COMPREHENSIVE MODELING OF
COMPUTER CONTROL SYSTEMS’
FUNCTIONALITY AND FAULT-TOLERANCE
IN UML

Shourong Lu* Wolfgang A. Halang **

* Fernuniversitdt, Faculty of Electrical and Computer
Engineering, 58084 Hagen, Germany
E-mail: Shourong. Lu@FernUni-Hagen.de
** B-mail: Wolfang. Halang@FernUni-Hagen.de

Abstract: A fault-tolerance framework to be used in the process of designing
and developing computerised control systems is presented, which is based on
well-proven fault-tolerance techniques and FT-CORBA. Extensions of the Uni-
fied Modeling Language (UML) are employed to describe this framework, the
mechanism contained, and system architectures making use of it. Use of the
framework enables reasoning about system dependability already at an early
stage of system development, and to customise fault-tolerance strategies according
to application characteristies. Together with UML, the here specified extensions
constitute an effective environment to design dependable computer control systems
in a comprehensive way taking fault-tolerance into account throughout the entire
development process. Copyright (©) 2005 IFAC

Keywords: Dependability, fault-tolerance, UML, UML extension mechanisms,

modeling, software engineering.

1. INTRODUCTION

In recent years, the growing demand for high re-
liability and availability of computer systems has
led to a wide range for the application of fault-
tolerant systems. As a consequence, the design of
fault-tolerant systems has gained significant at-
tention. The concept of tolerating faults through
redundant hardware components was conceived in
the early 1950s (Avizienis, 1977). Over the years,
various approaches to avoid and tolerate hardware
and software faults were developed (Torres, 2000).
With the availability of hardware having reached
a very high level, the focus of research is shifting
to software, because software faults are the root
cause of most operational system failures.

Fault-tolerance is a means to achieve dependabil-
ity, working under the assumption that a system
contains faults (e.g., made by humans while devel-
oping or using systems, or caused by aging hard-
ware), and aiming to provide specified services
in spite of faults being presence. Fault-tolerance
depends on redundancy, fault-detection, and re-
covery (Chou, 1997). Software fault-tolerance has
the ability to detect and recover from a fault
that is occurring, or has already occurred in ei-
ther the software or hardware of the system. The
characteristic of fault-tolerance techniques imple-
mented in software is that they can, in principle,
be applied at any level in a software system, i.e.,
on the procedure, process, application program,
or the system level including the operating sys-
tem. Fault-tolerance mechanisms are considered

as valid techniques to increase the dependabil-
ity of critical automation systems by adding the
ability to operate in the presence of faults. Their
function should comprise all safety actions by per-
forming fault-treatment and error-processing.

Many fault-tolerant systems are complex because
of redundancy, reconfigurability and various inter-
actions between their components. This complex-
ity has a strong impact on system architecture,
as fault-occurrences have to be taken into account
from the earliest design stages of systems required
to be dependable. The Unified Modeling Lan-
guage (UML) (UML1.4, 2001) offers an unprece-
dented opportunity to develop complex systems.
It is a standard graphical language used to visu-
alise, specify, construct and document the arti-
facts of software-intensive systems (Booch, 1999),
and provides constructs to deal with varying levels
of modeling abstraction to visualise and specify
both the static and dynamic aspects of systems
(OMG, 2003). While UML was designed with the
intent to model software systems, logical models
expressed in terms of UML constructs can be used
to model hardware systems (Douglass, 1999) as
well. In addition, extensibility is a powerful fea-
ture of UML. With the mechanisms stereotypes,
tagged values and constraints the semantics of
model elements can be customised and extended.
UML also provides conceptual tools to manage
the complexity of system design. Models gener-
ated in UML can be connected to a variety of
object-oriented programming languages such as
C++ and Java, or to architectural description
languages. UML provides designers with a vari-
ety of diagrams to graphically model systems. Its
rationale is to approach the problem of designing
complex systems through different concise and
independent views on them, instead of from a
single viewpoint. Therefore, it is necessary and
significant to capture in UML models redundancy
information and reconfigurability issues without
any ambiguity.

Here, we present a framework to support the de-
velopment of fault-tolerant computer-based con-
trol systems, which is based on well-proven fault-
tolerance techniques and FT-CORBA (CORBA,
2001), and employs UML extension mechanisms
to describe deployment architectures of fault-
tolerance mechanisms. The framework enables
the reasoning about system dependability from
the earliest development stages, and to customise
fault-tolerance strategies according to application
characteristies. The mechanisms aim to support a
wide range of fault-tolerance features.

The paper is structured as follows. Section 2 dis-
cusses general aspects of safe designs, and Sec-
tion 3 briefly analyses structures of programming
oriented at fault-tolerance. In Section 4, we de-

scribe how to achieve fault-tolerance in computer-
based control systems and constructs constituting
our framework. Section 5 concludes the paper and
identifies future work.

2. GENERAL ASPECTS OF DESIGNING
SAFE COMPUTER SYSTEMS

Dependability is a comprehensive quality mea-
sure as expressed by the dependability tree
(AvizienisO1, 2001) shown in Fig. 1, where the
basic concepts of design for dependability are
depicted. The attributes of dependability can be
split into the six different, but complementary
dimensions safety, reliability, availability, security,
integrity, and maintainability (Laprie, 1995).

"Availability
Reliability
Safety
- Attributes | Confidentiality
Maintainability Structured design
Integrity Fault [Design Standards
_ Prevention Coding Standards
Procurement Data repair
["Forward

Fault Reconfiguration
Dependability Means recovery Coasting
Failsafe
Recovery
Fault Backward Replication
Tolerance Compensation
[~ Replication
Fault T|m|r‘|g
Validation [removal Fault Reversal
L Va :)
detection | Coding
Fault Reasonableness
forecasting Structural
= Diagnostic

Faults
= Threats Errors

Failuers

Fig. 1. Dependability tree of the guideline for safe
design

A system which no longer delivers its services
in compliance with its original specification is
said to suffer from a failure. The creation and
manifestation of faults, errors and failures can be
described by a chain, cp. Fig. 2. A system fails
as a result of an error, which is a manifestation
of a fault. Faults are physically hazardous events.
A fault may yield an error. An error may yield
a failure of one or more components. A failure
of a component can be viewed as a fault at the
system level. The notions of faults, errors and
failures are essential to characterise the major
actives associated with fault tolerance.

activation propagation causation

w+ fault ———gp eI1Or —3p- fajlure =——pp fault ——Ppp error —Pp ...
Fig. 2. The chain of threats to dependability

Fault-tolerance, fault-avoidance, removal and fore-
casting are collectively known as dependability
means, which should be provided in comput-
ing systems expected to be dependable. Fault-
avoidance and fault-tolerance may be seen as
being dependability procurements, i.e., method-
ologies used to construct dependable systems,

whereas fault-removal and fault-forecasting may
be considered as dependability validations, i.e.,
methodologies used to ensure the dependability
of systems.

Since computing systems are used in a plentitude
of areas, there are many applications which may
emphasise different aspects of dependability, i.e.,
the development of a system can emphasise one or
more of the six attributes of dependability. Fault-
prevention and fault-tolerance are two comple-
mentary principles to achieve system safety. Fault-
prevention cannot be applied to uncontrollable
fault sources such as hardware degradation or
human error. Fault-tolerance techniques provide
dependable behaviour in the presence of faults by
detecting the presence of errors in a system and
providing error recovery mechanisms.

Techniques to achieve fault-tolerance depend upon
the effective deployment and utilisation of redun-
dancy (Lee, 1990), which consists of endowing a
system by additional components and algorithms.
The incorporation of redundancy in a software
system requires a structured and disciplined ap-
proach, otherwise it may increase the complexity
of the system and may consequently decrease,
rather than increase, the system’s robustness. Ide-
ally, one should consider the integration of fault-
tolerance with respect to hardware, software and
environment in order to cope with the various
kinds of faults that can appear in a software
system. Hardware fault-tolerance applies object
replication to enhance system availability or re-
liability in the presence of hardware faults; soft-
ware fault-tolerance applies software redundancy
by means of diversity in design and program-
ming to tolerate software faults that can occur
in the design, coding or maintenance phases of
the software development life-cycle; and, finally,
environmental fault-tolerance copes with faults
that can occur in real world entities in the problem
domain by applying redundancy to represent the
different abnormal behavioural patterns that the
corresponding objects in the solution domain can
present.

3. STRUCTURAL FEATURES OF
FAULT-TOLERANT PROGRAMMING

Software fault-tolerance can be broadly classified
into two single-version and multi-version software
techniques (Lyu, 1995; Torres, 2000).

Single-version techniques focus on improving
the fault-tolerance of a single piece of software
by adding mechanisms into the design, which
target detection, containment, and handling of
errors caused by design faults, and which include
considerations on program structure and actions,

error detection, exception handling, checkpointing
and re-start, and data diversity. Some of the
key attributes of single-version techniques are
modularity, system closure, atomicity of actions,
and exception handling.

Multi-version fault-tolerance is based on the use
of two or more versions of a piece of software,
executed either in sequence or in parallel. Mod-
ularity, system closure, atomicity of actions and
exception handling attributes are desirable and
advantageous in each version, too. The versions
are used as alternatives (with a separate means of
error detection), in pairs (to implement detection
by replication checks), or in larger groups (to
enable masking through voting). The rationale
for using multiple versions is the expectation that
components built differently (i.e., by different de-
signers, using different algorithms, different design
tools, etc.) should fail differently (Randell, 2000).
Therefore, if one version fails on a particular in-
put, at least one of the alternate versions should
be able to provide an appropriate output. This
section covers some of these approaches to design
diversity, i.e., components of a system are built
according to independent designs but deliver the
same service, to achieve reliable and safe software.
Based on design diversity, two classical techniques
of multi-version software fault-tolerance are re-
covery blocks (RB) and N-Version programming
(NVP), cp. Fig. 3.

:
Capl‘urc w test Passed Output
checkpoint and i Failed

store in recovery
cache

Alternate N-1

Restore

andidates not

exhausted and

checkpoint from
recovery cache

deadline not
cxceeded

Version 1

n
;
l. h

Version N

Majority

Input
No agreement

Fig. 3. Basic structures of the RB and NVP
schemes

The basic elements of a recovery block are a pri-
mary module (an ordinary program block and per-
forming the desired operation), zero or more alter-
nate modules (only executed if the results of the
current block fail the acceptance test; the same
desired operation is performed as by the primary
module, but in a different way), and an accep-
tance test used to check the results (executed after
processing the primary and alternate modules to
confirm that the results produced are acceptable
to the environment of the recovery block). The
acceptance test can reject the results of a module
due to an error in the operation of a module

(explicitly detected by the acceptance test). A
module also fails if it does not terminate within
a given time-frame. An error is detected during
execution of a module by one of the implicit error
detection mechanisms (e.g., division by zero). It
may happen that an inner recovery block fails due
to all modules being rejected either explicitly or
implicitly. Then, recovery on this level is no longer
possible. Necessary considerations for employing
an RB scheme are the types of faults tolerated by
recovery blocks, designing the primary and alter-
nate modules, designing the acceptance test, and
providing a mechanism to restore process states
(“recovery cache”).

In N-version programming, different versions of
software modules are executed, and the results
produced by these versions are subjected to vot-
ing. The basic elements are an initial specifica-
tion (of the functionality desired by the software),
N software versions (modules all independently
generated from the initial specification), a deci-
sion mechanism (deciding what the final result of
the computations will be using the results from
the N versions as input), and a supervisory pro-
gram (driving the N versions and the decision
mechanism). Design considerations for the use of
the NVP approach are the types of faults that
can be tolerated by N-version programming, the
initial specification, generating independent ver-
sions, and the decision mechanism.

Depending on the application, adjudication algo-
rithms range from simple to complex ones. Sev-
eral adjudication algorithms have been proposed
(Daniels, 2000), e.g., NVP with Majority Voting
(MV), NVP with Consensus Voting (CV), NVP
with Maximum Likelihood Voting (MLV), Con-
sensus Recovery Block (CRB), Acceptance Voting
(AV), or N-SelfChecking Programming (NSCP).
These techniques include voting, selection of the
median value, and acceptance testing as well
as more complex decision making. In Section 4,
we shall define elements embedded in a fault-
tolerance framework to support these considera-
tion and structure.

4. UML-BASED SPECIFICATION OF A
FAULT-TOLERANCE FRAMEWORK

4.1 An Architecture to Implement Fault-Tolerant
Software

An architecture for fault-tolerant computing sys-
tems can be built with different levels as shown in
Fig. 4.

The application level for the implementation
of various applications consists of application-
specific objects, and may include a set of fault-
tolerant objects. To ensure dependability, some

critical objects may be implemented as fault-
tolerant objects, and some objects may use or
invoke fault-tolerant objects to perform their in-
tended computations.

The interface level is constructed of interface
objects and re-usable control mechanisms. There
are two categories of interface objects, viz., ex-
ternal ones and generic fault-tolerant interfaces,
that specify interfaces between interacting ob-
jects. The external interfaces capture application-
independent, external characteristics of a fault-
tolerant object and specify an abstraction inter-
face between the object and its users. The generic
fault-tolerant interface objects provide program-
ming interfaces that facilitate the selection and
customisation of various fault-tolerance schemes.

A generic fault-tolerant interface object requests
services from software variants, sends the results
of the variant executions to the adjudicator, re-
ceives results back from the adjudicator, and re-
ports the results to the fault-tolerant object. As
shown in Fig. 4, such an interface associates a
fault-tolerant controller from which RB, NVP or
other subclasses can be derived. These subclasses
are responsible for actually controlling the exe-
cution of software variants and of result adjudi-
cation. Variant is an abstract class that declares
a common interface for software variants, and
adjudicator is also an abstract class declaring a
common interface for adjudication functions. The
objects voter, accepTest (acceptance test), and
hybrid (combination of voter and acceptance test)
can be derived from the adjudicator class to im-
plement actual adjudication schemes.

The low system level offers services which
are necessary for certain software fault-tolerance
schemes, such as including state saving and
restoration for RB, or data consistency and vari-
ant synchronisation for NVP. Other services may
also be implemented at this level to provide sup-
port for object distribution, concurrency control,
and reliable communication. Implementation of
all objects at the interface level is supported by
these services.

The operating system level provides conven-
tional operating system capabilities. All objects
and components at the above levels may use these
functions.

4.2 Defining UML Stereotypes for a Fault-Tolerance
Architecture

The above mentioned fault-tolerance techniques
differ in their respective architectures, but com-
monly employ the following basic concepts.

Fault-detection is the timely ability to identify
a fault’s existence and location. There are very

application level

FT-objects, Objects

Interface level
interface objects for FT-objects

ault-tolerance programming
RB,NVP, CRB,

data copgistency

state restoration

FT-object

request()

external-interface

request()

FT-interface
request() T
| | | re |[nve |~ | cre |
variant adjudicator
request() getResult()
1 1 Q —l 1 1 —
variant 1 variant 2 variant n voter accepTest hybird
request() request) || request() getResult() getResult() getResult()

Fig. 4. Class diagram of F'T programming

different types of tools to support fault-detection,
e.g., run-time checks, timing checks, coding checks
based on some kind of redundancy, functions and
software structures that support some properties
such as inverse computations and redundant value
ranges, and replication checks based on matching
multiple outputs.

Groups The replication of software elements re-
quires to identify the group of elements that com-
pose a replication block to provide a common
service. Groups of elements have associated fault-
tolerance policies and styles that customise fault-
tolerance mechanisms according to application
characteristics.

Replication styles Fault-tolerance architectures
use different policies to handle the different
types of replications and of recovery informa-
tion (Saridakis, 2000). Some styles define active
replications and others more passive ones. Some
policies require the state of all replicas to be the
same, while in others replicas can have divergent
behaviours. All these types of configuration pa-
rameters define the various replication styles.

ReplicationManager create object
ot v
notification
Notifier
| Fault
D L Plant
Sensor
RecoverManager Loo
|I Recovery I

Fig. 5. Framework for fault-tolerance mechanisms

Conforming to the structure of fault-tolerance
techniques as mentioned above, and based on con-
cepts of FT-CORBA (CORBA, 2001), a frame-
work for fault-tolerance mechanisms is designed
as shown in Fig. 5. A replication manager is re-
sponsible to create and maintain the object repli-
cas. These are continuously monitored by a fault-
detector. If an object fails, then the fault-detector
reports the error to the fault-notifier which, in
turn, filters and analyses the incoming error re-

ports, and sends a notification to the replication
manager. Thus, we have the functions:

Replication management responsible for the
creation or removal of objects, and for modify-
ing fault-tolerance properties. The object Repli-
cationManager has the following three applica-
tion program interfaces:

PropertyManager for reading and setting
fault-tolerance properties of objects, such as
the replication strategy,

GenericFactor for creating replicated fault-
tolerant application objects, and

ObjectGroupManager for adding or remov-
ing objects to and from object groups.

Fault management concerning the detection of
object failures, the creation and notification of
fault reports, as well as the analysis of the
latter.

Recovery management performing logging and
invoking recovery mechanisms in order to find
out where a failure happened and recover to a
correct and consistent state. Such as in back-
ward recovery, the main issue is to bring a
system from its present erroneous state into a
previously correct state. To do so, it is nec-
essary to record the system’s state from time
to time, and to restore such a recorded state
when things go wrong. Each time (part of) the
system’s present state is recorded, a so-called
checkpoint is made. Restoring a single faulty
object to consistent state (object rollback) can
be one of the simplest fault-tolerance services.
It is as simple as instantiating a new object with
a state consistent with the last checkpoint.

In UML, the metamodel of ReplicationManager
is built as shown in Fig. 6. It presents the core-
concept, and describes basic functions of fault-
tolerance. Further, the model expresses how to
apply fault-tolerance policies and styles to groups
of replications, how to identify these groups, and
how to identify the individual replications.

As main elements, out of which application-
specific stereotypes can be constructed, the fault-
tolerance framework contains (cp. Fig. 5):

Sensor is added to a target application for each
type of fault. It collects or generates (depending

<<stereotype>>
ReplictionManager

createObject()
setProperties()

<<slereotype>>
ObjectGroup o
replica Y1 TeplicationStyle
| state]]
<<stereotype>> <<stereotype>> <<stereotype>>

ObjectReplica

LoggableState

ReplicaStyle

received-

informations

recorded-

informations

passiveReplication
activeReplication

satelessReplication

Fig. 6. Metamodel of a replication manager

on the type of fault) diagnostic information and
sends this to FaultDetector.

FaultDetector monitors the system for possible
faults and generates fault reports. It receives
diagnostic information from Sensor, analyses it,
detects the presence of faults, and signals the
presence of faults to FaultNotifier, i.e., it is
defined and used to identify erroneous states.

FaultNotifier receives the notification on the
presence of faults, discards multiple messages
on the same fault, and notifies the presence of
faults to the objects having subscribed to them.

Log is used to maintain the information needed
for later recovery. It may have the form of
snapshots of application states, operations per-
formed, messages exchanged etc. for writing and
retrieving information.

Recover retrieves this information from the log.
It also receives the notification on presence of
faults, and starts the recovery process by using
redundant elements, e.g. Log, that has been
installed in the target application. It re-instates
a failed processor, process or object to normal
operational status.

Factories are object lists that create or delete
replicas.

5. CONCLUSION

The advantage of integrating a fault-tolerance
framework into the process of designing and de-
veloping computer control systems, which are
required to be dependable, is that appropriate
fault-tolerance techniques can be selected from a
set of mechanisms provided and customised ac-
cording to the application characteristies. This
approach will enhance the safety of the control
systems. Employing its built-in extension mecha-
nisms, UML can be extended to suit safety-related
applications with respect to aspects such as error-
detection, error-recovery, or configuration of re-
dundancy measures. Using the syntax of UML,
these extensions can be integrated into the stan-
dard UML framework, since they are based on
UML’s metamodel. The benefit of using UML in

modeling fault-tolerance mechanisms is that UML
provides numerous diagrammatic techniques to
comfortably describe systems and processes to be
modeled. Thus, for each aspect to be modeled the
most expressive techniques can be selected by the
user. Furthermore, UML and the here specified
extensions constitute an effective environment to
design dependable computer control systems in a
comprehensive way taking fault-tolerance into ac-
count throughout the entire development process.

In continuation of this work we shall extend this
fault-tolerance framework further in order to pro-
vide tool-integrated support for the design of safe
systems meeting the requirements of the safety-
standard TEC 61508 (IEC61508, 1998).

REFERENCES

Avizienis, A. and Chen, L. (1977). On the Implementation
of N-Version Programming for Software Fault Toler-
ance During Execution, Proc. IEEE COMPSAC’77,
pp. 149-155.

Avizienis, A., Laprie, J-C., and Randell, B. (2001). Funda-
mental Concepts of Computer System Dependability,
Proc. IARP/IEEE-RAS Workshop Robot Depend-
ability: Technological Challenge of Dependable Robots
in Human Environments. Seoul.

Booch, G. Rumbaugh, J., and Jacobson, I. (1999). The
Unified Modeling Language User Guide. Addison-
Wesley.

Chou, T.C.K. (1997). Beyond fault tolerance. IEEE Com-
puter, pp. 47-49.

Douglass, B.P. (1999). Doing Hard Time — Developing
Real-Time Systems with UML, Objects Frameworks,
and Patterns. Addison-Wesley.

Daniels, F., Kim, K., and Vouk, M.A. (1997). The Reli-
able Hybrid Pattern — A Generalized Software Fault
Tolerant Design Pattern, ftp://renoir.csc.ncsu.edu/
Daniels/FTPattern.pdf

International Electrotechnical Commission (1998). Stan-
dard IEC 61508: Functional Safety of Elec-
trical/Electronic/Programmable Electronic Safety-
related Systems. Geneva.

Laprie, J.-C. (1995). Dependability: Basic Concepts and
Terminology. Proc. 25th IEEE Intl. Symposium on
Fault-Tolerant Computing, pp. 42-54. IEEE Com-
puter Society Press.

Lee, A., Anderson, T. (1990). Fault Tolerance: Principles
and Practice. Springer-Verlag.

Lyu. M.R. (1995). Software Fault Tolerance. John Wiley
and Sons.

Object Management Group. Fault Tolerant CORBA Spec-
ification, V2.5, ftp://ftp.omg.org/pub/docs/formal/
01-09.29.pdf

Object Management Group (2001). Unified Modeling Lan-
guage specification V1.4.

Object Management Group (2003). Unified Modeling Lan-
guage: Superstructure. OMG document ptc/2003-08-
02.

Randell, B. (1975). System Stucture for Software Fault
Folerance. IEEE Trans. on Software Engineering,
Vol. SE-1, No. 2.

Saridakis, T. (2002). A System of Patterns for Fault
Tolerance. Proc. FuroPLoP.

Torres-Pomales, W. (2000). Software Fault Tolerance: A
tutorial. NASA /TM-2000-210616.

