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Abstract: This paper considers the problem of building a set of hybrid abstractions for affine
systems in order to compute over approximations of the reachable space. Each abstraction is based
on a partition of the continuous state space that is defined by hyperplanes generated by linear
combinations of two vectors. The choice of these vectors is based on considerations on the
dynamics of the system and uses, for example, the left eigen vectors of the matrix that defines this
dynamics. It is shown how the reachability calculus can then be performed on a composition of
such abstractions and how its accuracy depends on the choice of hyperplanes that defines the
abstraction but also on the number of abstractions that are composed. Copyright © 2005 IFAC
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1. INTRODUCTION

Recent advances in control and the increasing needs for
integration and validation of control applications have
led to the development of research in automated
verification for continuous and hybrid systems. Most of
the approaches are based on a reachability calculus that
includes the representation of regions in the continuous
state space and computation of the reachable continous
state space (Guéguen and Zaytoon, 2004). However
this is a rather complex task when the continuous
dynamics is non-trivial and the solutions that have been
proposed are mostly based on the fact that for a
relevant class of properties, it may be sufficient to
compute an over-approximation of the reachable space
in order to conclude.

This can be done by abstracting the concrete initial
model and compute the reachable space of the
abstraction that is an over-approximation of the one of
the concrete system. Some of these abstracting methods
aim at extracting a finite state-model of the continuous
dynamics (Chutinan and Krogh, 2001) in order to use
classical model checking tools. Other approaches,
called “hybridization-based” methods in (Asarin and
Dang, 2004), aim at extracting a hybrid automaton with
simpler dynamics from the continuous systems
(Henzinger, et al., 1998). The goal is then to get a
linear hybrid automaton with differential inclusions as
abstract model in order to be able to compute
reachability for example with a tool such as Hytech
(Henzinger, et al., 1995).

In these “hybridization-based” methods, in order to
abstract the continuous dynamics, the continuous state
space is partitioned by linear constraints and a location
is associated in the abstract model to each element of
the partition. A polyhedron that includes the vector
field for all points of this element is then computed and
associated to the relative location as its continuous
dynamics. Finally a transition from a location to an
other one is introduced if their relative region in the
concrete system have a common frontier and there exist
at least one continuous trajectory that crosses this
frontier from the first region to the second.

Of course the abstraction introduces some spurious
trajectories and the reachable space of the abstract
model is an over-approximation of the one of the
concrete system. The problem with these approaches is
then to find a trade-off between the accuracy of the
abstraction and its simplicity i.e. mostly the number of
locations that are introduced. (Lefebvre, er al., 2002)
proposed a method to guide the partition of the state
space to abstract affine planar regular systems. This
method uses some properties of the continuous
dynamics in order to get an abstraction that is quite
simple to analyze but does not introduce too much
spurious trajectories.

This paper proposes a generalization of this approach to
higher dimension systems that may also be singular. In
section 2 the approach for planar systems is shortly
presented in order to illustrate the basic ideas of the



approach. The properties of affine systems that are used
to guide the abstraction are then presented in section 3.
The resulting abstraction and the way the reachabilty
calculus is performed are detailed in section 4. Finally
section 5 considers the question of accuracy of the
abstraction and gives some considerations that are
illustrated by an example specified in section 6.

2. PLANAR REGULAR SYSTEMS

In this section the system under study is a planar affine
system that is regular and the equilibrium point is
denoted x. (equation 1).
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It is then possible to show (see (Lefebvre, ef al., 2002)
for details) that for all points of a given line that starts
at the equilibrium point, the derivative vectors are
collinear. So for all points of a sector defined by two
such lines the vector field is in the sector defined by the
two derivative vectors on the boundary as illustrated
fig. 1. For a line defined by the first equation of (2) it is
then possible to characterize the vector field by the
second equation of (2).

T
q" (x—x,)=0
o )
uTic:Owithu:(AT) q

Moreover if the border of such a sector is defined by a
real left eigen vector of matrix A it can’t be crossed by
continuous trajectory. Otherwise it is always crossed in
the same direction.

It is then possible to extract from a partition of the state
space with such sectors, an abstraction such as each
location is the source and the target of at most one
transition (as illustrated fig 2. for a system with
complex eigen values) and its continuous dynamics is
given by the inclusion (3) where the two vectors u; and
u, are given by (2).
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Fig. 1 Sectors and differential inclusions for planar
systems

Fig 2. The partition of the state space (a) and the
associated automaton (b)

It may be noticed that (3) imposes constraints only on
the direction and not on the norm of the vector field but
as the abstraction is used to calculate the reachable
space this is not a problem and even more it makes this
calculus very easy.

3. GENERAL SYSTEMS

In order to abstract an affine continuous system by a
hybrid linear automaton it is necessary to partition the
state space and to associate to each region a differential
inclusion. The study of planar regular systems has
shown that some lines have particular properties to
define this partition. The aim is then to generalize this
to general affine dynamics specified by equation (4)
and find hyperplanes to partition the state space such as
the abstract hybrid systems have some ‘good’
properties for the reachability calculus. When defining
the hyperplanes the objective are twofold:

—  for all points of a plane the vector field must be
normal to the same vector,

—  whenever possible the continuous trajectories
must cross the border of a region in the same
direction.

The first point will ensure that the differential inclusion
can be easily computed and the second one that each

border will be associated with at most one transition.
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3.1 First criterion

The first criterion that a hyperplane defined by equation
(5) has to fulfill can be formalized by the equation (6).

P= {x/qTx = k} (5)
Iy saVxeP, y'x=0 (6)

Property I: the conditions that must hold on q, y and &
in order that equation (6) is verified are given by
equations (7).
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This can be proven by considering that if

X, € Pand x, € P then q7(x; -x,)=0
and if yis such as y'x, =0, then:

7%, =" (Ax, +b)
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so if y'x,=0, q and A"y are collinear and as the

direction of these vectors is the only important point,
the first part of equation of (7) holds without loss of
generality, and then:

7% = 7" (Ax; +b)
=q"x;+7"b

=k+y'b

this proves the second part of (7).

3.2 Differential inclusion and reachable space

Property 2: For all points of a region defined by (8)
where the borders are hyperplanes such as (7) holds the
inequalities on the vector field (9) are true.
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Property 2 is directly proven by:
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An over-approximation of the reachable space from a
point x; of the region defined by (8), within this region,
is then given by the conjunction of (8) and
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3.3 Second criterion

The second criterion that is used to choose the
hyperplanes that define the partition is the direction in
which continuous trajectories cross an hyperplane
defined by (5). From a general point of view this
direction changes according to an other hyperplane
(Pettit, 1995) defined by:

q’ (Ax+b)=0

Generally, nothing can be said on this hyperplane but
some special cases are worthwhile to be considered.

The first one is the case when the hyperplanes are
defined by a left eigen vector w of A associated with a
real eigen value. (7) then gives:
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where the wy; are the left eigen vectors potentially
associated with a null eigen value. If all the wo'b are
null, for example if A is regular, w defines only one
useful hyperplane according to criterion 1 and it is such
as:
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This hyperplane is then a separating one that can’t be
crossed by the continuous trajectories. If in (11) one
W()in is not null then £ is free and w defines a family of
hyperplanes. Each of these hyperplanes is always

crossed in the same direction as w'x=k+w'b is
constant.

The hyperplane associated with q = oqw; + @,w, where

w; and w, are left eigen vectors of A associated with
real eigen values is also an interesting case. Equation
(7) then gives:
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If all the wy'b are null (12) defines only one
hyperplane and then:

qTX = alﬂlwlTX + azﬂQWZTX + alwlTb + a2W2Tb
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The sign of this expression only depends on the
position of x with respect of the separating hyperplane
defined by w, and is constant if the partition of a half
space defined by this hyperplane is considered. If one
of the wy;'b is not null, k is free and criterion 1
specifies a family of hyperplanes for each (0i,00).
However according to this second criterion the only
member of this family that is interesting is defined by
0;=0. The previous result still holds and the plane is
crossed in one direction on each side of the separating
plane.

Due to place consideration it not possible to detail all
the cases but this result is still valid if q is defined as a
real combination of two conjugate complex left eigen
vectors. When q is a combination of a real left eigen
vector with a combination of complex eigen vectors the
plane that defines the change of crossing direction only
depends on the considered vectors and must be
computed only once for all combinations(Lefebvre,
2004).

These results are consistent with the previous ones for
regular planar systems as the hyperplanes that respect
(7) are then the lines to which the equilibrium point
belongs.

4. ABSTRACTION AND REACHABILITY

4.1 Basic idea

The basic idea of the proposed approach is that it is
easier to consider a set of partitions that defines a set of
abstractions than to build a global abstraction. Each
partition is then defined by a set of hyperplanes for
which equation (7) holds in order to use property 2 to
determine the differential inclusion. This set of
hyperplanes is defined either by a given vector q for
which it is possible to choose different values of & in
(5) or, considering that (q;, Y1, k1) and (q, 2, k) define
two hyperplanes that respect property 1, by the linear
combinations of q; and ¢, as for all (o, o),
(0L qi+00q2, O4YIH0LYs, 0Lk +00k,) defines a hyperplane
that also respects this property.

Associated with the second criterion, this leads to build
abstractions generated by:

—  firstly, each real left eigen vector of matrix A
that defines invariant subspaces and separating
hyperplanes and the set of hyperplanes normal
to this vector when this is possible,

— secondly, the linear combinations of two left
real eigen vectors,

—  thirdly, the real linear combination of two
conjugate left eigen vectors,

fourthly, the linear combination of one real left
eigen vector and a real combination of two
conjugate left eigen vectors,

—  finally, the linear combination of two vectors
that can be chosen among the principal vectors
(i.e. vectors associated to left eigen vectors to
define the Jordan form of the matrix) in order to
be sure that they are not dependant of the
previous one and that this abstraction will
explore complementary dimensions of the state
space.

4.2 Reachability calculus and Composition

Each point of the state space belongs to a region of
each partition and its vector field is then defined by the
conjunctions of all the constraints associated with these
regions. The global abstract model is then the
composition of all the elementary abstract models and
the reachability calculus can then be performed on this
global model. However it is not necessary to explicitly
compute this global model to perform the reachability
calculus as it can be done on the set of parallel
elementary  abstractions by considering local
conjunctions of constraints. For a given region defined
as the intersection of a set of regions (each associated
with a partition) the reachable space from a point x;
within the given region is the conjunction of the sets of
equations (8) and (10).

Moreover, as the reachability calculus from a
polyhedral region is based on the calculus from its
vertices, it is possible to perform the reachability
calculus as soon as this previous intersection can be
expressed by its vertices. If the subspace that is
considered for the abstraction is bounded (for example
by the invariant of the concrete location) it is then
possible to compute the reachable space for only one
elementary abstraction.

Considering a set of abstract models based on
elementary partitions the reachable space for the
composition can then be computed by locally
composing, on the fly, the constraints of each
abstraction or it can be estimated by computing the
reachable space for each elementary abstraction and
then their intersection.
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Fig. 3. Example partition of the state space (a) and
corresponding vector fields.

5. ACCURACY

As stated in the introduction, the problem with these
approaches of abstraction is to find a trade-off between
the accuracy of the abstraction and its simplicity i.e.
mostly the number of locations that are introduced.
With respect with this approach, two factors are then
relevant: the accuracy of each elementary abstraction
and the number of abstractions that are composed for a
calculus.

The accuracy of an abstraction generated by a couple of
given vectors is clearly linked to the number of
hyperplanes (and locations): if more hyperplanes are
considered the regions are smaller and the differential
inclusion are closer. However the position of the
hyperplanes is also important. This point can be
illustrated for the example of the next section, the
various vectors that define a partition are given figure
3.a and the corresponding vectors that define the vector
fields are given figure 3.b. As it can be seen, the regular
disposition of the vectors in the state space corresponds
to a very irregular disposition in the derivative space
and the importance of all regions, with respect to the
final result, is not the same.

If the precision of the abstraction is defined by the
‘width’ of the intersection of the reachable sub region
from a point with the border of the region, this
precision is intuitively linked, for a partition generated
by combinations of 2 vectors (fig. 4), to the relative
position of the normal vectors in the state space on the
one hand and in the derivative space on the other hand
The value of (13) can then be used to quantify the
‘closeness’ of two hyperplanes.

Fig. 5. Influence of the position of the partitioning
hyperplanes.

The usefulness of this criterion can be illustrated by
figure 5 where the results of the computation of the
reachable space from 1 point, for the example of the
next section, are given. Figure 5.a is based on a regular
partition and figure 5.b is based on a partition with the
same number of regions but based on the evolution of
the criterion. It can be seen that for the same
computation load for the reachability calculus, and a
little more for the abstraction, the result is then better.
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The second factor that influence the accuracy of the
reachability calculus is the number of abstractions that
are composed because the more the abstractions are,
the more the vector field for a given point is
constrained. This can be illustrated by fig. 6 where the
results of three reachability calculus are represented.
The first one is based on one partition, for the second a
new partition has been composed and for the third an
other one has been added. It can be seen that the first
result is relatively rough but can already lead to
conclusion on the reachability of some regions,
whereas the results are more precise when more
abstractions are composed.



Fig 6. Reachabilty for 1 abstraction (a), 2 abstractions
(b) and 3 abstractions (c)

6. EXAMPLE

The affine system that is used to illustrate how this
approach can be used to over-approximate the
reachable space and how the various factors can
influence the accuracy of the result is defined by
equation (15). The abstractions are based on
combinations of couple of left eigen vectors of A that
are the basis vectors and for the case where only one
abstraction is used it is considered that the region of
interest is the cube [0,4]x[0,4]x[0,4].

-10 O 0 0
A=| 0 -5 0 | b=|o0 (15)
0 0 -0.1 0

The abstractions have been computed using specific
Matlab macros and the reachability computations have
been performed using a specific program based on the
Polylib library (Wilde, 1993).

CONCLUSION

This paper has presented an approach to abstract affine
continuous systems by a set hybrid automata in order to

Fig. 7. Reachabilty for 2 composed abstractions

perform reachability calculus. Each abstraction is based
on a partition of the state space by hyperplanes such
that they also define hyperplanes for the vector fields in
order to compute the differential inclusion of the
abstraction. The choice of the vectors that define these
hyperplanes is based on crossing considerations and
then favors left eigen vectors.

An important open problem that will be the object of
further work is the choice of a strategy when the
reachability calculus is inconclusive: the refinement of
one abstraction or the composition with a new one and
which one? For example according to region of interest
it is not obvious that figure 6.c is really better than 6.b
and figure 7 seems worse that figure 6.b whereas they
are based on the same number of abstractions.
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