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Abstract: The problem of regulation with guaranteed transient performances for
parabolic distributed systems with delayed control is discussed. The representation of
the parabolic distributed system by infinite-dimensional system of differential equa-
tions 1s used. The fast infinite-dimensional controller with the highest output deriva-
tive in feedback loop is introduced and hence, two-time-scale motions are induced
in the closed-loop system. Stability conditions imposed on the fast and slow modes
and sufficiently large mode separation rate can ensure that the full-order closed-loop
system achieves the desired properties in such a way that the output transient perfor-

mances are desired and insensitive to external disturbances and parameter variations
in the system. Constraint set for selection of the controller parameters caused by delay

is considered. Copyright (©2005 IFAC
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1. INTRODUCTION

In order to controller design for distributed pa-
rameter systems various methods are widely used,
for instance, such as pole assignment (Wang, 1972;
Ray, 1981; Smagina et.al., 2002), optimization tech-
nique (Toshkova and Petrov, 2003), adaptive ap-
proach (Demetriou and Rosen, 2002; King and Ho-
vakimyan, 2003; Solo and Bamieh, 1998), discon-
tinuous feedback stabilization (Orlov and Dochain,
2002). The problem of output regulation for dis-
tributed parameter systems is discussed as well,
e.g., (Byrnes et al., 2000). In particular, control
systems with sliding mode (Utkin, 1992) and con-
trol systems with a high gain and the highest deriva-
tive in feedback loop (Vostrikov, 1977) are power-
ful tools for control system design under uncer-
tainties of parameters and external disturbances.

The subject matter of this paper is the guaran-
teed cost control for parabolic distributed parame-
ter systems based on fast infinite-dimensional con-

troller with the highest output derivative in feed-
back loop as well as peculiarities and constraints
caused by delay in feedback loop.

Note that the control problem of parabolic dis-
tributed parameter systems with the high gain and
the highest derivative as well as with differentiat-
ing filter in feedback was discussed in (Yurkevich,
1992a; Yurkevich, 1992b). ITn the recent paper the
modified control law structure (Yurkevich, 2004)
in the form of the fast dynamical controller with
the highest derivative of output signal in feed-
back loop is used, where the presented control law
structure allows us to include the integral action in
the control loop without increasing the controller’s
order in comparison with (Yurkevich, 1992b).

The paper is organized as follows. First, a model of
the parabolic distributed parameter system with
pure time delay in control is defined. Next, the
method of controller design is presented and the
influence of delay is investigated. Finally, the mod-
ified control law with compensation of delay is sug-



gested and simulation results of an example are
included as well.

2. ONE-DIMENSIONAL SYSTEM WITH
DELAYED CONTROL

2.1 One-dimensional equation

Let us consider a heating or diffusion process de-
scribed by a one-dimensional parabolic equation
with delayed control and given by

Oz ,0%x
(o) =0 (e 1) + el ()

Fw(z,t) + u(z,t — 1), (1)

where t 1s time, ¢ > 0, z 1s the spatial variable,
0<z<1,2(z0) = 2%z2) is the initial condition,
[02(2,1)/0z]|:=0 = 0 and [0x(z,1)/0z]|:=1 = 0
are the boundary conditions, ¢(¢) is an unknown
varying parameter, |c(t)] < ¢g < o0, w(z,t) is
a distributed external disturbance unavailable for
measurement, 7 is a delay, 7 > 0, u(z,t — 7) is the
distributed delayed control, a” is a constant (we
shall take a? = 1). We assume also that for all
functions z(z,t), 2%(2), w(z,t), and u(z,t — ) the

eigenfunction expansions
= (s, ) = S shonts)
Z un (t — T)pn(2),
= Z wn(t)pn(2)
n=0

hold where ¢, (2) = 2 cos(v/ A, z) are eigenfunc-
tions (Wang, 1972) (also known as spatial modes
or normal modes), A\, = n?n?

@8:1,@2:\/5 Yn=12 ...

In this case, the time functions z,(t) for z(z,1)
satisfy the equations (Wang, 1972; Ray, 1981)

zt—T

are eigenvalues,

an(t) = {e(t) = Antzn(t) + wn(t) + un(t = 7), (2)

2,(0) =22, n=0,1,....

From (2), we get that some or all of the first ng
equations can be unstable due to variations of
the parameter ¢(t), where ng = int(,/co/m). Here
int(y) is the integer part of y. Therefore, the first
ng modes should be controlled in order to guaran-
tee close-loop system stability.

So, distributed controller design is reduced to con-
troller design for each separate mode. Note that
x%l)(t) is the highest derivative of the system (2).

2.2 Control problem statement

The control problem is to provide a desired spatial
distribution assigned by a function z%(z,t):

lim sup {z%z,t) —2(z,t)} =0, (3)

t—00 gl

where z4(z,t) is defined by the eigenfunction ex-
pansion

=D #a(t)en(2). (4)

Moreover, the control transients z(z,t) — z%(z,t)
should have desired transient performance indices.
These transients should not depend on the ex-
ternal disturbances w(z,¢) and varying parameter
c(t) of the system (1).

2.3 Insensitivity condition

Denote by e, (t) = zd () — zn(t) a realization er-
ror of the desired time function z2(¢). Then the
requirement (3) corresponds to

tllgloen(t)zo, n=201,.... (5)
So, the desired behavior of the transients z(z,t) —
x4(2,t) can be provided if the process z,(t) —

xd(t) satisfies the desired differential equation

in(t) = Falaa (1), 23 (1)) (6)

for each time function z,,(¢). The parameters of (6)
are selected in accordance with assigned transient
performance indices and in such a way that the
condition z, = z¢ holds for the steady state of
(6). For instance, the linear differential equation
in the form

. —1r..d
dn(t) = Ty e (t) — 2n ()] (7
1s the most convenient in this case where T, 1s
selected in accordance with the desired settling
time of the transients in (7).

Denote ef' = F,, — 2,(t), where el is the realiza-
tion error of the desired dynamics assigned by (6).
As a result, the control problem (3) with desired

transient performance indices can be solved if

e =0, Yn=0,1,.... (8)

This 1s the insensitivity condition of the transients
in the system (1) with respect to the external dis-
turbances w(z,t) and varying parameter ¢(t).

By (2) and (6)—(7) the expression (8) can be rewrit-
ten in the form



[23(t) = 2 (D]/ T + [Aa = e(t)]2a ()
—wp(t) —up(t—7)=0, Vn=0,1,... (9)

So, the discussed control problem has been refor-
mulated as the requirement to provide the condi-
tion (9) or, in other words, to find a solution to
(9) when its varying parameters are unknown.

The solution of (9) consists of the functions uy, (t) =

uld(t) defined by

w(t = 1) = [25(t) = 2 (1)]/ T

+An —c(®)]zn(t) —wn(t), Vn=20,1,..., (10)
where uld(t) is called the inverse dynamics (id)
solution. As a result, we see that the distributed
control function

Zumt—rgpn (2) (11)

zt—T

+[An - C(t)]fvn(t) — wn (1)} ¢n(2)

gives the desired behavior of transients z(z,t) —
z4(2,t). Note that (11
function and, moreover, all parameters and exter-

) is the noncausel control

nal disturbances must be known and available for
measurement. Hence, (11) cannot be used in prac-
tice for control. However, the expression (11) al-
lows us to make estimate of control resource re-
quired for control problem solution. Thereto, we
assume that the series (11) is absolutely conver-
gent and a certain value M, exists such that the
requirement

[u(z,t)] < My < o0, Vi, z

is satisfied in a specified region of the system state
space. Hence, M, is the estimate of control re-
source required for control problem solution.

3. CLOSED-LOOP SYSTEM

3.1 Control law

In order to ensure that el

= 0 when the pa-
rameter ¢(t) is varying and unknown and the dis-
tributed external disturbance w(z,t) is unavail-
able for measurement, let us consider the control
law for the equation of the time function z,(¢)

with J:;l)(t) in feedback, that is

’u%nuglqn) + dn Qn—llugln_l ;qn_l) + ..
+d, AMnlU ( ) + dn 0Un (12)

= k{28 (t) — 20 (1)]/Tn — {1}, Ua(0) = U,

where

/’Ln>03 anla dn,]>oav.7:137qn_la
dn70 =1 or dn70 =0
Up = {un, ugll), R uﬁlq"_l)}T,
U, € Qu, CR™, U,(0)€ Q) CQu,.
The closed-loop system equations for the nth mode
are

() = [e(t) = AaJan(t)
Fwn (1) + up(t — 1), (13)
pir ) (1) + dp g, -1 pr ™l (1)
+e dn,lﬂnugzl)(t) + dn oun(t)
= knf{[zn(t) — 2a(0)]/ T — 2V}, (14)
2n(0) =z, Un(0) =Ty,

where n = 0, 1,.... Substitution of (13) into (14)

yields the closed-loop system equations in the form

2l (t) = [e(t) = AaJan(t)
Fwn(t) + un(t = 7), (15)
uznu;qn)(t) + dn,qn—lﬂ?{‘_l (qn—l)( )+ -
tdp 1 D () + diy otn (1) + kptun (t — 7)
= kn{[z5y(t) — 2n(t))/ T
—[e(t) = AnJon(t) — wa(t)}, (16)
2,(0) = 25, Un(0) = Uy,

where n = 0,1, . ... Since u, i1s a small parameter,
the closed-loop system equations (15)—-(16) are the
singularly perturbed equations. If p, — 0, then
fast and slow modes appear in the closed-loop sys-
tem and the time-scale separation between these

modes depends on gy, .

3.2 Fast-motion subsystem

First, in order to enable usage of the well known
standard technique for two-time-scale motions anal-
ysis (Tikhonov, 1952), we must represent the time
delay 7 in the normalized form 7 = 7°0u, where
70 is the normalized time delay. Hence, from (15)-
(16), we get the equations of the FMS

M I (E) g, g Tl T ()
tdp 1 D () + diy otn (1) + kptun (t — 7)
= kn{[2} (1) = 2a(1)]/Tx
—le(t) = Anlzn(t) — wn(h)}, (17)
Un(0) = Uy,

where z,, = const during the transients in (17) (z,
is the frozen variable) and n = 0,1,....



3.3 Slow-motion subsystem

Assume that the asymptotic stability of the FMS
unique equilibrium point holds and desired suf-
ficiently small settling time of the transients of
Uy (t) can be achieved by a proper choice of the
controller parameters p,, dy, ;, ky.

Let us obtain an equation of the slow-motion sub-
system (SMS) under the condition of FMS stabil-
ity. After the rapid decay of transients in (17), we
have the steady state (more precisely, quasi-steady
state) for the FMS (17). In particular, if g, — 0
in (17) with dy, o = 0, then we obtain

un (1) = (1)

where u'd(t) is given by (10). Substitution of (10)
into the right member of (15) yields the slow-
motion subsystem (SMS) which is the same as the
desired differential equation given by (7). How-
ever, the delay in control variable puts an addi-
tional restriction on the value of the small param-

eter p,.

3.4 Phase margin of FMS with delay

Inasmuch as the FMS (17) may be examined as a
linear system, the Nyquist stability criterion can
be applied. By the Nyquist stability criterion, the
FMS (17) is marginally stable if the condition

kne—jﬂu

m =1 (18)

holds where

D(jpinw) = pdn s +dn7qn_1ﬂ2n_18qn_1
+"'+dn,1,un5+dn,0~ (19)

Hence, from (18), we get the lower bound on pu,
given by

fin = Tan{m — ArgD(ja,)} ", (20)

where a,, satisfies
|D(jan)| = b
and the FMS (17) is asymptotically stable if

fn > Tap{m — ArgD(jan)}_l. (21)

Hence, a decrease in p,, conflicts with the require-
ment on FMS stability, while an increase in pu,
conflicts with the requirement on time-scale sepa-
ration degree of the fast and slow motions in the
closed-loop system (15)-(16). So, the controller
parameters should be selected in such a way that
the both requirements are satisfied.

The parameters of the controller are selected in
such a way that the FMS (17) be asymptotically
stable with the required phase margin ¢, (7) (by
that we can provide an acceptable level of oscilla-
tion excited in the FMS) and the desired degree
of time-scale separation between the fast and slow
modes in the closed-loop system for the nth mode

holds for all n = 0,1, .. ..

Let the polynomial D(uns) + kn be stable and
the condition k,, > d,, o holds. Hence, the phase
margin ¢, (1) of the FMS (17) is given by

on(1T) =7 — ArgD(jpwn.c) — Twn . (22)

where the crossover frequency wy, . on the Nyquist
plot of the FMS (17) is defined by the equation

|D(jﬂnwn,6)| = kn.

Hence, the controler parameters should be selected
in such a way that the requirement

lenl < @0 (23)

holds where ¢0 is an acceptable value of the phase
margin ¢, in the FMS (17).

4. COMPENSATION OF DELAY
4.1 Control law with compensation of delay

In order to reduce the influence of the delay 7 on
the stability of the FMS, let us modify (12) and
consider the control law given by

ﬂznu;qn) +dn _Luzn—luglqn—l) 4.
+dn,1,unU£11) + dn,oun + In [un(t) — Un (t - T)]
= kn{[#(8) — (D)o — 2},
Un(0) = Uy, (24)

The modification of the controller (12) to a control
law of the form (24) is related to the main idea of
the time delay compensation scheme now known
as the Smith predictor. This idea is widely used
in controller design for processes with time delays

(Palmor, 1996).

Let p be the operator given by p = d/dt. Then, the
equation (2) of the nth mode and the new control
law (24) can be rewritten in the operator form

pran = [c—Ap]en +wn + e Pu,,  (25)
{D(pnp) + [l — e l}uy
= kn{[xfl —an]/Tn — P an}. (26)

Let 4, = ky. Substitution of (25) into the right
member of (26) yields



Py = [c—Ap]en + wn + e Puy,,  (27)
{D(pnp) + kntu, = k’ﬂ{[xfi —z]/ T,
—[e—M]en —wn}. (28)

Hence, from (27)-(28), we get the operator form
of the FMS given by

{D(ﬂnp) + kn}un
= k’ﬂ{[xfi =]/ Th = [e = Anlzn — wn}

where the characteristic equation of the FMS is
given by

D(jtns) + kn = 0. (29)

Hence, the stability of the FMS in this case does
not depend on py,. So, the lower bound on y,, has
disappeared completely. From (28)-(27), we ob-
tain

lim ef

S
=0 n(,un): {l_dn,0+kne }
{28 — 2]/ Tn — [¢ = Aa]En —wa}.  (30)

With d,, o = 0, the time domain description of (30)
yields

=5 e
+wp — [xg - xn]/Tn} (31)

So, the control law (24) allows us to provide com-
pensation for the delay in the FMS. The drawback
is the additional error (31) of the desired dynamics
realization.

4.2 Selection of controller parameters and simulation

results

Let vp = ky, dno = 0, z2(t) = const, and w, (t) =
w2t1(t). Hence, from (27)—(28), we get the the rel-
ative velocity error due to a ramp external distur-
bance wy, (t) given by

dy _
) t— 00 wTUL
Tld’ﬂ n
=_T, % (32)

We can see that the additional term caused by the
pure time delay 7 exists, and this fact corresponds
to (31). Hence, the controler parameter k,, should
be selected in such a way that the requirement

e wl <€ (33)

holds where €7, is an acceptable level of the ve-

locity error due to external disturbance wp (t).

Finally, as an example, take ¢, =1, d, 1 = 1, and
dp.o = 0. Then, from (12), we get the control law

/inugll) = kn{[xfl —xn] /T, — x’gll)} (34)

where (34) corresponds to proportional-integral (PT)
controller. Hence, based on the above results, we
obtain the constraint set for selection of the con-
troller parameters caused by delay.

First, from (21) and (23), we get
27k, 27k,
Hn > N A SR

™ 9 Pn
respectively, where 0 < ¢2 < 7/2. From (32) and
(33) with ~,, = 0, we obtain

kn,
Tn
Second, let 7, be the degree of time-scale sepa-
ration between fast and slow modes in the closed-

=V,0
€

pin <

loop system equations (15)—(16). Then the desired

degree of time-scale separation given by 12 gives
T

Hn < —-

n

Usually, n2 can be selected such that 5 < 52 < 10.
Finally, we obtain the permissible set for parame-

ter p, given by

27k < pp < min{T—n k—név’o }

e U
Simulation results for the closed-loop system of
the n-th mode given by (2), (24) are displayed in
Fig. 1 and Fig. 2 for the time interval ¢ € [0,12]
s, where ¢ = 6, A\, = 1,k, = 10,¢, = 1, pup, =
0.1s,7,, = 1s, 7, = 0.015s,d,, o = 0 and the initial
conditions are all zero.

5. CONCLUSIONS

Note that the control problem for systems gov-
erned by one-dimensional parabolic equation with
delayed control has been discussed in the paper,
while the presented results can be extended for
other types of partial differential equations. For
instance, the presented approach to control sys-
tem design can be directly applied to stabilization
of the reaction-convection-diffusion system with
exothermic reactions of generic kinetics discussed
in (Sheintuch et.al., 2002), where the mathemati-
cal model for the set of the first controllable modes
has the same structure as (2). The main advantage
of the presented approach is that the desired tran-
sient performance indices and control accuracy for
the controlled modes are guaranteed despite un-
known external disturbances and varying param-
eters of the system.
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Fig. 1. Simulation results for the system (2), (24)
without compensation of delay where v, = 0.
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Fig. 2. Simulation results for the system (2), (24)
with compensation of delay where ~v,, = k.
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