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Abstract: This paper addresses the problem of the on-line scheduling of a limited
communication resource in order to optimize the control performance. A multivari-
able linear system with communication constraints is modeled in the Mixed Logical
Dynamical (MLD) framework. The system is controlled using a Model Predictive
Controller (MPC), which computes, at each sampling period, the appropriate
control values and network allocation. The performance of the controlled system is
evaluated using a Linear-Quadratic cost function. At each step, the MPC needs to
solve an optimization problem, including logic constraints. The translation of this
problem into the Mixed Integer Quadratic Programming (MIQP) formulation is
described. Finally, using a numerical example, the relationship between the state
variables of the plant and the resultant allocation of the communication resource
is investigated. Copyright c©2005 IFAC
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1. INTRODUCTION

An increasing number of control applications
are implemented using distributed architectures,
where sensors, controllers and actuators are lo-
cated in distant nodes and are interconnected
through a shared network. In many situations,
communication networks are subject to band-
width limitations. In the automotive industry for
example, the Controller Area Network (CAN)
bus is widely used because it has many advan-
tages (Lian et al., 2001). A CAN have a maximum
bitrate of 1 Mbps (the maximum throughput is
less important when the cable length is increased
or when a fault-tolerant configuration is used).
With this throughput, a distributed control sys-
tem sampled at 1 ms and having 16 sensors and 10
actuators exchanging data of size 2 bytes cannot
be supported. To solve this problem, engineers
may be led to double the sampling period (which

may degrade the control performance), to use 2
separate CAN networks for sensors and actuators
or to adopt a more expensive technology. But due
to the strong competition between the different
manufacturers, electronic components cost is a
decisive factor in the design process, together with
safety, reliability and performance concerns.

Recently, many research works have demonstrated
that it is possible to use more efficiently the
available computing and network resources if the
control design and real-time scheduling design are
integrated (Seto et al., 1996; Cervin and Eker,
2000; Branicky et al., 2002; Mart́ı et al., 2002).
In (Rehbinder and Sanfridson, 2004), the problem
of the stabilization of a linear system subject to
communication constraints is considered. In the
proposed model, the commands are sent to the
actuators through a limited shared TDMA bus.
At each slot, only one control command can be



sent, the remaining commands for the other actu-
ators are held constant. The aims are to optimize
off-line both the control and the bus scheduling.
The choice of which actuator to update at each
slot is handled using the notion of communication
sequence (Brockett, 1995). Only periodic commu-
nication sequences were considered. Control com-
mands and periodic communication sequences are
obtained as a solution of a complex combinatorial
optimization problem, which aims at optimizing
a linear quadratic cost function. In (Palopoli et

al., 2002), the problem of the stabilization of a lin-
ear system with distributed groups of actuators is
considered. Each group of actuators is connected
to the controller through a shared TDMA bus
with bandwidth limitations. It is assumed that ev-
ery TDMA slot, only one command vector can be
sent to an actuator group, the other control vec-
tors are set to zero. The stabilization is achieved
using a Model Predictive Controller, which allows
synthesising online both the appropriate control
law and the allocation of the shared bus. The cost
function used by the MPC calculates a weighted
sum of the infinity norms of the states and the
control commands over a specified horizon. The
optimization problem solved at each step by the
MPC algorithm was proven to be equivalent to
the Generalized Linear Complementarity Prob-
lem (Ye, 1993).

In this paper, the problem of the Model Predictive
Control of a linear system with communication
constraints is addressed. The limited communi-
cation control problem in formulated the Mixed
Logical Dynamical (MLD) theory (Bemporad and
Morari, 1999), which provides a framework for
modeling and controlling systems where continu-
ous dynamics and logic rules are interdependent.
This formulation allows the MPC to calculate
both the controls signals and scheduling decisions
of the limited communication network. In oppo-
sition to (Palopoli et al., 2002), control signals
that could not be updated are held constant, a
quadratic cost function is used to evaluate the
control performance and the ability of the adap-
tive scheduling to improve the performance of
continuous time systems is illustrated.

This paper is organized as follows. In Section 2,
the modeling of a multivariable linear system with
communication constraints in the MLD frame-
work is describted. A Model Predictive Controller
for this limited communication control system is
designed in Section 3. This controller needs to
solve a constrained optimization problem at each
step. Section 4 shows how such a problem can be
translated into the MIQP formulation. Finally, in
Section 5, a numerical example is used to illustrate
the effectiveness of the approach and to study
the relationship between control and scheduling
aspects in the proposed model.

2. PROBLEM FORMULATION

Consider the continuous-time LTI system de-
scribed by the state space equation:

ẋ(t) = Acx(t) + Bcu(t) (1)

where u(t) = [u1(t) ... um(t)]T . Suppose that the
system is controllable and that the entire state
vector is measurable. One can assume, without
loss of generality, that the system contains m

distributed actuators, and that the control signal
uk is transmitted to the kth actuator. A discrete-
time controller is used in control. The control com-
mands are sent to the actuators through a shared
communication resource, which is constrained to
have a limited bandwidth. The communication
resource is limited in the sense that, at each sam-
pling interval, it can carry at most b control com-
mands, where b ≤ m (Hristu, 1999). The adopted
modeling allows to specify separately the tempo-
ral parameters that are related to the dynamics
of the control system (the sampling period) and
those corresponding to the network capacity (the
network bandwidth), and thus permits to achieve
a maximal use of the available network resources.

In order to derive a control law for the system, a
discrete-time representation of (1) is used :

x(k + 1) = Ax(k) + Bu(k) (2)

The constraints affecting the transmission of con-
trol commands to actuators can be modeled by
introducing a vector δ of m binary variables
δ1, ..., δm such that:

δi(k) = 1 ⇐⇒ ui(k) is updated at instant k (3)

The bandwidth limitation can be described by the
following inequality :

m
∑

i=0

δi(k) ≤ b (4)

The control commands that cannot be updated at
the kth sampling period are held constant. This
assertion can be modeled using the logic formula:

δi(k) = 0 =⇒ ui(k) = ui(k − 1) (5)

Finally, suppose that control signals are limited:

li ≤ ui ≤ Ui (6)

and that li < 0 and Ui > 0.

The proposed model of the control system with
limited communication, includes a recurrent equa-
tion (2) describing the dynamics of the system,
saturation constraints affecting control signals (6),
inequality constraints (4) modeling the limita-
tions of the communication medium and logic
rules (5) addressing the interdependence between
control signals (ui) and scheduling decisions (δi).
This model can be handled using the Mixed Log-
ical Dynamical theory (MLD) (Bemporad and
Morari, 1999).



3. MODEL PREDICTIVE CONTROLLER
DESIGN

Different feedback-control strategies were pro-
posed in order to control MLD systems, among
these strategies, Model Predictive Control (MPC)
was choosen. This choice was motivated by:

• The need to optimize simultaneously control
actions and network scheduling, in order to
achieve a better quality of control than the
static network allocation schemes.

• The need for a control law that changes on-
line the sampling period in order to improve
the quality of control. This requires that
these variations are taken into account by the
control law (Mart́ı et al., 2001).

Using Model Predictive Control, an optimal con-
trol problem is solved on-line at each sampling
period. It aims at finding the optimal control
values sequence vN−1 = (v(0), ..., v(N − 1)) and
the optimal network allocation sequence σN−1 =
(σ(0), ..., σ(N − 1)) which are solutions of the
following optimization problem:
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min
vN−1,σN−1

N
∑

h=0

yT (h)Qy(h) +
N−1
∑

h=0

vT (h)Rv(h)

subject to:

y(0) = x(k)
y(h + 1) = Ay(h) + Bv(h) , h ∈ [0, N − 1]
m

∑

i=0

σi(h) ≤ b , h ∈ [0, N − 1]

σi(0) = 0 =⇒ vi(0) = ui(k − 1)
σi(h) = 0 =⇒ vi(h) = vi(h − 1) , h ∈ [1, N − 1]

(7)
where Q, R > 0. The solution of this problem is
based on the prediction of the future evolution of
the system over an horizon of N sampling periods.
This predicted evolution is calculated according to
the model of the plant, knowing the current state
x(k) of the system. The variables y(h), h ∈ [0, N ]
represent the predicted values of system states
x(k+h). The sequences (v(0), ..., v(N−1)) (virtual
control sequence) and (σ(0), ..., σ(N −1)) (virtual
network allocation sequence) are called virtual se-
quences, because they are based on the predicted
evolution of the system. The resolution of this
problem aims at finding the optimal virtual con-
trol sequence (v∗(0), ..., v∗(N−1)) and the optimal
virtual network allocation (σ∗(0), ..., σ∗(N − 1))
which minimize a quadratic cost function over a
finite horizon of N sampling periods. Assuming
that the optimal virtual sequences exist, the ac-
tual control commands are obtained by setting:

u(k) = v∗(0) (8)

and:
δ(k) = σ∗(0) (9)

and disregarding the remaining elements of the se-
quences (v∗(1), ..., v∗(N−1)) and (σ∗(1), ..., σ∗(N−

1)). Only the control commands ui(k) verifying
δi(k) = 1 are sent to the actuators. At the next
sampling period (step k + 1), the whole optimiza-
tion procedure is repeated, based on x(k + 1).

A important issue concerns the stability of the
proposed Model Predictive Controller. If the fol-
lowing constraint is added to problem (7):

y(N) = 0 (10)

the following result is obtained :

Theorem 1. If at k = 0, a feasible solution
exists for the problem (7) augmented with the
additional constraint (10). Then ∀Q = QT >

0, R = RT > 0, the MPC law (7)(10)(8)(9)
stabilizes the system (2) such that:
lim

k→∞
x(k) = xe = 0

lim
k→∞

u(k) = ue = 0

Proof: For δ = δe = 0 and u = ue = 0, the
constraints (4), (5) and (6) are verified. It fol-
lows that δ is definitely admissible. The remaining
of the proof is obtained by the direct applica-
tion of the sufficient stability conditions for the
Model Predictive Control of MLD systems stated
in (Bemporad and Morari, 1999).

4. FORMULATION OF OPTIMIZATION
PROBLEM IN THE MIQP FORM

In addition to linear inequalities, problem (7) in-
volves logical constraints. In order to solve this
optimization problem, these logical formulas need
to be translated into linear equalities and inequal-
ities. Remarking that:

σi(h) = 0 =⇒ vi(h) = vi(h − 1) (11)

is equivalent to:

vi(h)−vi(h−1) = σi(h)vi(h)−σi(h)vi(h−1) (12)

and using the procedure described in (Bemporad
and Morari, 1999), the product of continuous
and logical variables can be translated into lin-
ear inequalities, which however requires the intro-
duction of auxiliary variables. For example, if li
and Ui are respectively the lower and the upper
bounds of vi(h), the expression zv

i (h) = σi(h)vi(h)
is equivalent to:

zv
i (h) ≤ Uiσi(h)

zv
i (h) ≥ liσi(h)

zv
i (h) ≤ vi(h) − li(1 − σi(h))

zv
i (h) ≥ vi(h) − Ui(1 − σi(h))

(13)

Note that if ξi(h) = vi(h−1), the same procedure

can be applied to z
ξ
i (h) = σi(h)ξi(h).



Observing that ∀h ∈ [0, N ], y(h) is only a function
of x(k), the expression of cost function can be
simplified. Let:

V =
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...

v(N − 1)






(14)

the cost function can be written:

J = V T HV + 2fT V + c (15)

where H = [Hi,j ]0≤i≤N,0≤j≤N , is a symmetric
m.N × m.N matrix, containing N2 sub-matrices
Hi,j of size m × m such that:

Hi,j = δijR +

N−1−max(i,j)
∑

l=0

BT (AT )lQA|i−j|+lB

(16)
δij stands for the Kronecker symbol. f = [f1 ... fN ]T

is an N.m vector containing N vectors fi of size
m such that:

fi =

N
∑

l=i

xT (k)(AT )lQAl−iB (17)

and c is a constant: c =
N
∑

l=0

xT (k)(AT )lQAlx(k).
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the problem (7) can be rewritten in

the form:
{

min
V

1

2
VT GV + gTV

AV ≤ B
(18)

where G, g, A, and B can be easily found. Prob-
lem (18) is called Mixed Integer Quadratic Pro-
gram (Lazimy, 1985). Many academic and com-
mercial solvers are available for this particular
problem.

5. A NUMERICAL EXAMPLE

In order to illustrate the proposed approach and
to study the interdependency of control and
scheduling, especially the relationship between the
state space vector of the plant and the network al-
location, consider the continuous-time LTI system

described by the state matrix Ac =

[

Ac1
0

0 Ac2

]

and the input matrix B =

[

Bc1
0

0 Bc2

]

, where

Ac1
= Ac2

=

[

3 −1
2 0

]

and Bc1
= Bc2

=

[

1
0

]

.

The system consists of two identical and indepen-
dent subsystems, which are open-loop unstable.
A scalar control input is used in order to stabilize
each subsystem.

The system is stabilized using a Model Predictive
Controller. The MPC law is based on a discrete
model obtained at the sampling period of Ts =
0.1s. The weighting matrices are chosen such as
Q = 100diag(1, 1, 1, 1) and R = diag(1, 1). The
MPC horizon is set to N = 15. The two control
inputs u1 (corresponding to the first subsystem)
and u2 (corresponding to the second subsystem)
are sent to the corresponding actuators through
a shared communication network. The network
bandwidth is such that only a control input can
be transmitted each sampling period, thus b = 1.
In this particular simple example, a network slot
time is equal to the sampling period of the system.
u1 and u2 are subject to saturation constraints:
−10 ≤ u1 ≤ 10 and −10 ≤ u2 ≤ 10.
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Fig. 1. Evolution of the state variables of the two
subsystems

Figure 1 illustrates the evolution of the state vari-
ables of the first subsystem (x1 and x2) and those
of the second subsystem (x3 and x4). The initial
state vector is [1 0 −0.1 0]T . The two subsystems
converge progressively to the equilibrium state.
At t = 2s, the second subsystem is disturbed
(the state variables x3 and x4 pass suddenly to
respectively 1.18 and 0.28). These deviations are
corrected and the second subsystem is stabilized
at t = 5s.

To understand the interaction between control
and scheduling aspects, consider the network
schedule depicted in figure 2. The lower signal
corresponds to δ1 and the upper signal to δ2

(δi = 1 means that the network is dedicated to
the transmission of control signal ui). The network
schedule shows how the MPC algorithm allocates
the communication resources to each subsystem.
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Fig. 2. Network schedule

At t = 0s, the first subsystem has the greatest
deviation from equilibrium position. In order to
optimize the cost function, the MPC law allo-
cates the two first slots to the transmission of the
control signal u1. Next, when the two subsystems
reach approximately the same “distance” from the
equilibrium, the network bandwidth is allocated
fairly. At t = 2s, the second subsystem is dis-
turbed, the MPC control law reacts and allocates
six consecutive slot times to the transmission of
the control signal u2. Because the first subsystem
is closer to the equilibrium than the second sub-
system, the remaining slots are mainly dedicated
to the transmission of u2.

In order to evaluate the effectiveness of this ap-
proach, the proposed adaptive scheduling scheme
is compared to the static fair allocation of the net-
work, where the control values u1 and u2 are sent
alternately on the network. To devise the control
law for the system which is scheduled according to
the static fair network allocation, the continuous
system has to be sampled with a sampling period
of a least 0.2 seconds. The Model Predictive Con-
troller uses the discrete model obtained at this
sampling frequency. The prediction horizon is the
same for the two schemes.
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Fig. 3. Comparaison between the control perfor-
mance results of the adaptive and static net-
work scheduling schemes, states x1 and x2

The two systems are simulated starting from the
same initial conditions as above. At t = 2s, they
are subjected to the same disturbance. The simu-
lation results related to x1 and x2 are depicted
in figure 3 and those related to the states x3

and x4 in figure 4. These results show that sig-
nificant improvements of the control performance
are achieved by the adaptive scheduling scheme,
compared to the static fair network allocation.
These improvements are due to the ability of
the adaptive scheduling scheme to react earlier
and quicker to the disturbances. In figure 3, the
adaptive scheduling algorithm improves the global
quality of control, by allocating the two first slots
to subsystem 1, which have the greatest deviation
from the equilibrium position, in opposition to the
static fair scheduling algorithm, which allocates
the first slot independently of the dynamical state
of the subsystems. In figure 4 and at t = 2s,
instead of reserving half of the network bandwidth
to subsystem 1, which is very close to the equi-
librium, the adaptive scheduling algorithm uses
these resources to achieve a quicker and better
stabilization of subsystem 2. These results are
is accordance with those of (Mart́ı et al., 2002),
where the empirical study of the relationship be-
tween resource allocation and control performance
was undertaken.

−0.5

0

0.5

1

1.5

2

Time (s)

x3
 a

nd
 x

4

x3 (Adaptive network scheduling)
x4 (Adaptive network scheduling)
x3 (Static fair scheduling)
x4 (Static fair scheduling)

0 1 52 3 4

Fig. 4. Comparaison between the control perfor-
mance results of the adaptive and static net-
work scheduling schemes, states x3 and x4

6. IMPLEMENTATION ASPECTS

MPC techniques were mainly applied to systems
with slow dynamics, because they require a very
important computational effort due to the on-
line solving of the involved optimization problem.
However, many advances have been made since
the development of the first MPCs such as explicit
MPC, which allows to move off-line the most im-
portant part of the computational complexity of
the optimization algorithm, enabling the applica-
tion of MPC techniques to fast systems, like those



addressed in this paper. The idea of explicit MPC
for hybrid systems comes from the observation
that the solution to the finite time optimal control
problem (based on linear or quadratic cost func-
tions) is a time varying piecewise affine state feed-
back control law (Bemporad et al., 2002). If the
state x(k) is considered in the optimization prob-
lem as a parameter, the use of multiparametric
optimization techniques (Bemporad et al., 2000)
allows the solving of the optimization problem for
all the feasible values of x(k). The building of the
explicit solution is essentially based on the parti-
tioning of the state space. The on-line computa-
tion of the control low is reduced to finding the
partition which contains the current state vector
and then to calculate an affine function of this
state. We are currently investigating the use of
multiparametric optimization techniques to find
sub-optimal solutions to our problem formulation.

7. CONCLUSIONS

This paper addressed theoretically the problem of
the on-line scheduling of control applications with
communication constraints. An approach where
the scheduling is based on the information related
to the state space variables of the system was
proposed. In this approach, control and scheduling
are tightly coupled in order to achieve a better
control performance thanks to a more efficient use
of the available network resources. In opposition
to other approaches where the co-design of control
and scheduling aims at optimizing steady state
performance, transient behavior is the main con-
cern of the proposed approach.
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