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Abstract:  An approach to the integrated water resources management based on Neuro-Dynamic 
Programming (NDP) with an improved technique for fastening its Artificial Neural Network (ANN) 
training phase will be presented.  When dealing with networks of water resources, Stochastic Dy-
namic Programming provides an effective solution methodology but suffers from the so-called 
“curse of dimensionality”, that rapidly leads to the problem intractability. NDP can sensibly mitigate 
this drawback by approximating the solution with ANNs. However in the real world applications 
NDP shows to be considerably slowed just by this ANN training phase. To overcome this limit a 
new training architecture (SIEVE: Selective Improvement by Evolutionary Variance Extinction) has 
been developed. In this paper this new approach is theoretically introduced and some preliminary 
results obtained on a real world case study are presented. Copyright © 2005 IFAC 
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1. INTRODUCTION 

The problem of designing optimal management (and 
planning) procedures for networks of water resources 
(reservoirs and distribution networks) has attracted ana-
lysts since the pioneering work of Rippl [1883], towards 
the end of the XIX century. Its main difficult is the pres-
ence together of nonlinear dynamics, high coupling 
among the states of these systems (and thus among the 
anthropical controls influencing them), risk and uncer-
tainty, and finally decision making with conflicting ob-
jectives.  It is easily arguable that the introduction of 
multiple managing objectives - they may be conflicting 
each other, expressing the intrinsically conflicting nature 
of most of the decisional problems - involves the need 
for exploring the solution sensitivity with respect to 
several aggregations of the objectives (searching the 
widest consensus). Technically such exploration implies 
an expensive repetition of an optimization algorithm that 
can only achieve a solution for a single (aggregated) 

objective. It follows that the efficiency of this algorithm 
constitutes the very core of the problem, as also demon-
strated by the wide number of pertaining publications 
available in the literature (see for instance Yakowitz 
[1982], Yeh [1985], Tejada-Guibert et al. [1993], La-
mond and Boukhtouta [1997], and Soncini-Sessa et 
al.[2001]). Thanks to its flexibility in handling non-
linearity and high coupling among states, Dynamic Pro-
gramming (DP) [Bellman and Dreyfus, 1959] has been 
frequently used in the area of water management. 
Nevertheless, its extraordinary flexibility implies a criti-
cal drawback: a dimensionality increase of the problem, 
i.e. an addition of reservoirs, generates an exponential 
increase in the time required to finding a solution. This 
problem, called by Bellman the “curse of dimensional-
ity”, highly limits the application of DP to real world 
water systems, consisting of more than two or three res-
ervoirs: given its structural nature, it poses serious ques-
tions on the opportunity of using DP in the IWRM.  



Many authors approached the problem by weakening at 
least one between the high state coupling and the high 
non-linearity, thus narrowing the application fields. 
Only a few tried to include both in the problem formula-
tion, thus preserving the generality of the solution.  An 
interesting attempt in this sense, first explored by Bell-
man itself [1963], is to reduce the freedom degrees of 
the DP solution, by resorting to a fixed class of func-
tional approximations. In 1996, Bertsekas and Tsitsiklis 
exposed a methodology, named Neuro-Dynamic Pro-
gramming (NDP), using Artificial Neural Networks 
(ANNs) as functional approximator of the DP solution. 
The ANN valuable global approximation properties 
allow the exploration of the search-space discretisation 
grid with a lower resolution, thus reducing the time re-
quired by the solution of one-step of the Bellman equa-
tion (see eq. 6), without degrading the accuracy. How-
ever this important time reduction is partially lost in the 
training of the ANN as the dimensionality of the prob-
lem increases. In order to overcome this problem we 
developed an ad hoc algorithm (SIEVE: Selective Im-
provement by Evolutionary Variance Extinction) to in-
crease the ANN training performances. 
 

2. THE PROBLEM 

Let us consider now a water system composed by a set 
of interconnected reservoirs and wide-area water distri-
bution systems. The problem solution is achieved when 
the control policy were obtained: it returns ut – the vec-
tor of the volumes to be released from each reservoir 
and the distribution decisions – once current storage 
values st are known, so closing the feedback loop (Maas 
[1962]) showed in Fig. 1.  In order to represent the prob-
lem of managing a regulated lake, typically a feedfor-
ward compensation has been added to the feedback con-
trol scheme: by adding it, the policy also depends upon 
the vector It, which represents the meteorological infor-
mation and the catchment state.  Both these systems are 
subjected to stochastic disturbances εt. 
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Fig. 1. Closed loop control scheme with feed-forward 
compensation. 

The control policy directly descends from the solution of 
the following optimal control problem. The mass con-
servation equation for a generic reservoir is: 

),,( 1111 ++++ −+= ttttttt ausrass  (1) 

where rt+1 is the actual release in [t, t+1), while a generic 
element of the distribution system is usually represented 
without state. The model of the whole dynamic system, 

composed of the meteorological system, the catchment 
and the reservoir, can thus be represented in the compact 
vectorial equation: 

1 1( , , )t t t t t+ +=x f x u ε  (2) 

where xt = [ st  It ] is the state vector. Because of climate 
periodicity, the function ft(⋅,⋅,⋅) has a periodicity T equal 
to one year. During the system evolution, the state tran-
sition from xt to xt+1 can produce an instantaneous cost: 

1

k j j
t tj

g w g
=

=∑  (3) 

where wj
 is the weight of the j-th objective. Also the step 

costs are periodic with period T. By considering differ-
ent wj sets it is possible to taking account of several ob-
jective aggregations, so exploring the actual effects of 
conflicts on to the derived policies. We define the policy 
p = {m0 , m1 , …} as an infinite sequence of periodic 
functions ( )t t t=u m x of period T. 
The optimal control problem is to find the policy that 
minimizes a function of the costs in the future, over an 
infinite horizon.  Using the expected value operator on 
the disturbances ε, given an initial state x0 and a dis-
count rate α for the future costs, the cost function of a 
given policy p is defined as: 
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The optimal control problem is therefore solved when 
we find the policy po minimizing  

0 0( ) min ( , )
p

J J p=x x  (4a) 

subject to: 

1 1( , , )t t t t t+ +=x f x u ε  (4b) 
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t tS∈x   ( )t t tU∈u x   t tD∈ε  (4d) 
( )t t t=u m x  (4e) 

where St , Ut , Dt are the discretised domains of the state, 
control and disturbance. 

 
3. SOLUTION BASED ON STOCHASTIC DYNAMIC 

PROGRAMMING 

The optimal control problem solution (4a-4e) by SDP is 
based on the evaluation of the optimal cost-to-go, which 
is defined as the cumulative expected cost resulting from 
optimal actions, i.e. the cost it would incur (from time 
t+1 onwards) if the system were initially in state xt+1 and 
the system’s future trajectory were obtained applying 
optimal control decisions in every state transition.  We 
name this cost 1 1( )o

t tH + +x .  If the optimal cost-to-go 
were known for every value of xt+1, the optimal decision 

( )o
t tm x  at time t would be easily found minimizing the 

expected value of the present cost and the discounted 
optimal cost-to-go from time t+1:  
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The optimal cost-to-go associated with the present state 
is therefore given by the recursive equation: 
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which is known as Bellman equation and its solution as 
Bellman function. Under the previous hypotheses, it can 
be shown that the Bellman function, periodic of period 
T, can be obtained using the Successive Approximations 
Algorithm (SAA) [Bertsekas, 1995]. It evolves back-
wards in time from T to 1, solving the equation (6) veri-
fying the constraints (4b-4e).  
To determine the right hand side of equation (6), the 
algorithm, for each value of xt, must explore all the pos-
sible values of ut and of εt.  Since this algorithm operates 
on a discrete search space, we have always implicitly 
assumed that the domains of u, x and ε were discrete.  
Actually, it is up to the system analyst to find a satisfac-
tory discretisation of the continuous domains of these 
variables.  The discretisation choice is essential since it 
reflects on the algorithm complexity, which is combina-
torial in the number of states, controls and in their dis-
cretisations. Assuming to have n states, each one discre-
tised into N classes, the computational cost of SDP is 
proportional to: 

nN T×  (7) 

where T is the number of time steps. In other words, if 
we increase the discretisation resolution, thus improving 
the adherence of our model to the real world, or if we 
consider more controls and states, to describe more 
complex water systems, it may happen that the time 
required computing a policy becomes excessively long.  
Many methods have been devised in order to overcome 
this limitation. Some modelers (Turgeon [1981], Saad et 
al. [1994], Archibald et al. [1997])  simplify the state 
coupling by smart aggregations of the reservoir topolo-
gies, and thus they can be applied only for particular 
ones.  Georgakakos and Marks [1987] and Georgakakos 
[1989], proposed an approach based on Pontriagyn’s 
Maximum principle which does not suffer from the di-
mensionality problem, but requires quadratic cost func-
tions: it is a serious limitation according to IWRM para-
digm. In the following, we introduce a new approach 
based on neuro-dynamic programming [Bertsekas and 
Tsitsiklis, 1996] which has the advantage of retaining 
the ability of SDP to deal with highly non-linear prob-
lems, while reducing the algorithm complexity thanks to 
the approximation of the Bellman functions via ANNs. 
 

4. SOLUTION BASED ON NEURO-DYNAMIC 
PROGRAMMING 

The functional fixed class approach proposes to over-
come the “curse of dimensionality” by using an ap-
proximation H  of the Bellman Function ( )oH⋅ ⋅  to rep-
resent the behaviour of the original function interpolat-
ing from a limited subset tS of points extracted from the 
discretisation grid St, so that t t tS S∈ ⊂x .  Since com-
puting a point of ( )oH⋅ ⋅  is computationally very expen-
sive, in terms of both CPU time and memory space, 

reducing the number of computed points will be ex-
tremely beneficial.  
Among various function approximation schemes we are 
mainly interested in multilayer feedforward networks, as 
they have been shown to be universal approximators 
(Hornik [1989], Kreinovich [1991]) and linear increas-
ing with increases the dimensionality.  We can approxi-
mate a highly nonlinear map H(x), such as the Bellman 
function, where x is a vector, with a feedforward net-
work ( , )H x ϑ , where ϑ  is the ANN parameters vector. 
The improvement is not so remarkable when we deal 
with CPU time, since ANNs must be trained.  
 
4.1 Training the Bellman Function Approximations 

In a feedforward ANN neurons are organized in layers: 
the input layer is directly connected with the inputs, the 
output layer takes the outputs of the hidden layer (one, 
or more) and produces the network output. The Bellman 
function approximators will always have n inputs, where 
n is the number of state variables, and a single output 
(the cost-to-go value). 
The training is performed by using classical first (Back 
Propagation) or second order (e.g. Levenberg-
Marquardt) descent methods. In the Back Propagation 
algorithm the main problem is the descent of the weight 
gradient and research has focused on the development of 
gradient descent algorithms, which would converge 
quickly.  Most of the time required training a network is 
spent in these computations, where the trade-off is be-
tween accuracy and computational complexity, since 
most accurate algorithms require the inversion of the 
Jacobian and the Hessian of the weight matrices of con-
siderable dimensions. 
 
4.2 The NDP Algorithm 

Once an approximation architecture ( , )H x ϑ of H(x) 
has been found, the sub-optimal policy ( )t tm x is given 
by [Bertsekas and Tsitsiklis, 1996]: 
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Comparing equation (8) with (5), it appears that 
t 1 1H ( )t+ +x  must be trained using o

t 1 1H ( )t+ +x  as target 
and the vector xt+1 as the pattern. The original Bellman 
function is not available, but we can exploit the recur-
sive nature of the Bellman equation to generate the 
Bellman functions needed to train their approximations 
thanks to the approximate DP formula: 

1
1 t 1 1 1

ˆ ( ) min E [ ( , , ) H ( , )]
t t

t t t t t t t tH g α
+

+ + + += +
u ε

x x u ε x ϑ  (9) 

The left-hand side of (9) is an approximate cost-to-go 
function, which can be used to train ( , )t t tH x ϑ , which, 
in turn, will be used in (9) to obtain 1 1

ˆ ( )t tH − −x .  It can 
be proven formally that if the approximator is “good 
enough”, then tH~ will be a close approximation of the 
optimal cost-to-go function o

tH . 



The algorithm is therefore a simple rewriting of the or-
iginal SAA: 
Initialisation (Step 0)  
a. The current algorithm iteration index j is set to 0.  

Initialise 0)(0
0 =⋅><H  for each state value.   

b. Train an ANN ),(~
TTT xH ϑ  using the discretisation 

grid of xt+1  as the pattern and the identically null func-
tion )(0

0 ⋅><H  as the target.  
Main loop (Step 1)  
c. Compute backwards in time, for t from T-1 down to 

0, T functions )(ˆ ⋅>< j
tH using equation (9).  

• At each step t, after knowing )(ˆ ⋅>< j
tH , compute 

its approximation ),(~
t

j
tH ϑ⋅><  training the ANN.  

• When t = 0, check whether an appropriate conver-
gence criterion, measuring the distance between two 
Bellman functions at successive iterations, has been 
satisfied. If not, increment the iteration index j and 
go back to the beginning of Step 1 after having set 

1
0 ( ) ( )j j

TH H< + > < >⋅ = ⋅ . 
End of the Main loop. 
 

5. PRELIMINARY RESULTS 
Currently, the algorithm we presented in this paper has 
been applied only to some test cases to verify its correct 
functioning. First positive results has been presented in 
De Rigo et al. [2001].  
New simplified control optimizations cases are accom-
plished using discretisation grid with very low resolu-
tion, in a IWRM multiobjective problem (in the Piave 
catchment, Italy) having three reservoirs. The outcomes 
show that SDP with discretisation classes equal to 10, 6 
and 7 points (420 points, 41.27 hours needed to com-
plete the computation) achieves performances almost 
identical to NDP with discretisation classes of 6, 3, 3 
points (54 points, 9.13 hours). SDP with the same dis-
cretisation classes (6, 3, 3 points) requires 5.32 hours of 
computation, but gives worse performances for each 
management objective: the worsening is from 5% to 
100%, depending to the objective. Thus NDP is almost 
450% faster than equivalent SDP, even for so low-
resolution discretisation grid. A coarse grid offers an 
under-estimation of the real NDP potentialities, because 
the Bellman function can be described (approximating it 
to any desired accuracy) with a finite-dimension vector 
of ANN parameters, and its dimension does not depend 
on discretisation grid density, provided that the set of 

ˆ ( )H⋅ ⋅  punctual evaluations on the grid will contain 
enough information in order to permit an unbiased inter-
polation. When this happens, the ANN interpolation 
becomes “good enough” so if we look for comparable 
SDP performances, we will have to sample H⋅ (⋅) with an 
hash table (with its keys being the discretisation grid) 
really huge. Looking at the NDP from this point of view, 
we can see that it is, after all, almost obviously joined 
with the sampling theory, and with the degree of infor-
mation redundancy.  Another question (and an interest-
ing further study) is how to obtain the highest level of 
information, using the lowest sampling cardinality of the 
discretised state space (e.g. using adaptive sampling).  

Notice that ANN training can require a relevant part of 
NDP computation time. The available Piave tests (SDP 
and NDP with 54 points) showed that the ANN training 
spends over 40% of the CPU time.  
 

6. AN IMPROVED NDP SOLUTION:  
ANN TRAINING USING SIEVE 

Using NDP instead of SDP, we can achieve a sensible 
reduction of computer time and memory requirements, 
so enabling IWRM model accuracy improvements by 
extending the system state in order to take advantage of 
some other significant information that we ignored be-
fore. This is an important goal, but we have to be care-
ful: ANN approximation depend on choosing right ANN 
parameters: the trade-off is between accuracy and com-
putational cost. The complexity of the ANN training 
involves the cost of a single gradient descent step (but 
its efficiency depends mainly on the Hessian approxima-
tion, stability and well conditioning, which generally 
increase their cost by improving the numerical proper-
ties of the curvature matrix), the number of steps needed 
for a required accuracy, the number of neurons and - if 
we use multiple hidden layers - their distribution in each 
layer. These factors are strongly related with the ques-
tion of avoiding local minima searching for the ANN 
parameter vector that satisfies the approximation accu-
racy request. 
For example, adopting a great number of neurons, it is 
most probable to find local minima corresponding to 
small ANN output error (with respect to the target train-
ing set), so the absolute minimum may not be needed. 
This of course follows from the added possibility to 
work around one or many wrong initialized neurons by 
adjusting the best ones. However the ANN training cost 
per step, using second-order methods, involves an Hes-
sian matrix inversion: we cannot so easily add neurons 
and thus parameters when the ANN training time be-
comes a significant part of the total NDP time cost. And 
we cannot risk overfitting and waviness errors in a close 
approximation of the Bellman function (the min operator 
of (9) may lead to potentially catastrophic result of wig-
gling unexpected oscillations). So we have to avoid 
overfitting, to reduce the ANN training time requirement 
and to explore the ANN parameter space with multiple 
parameter initialization in order to find the absolute 
minimum or at least a sub-optimal local minimum, 
without spending computational resources for bad pa-
rameter initializations. 

We choice multiple initializations instead of some other 
perturbation technique (like simulated annealing), think-
ing to the high nonlinearity that is typical for the DP 
application in IWRM problems. A consequence of this 
strong nonlinearity is the great variety of Bellman func-
tion representing the optimal cost-to-go for this kind of 
problems: that is relevant if we have to tune the pertur-
bation technique guessing its tuning constants. 

We will present the SIEVE (Selective Improvement by 
Evolutionary Variance Extinction) technique: an evolu-
tionary algorithm with geometrical selection (sieving) 



and pseudo-genetic generation by adaptive decreasing-
variance perturbations. 
 
6.1 The SIEVE core 

The core of the SIEVE architecture is to use iteratively a 
selection (sieving upon an inverse geometrical series) of 
the best parameter vectors, reducing exponentially the 
number of parameter vectors surviving at the next itera-
tion. We compensate this reduction with a geometrical 
extension of the computational resources dedicated to 
train each parameter vector (making so that each itera-
tion uses the same amount of computations as the oth-
ers), until the absolutely best vector passes the last sieve.  
After each sieving selection phase, the survived vectors 
are put before a generative phase in which some other 
vectors are generated from them by adding perturbing 
noise. The noise variance decreases increasing the itera-
tion number, in order to preserve the best training result 
achieved from the last parameter vectors, therefore leav-
ing the possibility to significantly perturb some vector 
(exploration of new areas of the parameter space). All 
the sieved parameter vectors and the new generated 
from them are then trained, and so one for each iteration. 
The first (iteration 0) set of parameter vectors is not 
quite a random generated set, but has to contain also the 
best parameter vectors resulting in each ANN training of 
the “nearest” Bellman functions (e.g. if the SAA algo-
rithm is being to train ( , )j

t tH < > ⋅ ϑ  from ˆ ( )j
tH < > ⋅  – it 

was obtained using equation (9) – the nearest 
( , )tH < >⋅

⋅ ⋅ ϑ  are 1 ( , )j
ttH < >

+ ⋅ ϑ  and 1 ( , )j
t tH < − > ⋅ ϑ , that are 

yet computed and available at this time). So the parame-
ter vectors of the nearest Bellman functions – together 
with the remaining random generated vectors of the first 
iteration – have the possibility to survive until the last 
iteration, improving itself by training. On the other 
hand, they have the possibility to exponentially generate 
other parameters similar to them, searching the most 
satisfactory during the generative phases preceding the 
training ones. This approach attempt to maximize the 
probability of finding new good parameter vectors being 
able to describe a Bellman discontinuity with respect to 
the neighbor Bellman functions (using random initializa-
tion vectors), and also to maximize the probability to 
train the neighbor parameter vectors adapting them to a 
Bellman function not so far from the nearest.  
 
6.2 The SIEVE generalized architecture 
The first formulation of the SIEVE training architecture 
provided for a sieve selection by a factor ¼  (Fig. 2), a 
generative phase that doubled the number of the sieved 
parameter, and finally a doubling of the computation 
time for each parameter survived with respect to the 
computation time used in the previous iteration. During 
the iteration sequence the variance of the noise added in 
the generative phase was being even more little, until it 
went to extinction. 

It is easy to generalize this architecture, by formalizing 3 
factors: the selection factor s, the generative factor g and 

the geometrical ratio k characterizing the training 
 

 
Fig. 2. The SIEVE generalized architecture. 

increment (in the first formulation s=0.25, g=2, k=2). If 
the iteration 0 uses p flops to train each parameter vec-
tor, and n is the number of iterations, then the computa-
tional cost of the SIEVE in flops is given by:  
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under the hypothesis of training in the last iteration only 
the best vector ( 1nN = ), so that the number of trained 
vectors during the i-th iteration will be 1 ( )n i

iN s g −= , 
[0, , ]i n∈  (obviously all the real values for Ni , and 
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Fig. 3. SSE ratio sensitivity analysis. 

First available test (Fig. 3) shows that the original con-
figuration (s=0.25, g=2, k=2) accomplishes a relevant 
reduction of the functional norm – discretised using the 
Sum of Square Errors (SSE) – with respect to an exhaus-
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tive configuration (s=1, g=1, k=1) having the same 
computational cost and the same training depth. Sensi-
tivity analysis near the original configuration (leaving 
k=2, the same cost C and thus sּg=0.5) shows the ro-
bustness of reducing the selection factor s by increasing 
the generative factor g. This robustness has been 
achieved with a noise variance reduction at each itera-
tion by a geometrical factor of 4. The best mean per-
formances seem to be near the interval [0.2, 0.25]s∈   
in which the SSE range appears to be least. When we are 
writing this paper, numerical test are in progress search-
ing for the best configuration of s, g, k parameters, and 
of n, it determinate the initial number of parameter vec-
tors, due s, g, k were fixed. 
 

7. CONCLUSIONS 
An approach to the integrated water resources manage-
ment based on neuro-dynamic programming has been 
presented.  Neuro-dynamic programming allows to re-
duce the amount of memory needed to store the Bellman 
functions during the solution of an optimal control prob-
lem.  It also reduces the computation time when the state 
space, used as training pattern, is sampled with a coarser 
grid, while the ANN, which approximates the Bellman 
function, still manages to maintain a good approxima-
tion performance. The ANN training phase on NDP 
requires a relevant fraction of the computational time: 
we propose the SIEVE (Selective Improvement by Evo-
lutionary Variance Extinction) technique in order to 
achieve better performances. 
The first results are promising, but there is space for 
more research, especially on the efficient sampling of 
the discretised state space, trying to obtain the most effi-
cient approximation of the Bellman function.  
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