r r rY q q q q q q Y q q q q Y q q q qφ φ λ= + ∆
Additionally, the time derivative of the virtual 
control input can be partitioned into the known part 

 and unknown part 0N N∆ , and is expressed as 
 1 0dz N N= + ∆  
where   

1
2 2 2 0 1

1 1
1 1

0 0

0

( , , , , , )( )

( ) ( )
( )

T
r r

T T T T

d
N Y q q q q Y A d

dt

d T M T Y T Y T z Cs s
d d

d d d

ϕ
φ λ φ ϕ λ

ψ φ ϕ ψ
∆

− −

⎡ ⎤∆ = ∆ + + −⎢ ⎥⎣ ⎦
= ∆ − + − −
=

∆ = −

+ ∆

Note that ( ) ( ) ( )0
∆ ⋅ = ⋅ − ⋅  denote the uncertain term 

can not be obtained. The term  is realizable on-
line, and 

0N
N∆  is an uncertain term with unknown 

parameters which is not satisfying the LP property. 
Hence the typical adaptive backstepping can not be 
applied in this problem. According to the stability 
analysis in Step 1, the state variables and the time 
derivative of the constrained force are all bounded 
once the can be steered to zero. This means that 
when a suitable control is applied, the uncertain term 

1z

N∆  has a upper bound as 

 ( )2 2 1| , , , , , , |      for i=1,2, , ni r r iN q q q q z Nφ λ∆ ∆ ≤ ∆
 

Next, let us consider the error dynamics (12) again, 
yields 
 1 1 1 0dz z z N N z1= − = + ∆ −  (13) 
Now, we assume  as the virtual control input in the 
form:  

1z

1 2 0 1 1 2 1( ) tanh[( ) ]dz z N z Ts N u vt zβ η= = + + + ∆ + +  (14) 
with 

1 2 21 2 1 2{ , , }; { , , }and , >0n nN diag N N diagη η η β η∆ = ∆ ∆ = i .  
Then (13) can be further rewritten as 

1 1 1 2 1( ) tanh[( ) ]z z Ts N N u vt zβ η+ = − + ∆ − ∆ + + (15) 
Consider 1

2 1 12
TV V z z= + 1  as a Lyapunov function 

candidate for the error system (15) with the virtual 
input (14). Let 1

TT Te s z⎡ ⎤= ⎣ ⎦ . We have the time 

derivative of  as 2V



 

2 1
1 , 1 11

, ,

1 1 2

    
In the same way, if both the inequality (8) and 
following inequality  

1

⎞
⎟⎟
⎠

where  
0 2 2 1 1 0 0 0 2 1 0 1 1 0 1( , , , , , , ) [ ] ( ) { ( )( )} ( )r rw q q q q z z N Ts Ts N Pvz u vt N z N zφ η= + + + ∆ + + + − + −β

1 1
2 2 1 1 0 0 0 0 2( , , , , , , , , ) [ ] ( )r r d m d m m m dwq q q q z z N Ts KJ J J J zφ λτ τ− −

∆∆ ∆ = + − + −
2 2

11 1{sec [( ) ], , sec [( ) ]}nP diag h u vt z h u vt z= + +  
1 , 1 , 1 1

( ( ) ) +

       ( ( ) )( + )tanh ( )( ( ) ) ( )tanh[( ) ]

T r n n
T T

j jk ki i i
i j k in

n n n nr n
T T

j jk ki i i j jk ki i i i i
i j k j k i

T
V e e s T Y z N

T I

s T Y u vt s T Y z N u vt z

ι

ψ
φ

β

φ η η

= = =

= = = =

⎡ ⎤
=− + ∆ ∆⎢ ⎥−⎣ ⎦

⎡ ⎤
− ∆ + − ∆ + +⎢ ⎥

⎣ ⎦

∑∑ ∑

∑∑ ∑ ∑

 [ ]1
2

| |
tanh ( ) | |

+
i

i
i i

N
u vt z

N η
∆

+ ≥
∆

 (16) 

are satisfied, it follows that  

   (17) 2
1

T
T

n

T
V e

T I
ψ

β
⎡ ⎤

= − ⎢ ⎥−⎣ ⎦

     

e

Since 0ψ >  and 1 0T
nI T Tβ ψ+ > , 2 0V ≤  is 

assured. Using the facts that  is upper bounded 
and , the Lyapunov function  is decreasing. 
this implies all error signals 

2V

2 0V ≤ 2V
s ,  are uniformly 

bounded. From the analysis of step 1, this means all 
error signals are uniformly bounded. Moreover, the 
error signal e  will asymptotically converge to an 
ultimated bound defined by (8) and (16) as follows: 

1z

( )1 1

2

2

| |1max , ,  with ( ln )
2( ) | |

i i i
s z z

i i i

N N
e b b b

u vt N N
η
η

⎛

Obviously, the ball ( )1
max ,s zb b  will converge to 

zero linearly in time. Therefore, the error signals 
 will asymptotically converge to zero as long as 

. The remaining of the proof is to show the 
control law is smooth as . From the facts 
that  satisfies the inequality as 

e
t → ∞

t → ∞
2V

∆ + + ∆
≥ = ⎜⎜+ ∆ + − ∆⎝

 
2 2

1 2 2

2
2 3

c e V c e

V c e

≤ ≤

≤ −
 

( ) ( )1 min 1 max 3 min
1

with ,1 , ,1  and 
T

m M
n

T
c M c M c

T I
ψ

λ λ λ
β

⎛ ⎞⎡ ⎤
= = = ⎜ ⎟⎢ ⎥⎜ ⎟−⎣ ⎦⎝ ⎠

,we can easily show that the error signal e  is 

shapped by ( ) ( )
3

222

1

0
c

t
cc

e t e e
c

−

≤  Hence, using 

the same technique of the proof in step 1, the robust 
function and its time derivative are bounded and 
smooth. 
Since  is not the true input, we look again at the 
error , where  defined in (14). The 
error dynamics of  is rewritten in  

1z

2 2dz z z= − 1 2dz

1z

1 1 1 2 1( ) tanh[( ) ] 2 +z z Ts N N u vt z zβ η+ = − + ∆ − ∆ + +  
In Step 3, the actual designing a control input will be 
determined to let  converge to zero. 2z
Step 3: Before applying the same design scheme as 
Step 2, let us reformulate  into a nominal part and 
a uncertain part to obtain actual control input only 
form position, velocity, and force. Assume 

2dz

mJ  is 
nominally known as 0mJ , and the unknown part 

mJ∆ . Thus the dynamics of  is 2z
1 1 1

2 2 1
1

0 0 1             ( )
m m d m

m

J K z J K z J K z

J K w w E N z B τ

− − −

−

= −

= + ∆ + ∆ + − −
 (18) 

2 1( )( ) nE u vt N P Iη β= + ∆ + +  
Note that  is a known part in the error system and 
the term 

0w

( ) 2
1u vt z+  is bounded has been shown in 

step2. Once the error  can be drived to zero, which 
is achieved in this step. Moreover, the uncertain term 

2z

w∆  is assumed with a upper bound | ( ) |i iw w∆ ⋅ ≤ ∆ . 
Let the control input as 1

1 2 2 1 0mz B z z J Kτ β υ−= − + + + , 
where υ  will be defined later. Thus we obtain the 
overall error system: 
 1  T T T

1Ms Cs s T Y T Y T zψ φ ϕ+ + = ∆ − +  (19) 

1 1 1 2 1( ) tanh[( ) ] 2+z z Ts N N u vt z zβ η+ = − + ∆ − ∆ + +

1

 (20)  
1 1

2 2 2 0 0( )m mJ K z z J K w w E N zβ υ− −+ = + ∆ + ∆ − −  (21) 
In (21), the new control υ  will be used to cancel 

w∆ , N∆ . Therefore let us consider the Lyapunov 
function 1

3 2 22
TV V z z= + 2 . From the analysis of ,  

applying the inequality (8) and (16), the time 
derivative of  
yields

2V

3V

1
3 1 2 0 0

2

0
( )

0

T

T T
n n m

n n

T
V e T I I e z J K w w E N

I I

ψ
β υ

β

−

⎡ ⎤
⎢ ⎥≤ − − + + ∆ + ∆ −⎢ ⎥
⎢ ⎥−⎣ ⎦

where   1 2

TT T Te s z z⎡ ⎤= ⎣ ⎦ . To obtain , we 

choose 

3 0V ≤

0 3 2( ) tanh[( ) ] (w w u vt z E )υ η δ= + ∆ + + + ⋅ , 
where  
 

1 3 31{ , , }; { , ,n nw diag w w diag 3 }η η η∆ = ∆ ∆ =  and 
 

1 4 2 4
1

[ , , ]; ( )tanh{( )[ ]}, 0 for 1, ,
n

n i i j ji i
j

N u vt z E iιδ δ δ δ η η
=

= = ∆ + + > =∑ n

In this setting, the derivative of  can be rewritten 
as follows: 

3V

( (

3 1

2

1
0 2 2 2 3 1

1

0

0

(| | | | tanh{( ) | |}( ) )

T

T
n n

n n

n

m i i i i i i
i

T
V e T I I e

I I

2J K z w z u vt z w P P

ψ
β

β

η−

=

⎡ ⎤
⎢ ⎥≤ − −⎢ ⎥
⎢ ⎥−⎣ ⎦

+ ∆ − + ∆ + +∑ −

 

 

1 2 2 2 2
1 1 1

where

| || |; | | tanh{( ) | |}(
n n n

j ji i j ji j ji i i
j j j

P z E N P z E u vt z E N 4 )η
= = =

= ∆ = + ∆ +∑ ∑ ∑
Once the following inequality is satisfied 

2

3
2

3

2

12

| |1| | max(( ln )
2( ) | |

| |1,( ln ))/ | |
2( ) | |

i i i
i z

i i i

n
i i i

ji
ii i i

w w
z b

u vt w w

N N
E

u vt N N

η
η

η
η =

⎛ ⎞∆ + + ∆
≥ ≡ ⎜ ⎟⎜ ⎟+ ∆ + − ∆⎝ ⎠

⎛ ⎞∆ + + ∆
⎜ ⎟⎜ ⎟+ ∆ + − ∆⎝ ⎠

∑

 

then we have  

 3 1

2

0

0

T

T
n n

n n

T
V e T I I

I I

ψ
β

β
e

⎡ ⎤
⎢ ⎥≤ − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

this means that all error signals are uniformly 
bounded, and the signal e  will exponentially 
converge to the ultimated ball as 



( 1 2
max , ,s z ze b b≥ )b .  Since the ball shrinks to the 

origin e  will converge to zero along the ball as 
. Applying this fact, we have  t → ∞

 
2 2

1 3 2

2
3 3

d e V d e

V d e

≤ ≤

≤ −

( ) (1 2

3 min 1

2

with d min ,1 , max ,1  

0
and 

0

m M

T

n n

n n

M d M

T
d T I I

I I

ψ
λ β

β

= =

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= −⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

)

 

Hence ( ) ( )
3

22
2 1/ 0

d
t

de t d d e e
−

≤ , this meaning 

that the control law is smooth and bounded as 
. Therefore the results of step1 is achieved 

such that the 
t → ∞

pe , pe  will converge to zero as . 
Moreover, the contact force asymptotically tracks to 

t → ∞

( )d tλ . 
4. SIMULATION RESULTS 

 
Here a two-link constrained robotic manipulator with 
revolute flexible joint, as shown in Fig.1. Take 

 and gravity , and 
the actuator inertial, stiffness matrices of the rotor 
subsystem are set as: 

1 2 1 2 1m m a a= = = = 29.8 m/sg =

 ,
0.5 0
0 0.5mJ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

20 0
0 20

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

The constraint which is indeed by restricting the 
robot end-effector to keep contact with the 
environment can be described in terms of the 
Cartesian coordinate as x=1. Through the forward 
kinematics, we can obtain the implication 

2 1 21  cos( ) cos( ) 1x q q q= ⇒ + + =  
The control design is performed in assumption that 

 are unknown. The initial states are chosen to 
be , 

1,  m m2

2 2(0) 0.5,  (0) 0q q= = 1 2=1.2, =1.2m m . Select 

, , 
20 0
0 20

ψ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1

30 0
0 35

β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

2

5 0
0 5

β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

, 

20,Λ = 0.001η = .  
The desired joint trajectory and force trajectory are 
chosen as 5 sin( ),d tλ π= + 1 1

2 4 24( sin(dq )tπ π= + .The 
desired trajectory   and the actual joint position  
of the simulation are shown in Fig. 2. The desired 
velocity  and the joint velocity  are shown in 
Fig. 3, while the desired force 

2dq 2q

2dq 2q

dλ  and 
the constraint force λ  are shown in Fig. 4. The tokes 
of robot are shown in Fig. 5. 
The expected performance can be verified from these 
numerical results.  

5. CONCLUSIONS 
 

     

An approach based on a smooth sliding-mode 
controller has been successfully developed for 
motion control and force control of constrained 
robots having parametric uncertainty. Some 
properties of the reduced dynamics of constrained 
robots have been presented and exploited to 
demonstrate the motion and tracking errors to zero. 

The numerical simulation of a two-link constrained 
manipulator driven through flexible shafts has been 
set up to demonstrate the performance of the 
proposed controllers. 
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Fig 1 A two-link planar constrained FJRs 
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