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Abstract: The main contribution of this paper isp@sent a non-linear observability
analysis method of Activated Sludge Models (ASM}jich are used in many control
applications. The objective is to reduce the unolzdde ASM1 model to an observable
one that can be used to implement advanced estimalgorithms. Local observability is
achieved under certain operating conditions bilgdaat some points in the whole domain
of definition. Furthermore, piece-wise observapiliink test is also performed with three
measurements and compared with non-linear obsdityabSimulation results are
presented to demonstrate the proposed me@amplyright © 2005 IFAC
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1. INTRODUCTION

Wastewater treatment control is an active researeh
generally described by complex non-linear systeras t
include biological, physiochemical and biochemical

technological solution, high level of process and
automation is required (Hvalkt al, 2000). Control of
wastewater treatment processes is characterizeétieby
fact that many variables that symbolize the quadity
the wastewater are not measured on line and can onl

processes. The main goal of wastewater treatmentbe determined by laboratory analysis. Furthermtwe,

plants (WWTP) is to achieve sufficiently low
concentration of biodegradable matter in the efftue
together with minimal sludge production, at a miaim
cost. The model considered state of the art foretiogl
biological nitrogen removal processes is the Adéda
Sludge Model No. 1 (ASM1) of the International Wate
Association (IWA) (Henzeet al, 2000). This is a
complex non-linear model due to multiple time scale
dynamics, large perturbation in flow and load, thee
with uncertainties concerning the composition oé th
incoming wastewater (Aleet al, 1999). Furthermore,
comparing with the ASM2 model, the ASM1 does not
include biological phosphorus removal.

In recent years, many activated sludge plantsjraily

monitor system performance and design control
strategy, the engineer must know the states of the
system. These states, which are determined through
sensors (e.g., optical analyser, turbidity analyser
dissolved oxygen meters) by taking measurement or
observation on the system, are often difficult to
interpret for control purposes due to noise that
contaminates the signal. Therefore, non-linear
observers design and implementation is essential to
develop robust control strategies in order to aehie
efficient plant operation.

The ASM1 model as originally developed is
unobservable. Hence many researchers have
reformulated or reduced the model based on their

designed for removal of carboneous compounds, haveunderstanding of the process without systematically
to be upgraded to include nitrogen and phosphorouschecking the observability properties. The objextdf
removal. Consequently, as an integral part of the this paper is to develop a systematic procedudetive



a reduced-order model from the original ASM1 and
perform an observability analysis, essential for
observers design.

Observability is an important structural propertfy o
dynamic systems defined as the possibility to inifer
state of the system from examining its input antbou
behaviour. The conditions of observability can gove
the subsistence of a full solution to the contrdtem
design problem. Therefore, if the system is not
observable, solutions to solve the control systesigh
may not exist. During the last four decades, this
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property have continued to be examined since it was

first discovered and studied by Kalman in 1960 and

later by Kalmaret al.in 1962 (Franklin, 2002). Sontag
(1979), introduced the concept of algebraic
observability for n-dimensional polynomial systems.
This theory implies the existence of a polynomial
expression of the state variables in terms of #&efin
number of derivatives of the output function. Isido
(1985), developed differential geometric methodthin
synthesis of feedback laws for non-linear systent a

contributed to outstanding design problems such as

feedback linearisation, control, disturbance detogp
and model matching.

Most observer designs are based on linear obsdityabi
theory, which affects the acceptability of the prepd
results. However, observability theory has beervexo
on non-linear bioprocess models, based on simglifie
model that describe few non-linear growth reactions
Delattre et al. (2002), performed an observability
analysis of a non-linear tubular reactor that inesl
one non-linear growth reaction and proved thandefi

Fig. 1. Plant Layout, where the influent, effluent,
internal recycle, external recycle and waste flow
rates are Q, Q.. Q,, Q; and Q, respectively. The
concentration& are similarly represented; To Ts
represent the anoxic and aerobic reactors.

As seen in Figure (1), the original benchmark pilaas
considered to be the real plant and the non-linear
observability analysis was carried out on the last
aerated reactor €J. On-line measurement’s locations
are not described and are beyond the scope of this
paper. The ASM1, which is probably the most widely
used representation for describing wastewaternreatt
processes, was selected to describe biologicakpses

in the activated sludge reactor. The double-expialen
settling velocity function proposed by Takées al.
(1991), was chosen to describe the settling proddks
simulations were performed on a Matlab /Simulink
platform and Maple, based on the open-loop bendhmar
configuration with the dry and storm weather infite
wastewater data.

number of dominant modes are observable under

certain conditions. Anguelova (2004), compared two
different approaches (differential geometric and
algebraic) to test the observability of a kinetiodal
for S. cerevisiaeand concluded that there is an upper
bound derived for the number of Lie derivatives (fee
algebraic approach) that have to be consideredhdn t

test for rational systems. Furthermore, Dochain and

Vanrolleghem (2001), performed a successful local
observability analysis on a two-step nitrification

process, and on a simple microbial growth process

composed of three state variables.

This paper present a novel contribution based arr no
linear observability analysis, applied on a widely

accepted non-linear process model, namely the ASM1

(Henze et al, 2000) and the multi-layers double
exponential settling model of Takaetal. (1991). The
observability analysis involves seven non-lineavgh
reactions and the study is performed on a mulfigbert
multiple-output (MIMO) system composed of six state
variables. In Section 2, the process model is ddriv
Section 3 introduces the observability analysis. In
Section 4,
conclusion ends the paper.

2. IWA /COST SIMULATION BENCHMARK
Only a short description of the benchmark plant &sd

process models are provided. For further infornmatio
the reader should refer to Copp (2002).

results are presented and a genera

Assumptions. Soluble inert organic matter S}
contributes to the effluent chemical oxygen demand
(COD). Particulate inert organic mattet)(becomes a
part of the total suspended solids in the activatedge
system. Therefore§ and X, are removed from the
system because they are not contributing to angroth
reactions and are not involved in any conversion
processes. Inclusion of the particulate produdtsray
from biomass decaf)Xp) in the model is an approach of
accounting for the fact that not all biomass in the
activated sludge system is active (Heezeal, 2000).
Insertion of the alkalinity $,) in the model is not
essential, but its incorporation is advantageousse
it provides information by which excessive change i
pH can be predicted (Henz¢ al, 2000). Therefore,
these two components are also removed from the
model. Slowly changing variables are assumed
constant, which means that the active heterotrophic
(Xs.n) and autotrophic biomasXds) are kept constant
in the reduced model, similar to Ingildsen (2002).
Consequently, the particulate biodegradable organic
itrogen ¥yp), which is generated from decay of both
sn and Xg a, iS also neglected in the reduced model.
As a result, the observability analysis is perfadma a
reduced-order model composed of six state variables
which are: readily and slowly biodegradable sulbstra
(S=x; and Xs=x,), dissolved oxygenS,=xs), hitrate
and nitrite nitrogen $yo=xs), NH;" + NHj; nitrogen
(S\w=xs), and soluble biodegradable organic nitrogen
(Sup=Xe) concentrations.



3. OBSERVABILITY ANALYSIS conditions that must be satisfied for that property
(Hermann and Krener, 1977).
Throughout this section, the following class of fnon
linear systems with outputs (measurements) isDefinition 1. The non-linear system given by Equations

considered (1) and (2) is globally observableif all initial
conditions, Xy, can be determined uniquely frownt)
x=f(x,u), withx(0)=xq (1) andu(t) in the whole domain of definitioxy O X, Ou O
u.
y, =hj(x), 1<is<p, 2)

This concept can be further supported if the state
trajectories progress in a local neighbourhoodjiten
wherex is the state vector with statesx,...x,, U is the to local observabilityproperty. But on the other hand,
input vector withm inputsu,...,u, andy the output  the notion of global observability can be seen as
vector or measurements with outputsys,....y,. It is weakened by requiring that a given initial stat®rigy
assumed that O X, u O U,y O, whereX, U andY distinguishable from its neighbours, leading to the
are open subsets &', 2", /&, respectively. The map weakly observabilityproperty (Francis, 1997). Finally,
h: X-Y correspond to the vector @f measurements restricting trajectories to lie in a local neighboand
(observation), wherd;, /7 C*(X), for 1<i < p andh =  can further support the last notion:

(hy,...hy)". It is also assumed that the system is o _ . ]
complete for every bounded measurable ingtt and Definition 2. '!'he non-linear system given by E_quatlons
for everyx, O X there exist a solution to the system (1) @nd (2) islocally weakly observablat x, if all

(Equation (1)) such tha€(0) = x, andx(t) O X for all t initial conditions in a neighbourhoo®, of x,, which
0% lead to state trajectories remaining in some open

neighbourhoodJ at xq under control actiom, can be

The purpose of the following analysis is to deteenif uniquely determined from(t) andu(t).

the system described by Equations (1) and (2) geese
the local distinguishability property by the soledl
“observability rank condition” as established by
Herman and Krener (1977). The observability propert
is related to the distinguishability of initial &a
position, given only measurements of outputs (and
possibly their derivatives) and inputs. Using tleagyal

state space model given by Equations (1) and k2), t - . . .
observation space spanned (or observability map),Cond|t|on 1. The non-linear system given by Equations

It is important to observe that these definitions a
equivalent for linear systems and in additions itmorth
noting that the linear results are independenthef t
input trajectory. Finally, we give the conditioner f
evaluating two of the forms of non-linear obserligbi
as follow:

denotedw, is given by (1) and (2) isglobally observablef w'(x) is uniquely
invertible with respect to in the whole domain of
definition.
wh(x)
) WZ(X) Condition 2. The non-linear system given by Equations
w(x) = ,

(1) and (2) idocally weakly observablg the Jacobian
of w(x) has full rank in the whole domain of definition.

wP (x)
with
4. RESULTS
i Vi |_1f h; (x) The reduced-order ASM1 model under study, described
W (x) = : = : : in Section (2), is assumed stable and is descrilyed
k1) ' Equations (1) and (2) where
i L7 (%)
h)=[S Swo Sl (5)
p
k= ., k= 3 T
E'ﬁ' n C) U =[foou) foou) o o felcu)]! (6)
where L5h; is thekth Lie derivative along the vector With
field f (with k assimilated to the number of state
variables), which is define as in =
) oy =SB TA | M [ % |,
dt Vs i ( Ket+ %
o 0L ()
U0 =—— =1 (cu), k21, H X ]%_[ Kon M Xq ]}
Koy +X KoptX Knot X
X2/ XB,H X3 +
Following this introduction, we are now presentthg hKx+0e/ X H) Ko + X3

non-linear observability definitions as well as the



rate ), the maximum autotrophic growth ratgy),

the autotrophic decay rathb,j, the ammonification rate
(k), and the half-saturation coefficient for: the
heterotrophic growth, the heterotrophic oxygen, the

K X correction factor A,), the maximum specific hydrolysis
Uh[ O.H ]*( 4 ]] *Xgu (1)
Kno* X4 '

Kon*X3

Xgin — X
fo(x.u) = dXs _ QSin 72 +{(1— o) (oH -Xg 1) * nitrate, hydrolysis, autotrophic growth, and auiptric
dt Vs oxygen (Ks, Ko n, Knos Kx, Knn Kooa, respectively).
(ba-Xg,a) = Ky * K Xi;X/B)’(H [[ % j+ The volume of the fifth tank\) is 1333m, K,a is the
XTRIABH | Kon+Xs oxygen transfer function, andsar the oxygen

saturation concentration (set to 8.65 mg/l in the
Uh*[ Ko,H J*( X4 H}* Xy (8) following simulations). The flow Q (with the infla¢
Kon+X3 Kon* Xy ' flow (Q;n) equal to the effluent flow (§) and Ka are
considered as inputs, and the influent concentratio
(Ssim Xsjin ---» Sup,n) are assumed to be known (from
dS :QSO,in R R ) TR the 4" reactor or second aerobic tank). Even though
dt Vs HH some of these concentrations cannot be physicatsnp
(e.g., S, Xg), it is assumed that an observer based-
X, X3 * Xy~ 4 4.57-Yp |, Extend Kalman Filter (EKF) can provide estimates of
Ks+X) | Koyt X3 BH A these non-measurable inputs. For more information
about estimation of non-measurable concentratithres,
X5 X3 * X + reader should refer to Benazet al. (2005). The
Knn +%6 )| Ko+ % B.A selected measurements &g Sywo, and Su. For few
casesXs is also assumed available from respirometer

f3(X,U) =

Kra(Ssat— %) ®)  oranEKF.
_ dS\|o _ SNO,in - %
falx.u) = ot =Q Vi +{_'UH’79* 4.1 Non-linear observability analysis applied oreth
s reduced-order ASM1 model.
1-Yy X KoH % e
2.86Yy )\ Ks+x )| Ko y+ X/l Knot X4 Following the non-linear observability theory dexil

in Section (3), the observation space spanngxi)
X HA X5 X3 * % (10) given by Equation (3) has been computed ugk=t6
BH YA ([ Kyp +%5 )| Koa+ X3 B.A (number of state variables) using the Lie deriativ
' along the vector field described by Equation (4). As
defined previously (Condition (1)), the system &ds
dSuH :QSI\IH,in_)S+{_i L * globally observableif the inverse w'(x) of the
dt Vs XBIH observation space spanned exist everywhere (in the

K state and input space). However, as the solution of
[ s o
3 3

f5 (X, U) =

Equation (3) is not a trivial problem, global
Ks+x )| KopntX Kot X observability can be difficult to consider in priaet
(Bogaerts and Vande Wouwer, 2004). Therefore, a
(Lﬂ’fka-xﬁ Xg ‘/JA[iXB +1]* local weak observability analysis is performed, atthi
Ko * X4 ' Ya leads to study the local invertibility of the ofeth
observability map, in the neighbourhood of a point
[ %5 ]( "3 ]* Xga (11) Hence, the system is saldcally weakly observable

Knh +%5 )\ Koat X3 when
e . ow(X
fe(x.u) = dSw _ Q SNpin ~ % +H—kn X — Ky * rank @ k)=n withQ &)= a( ) (13)
dt Vs X
XND/ XBH X3 + Ko,H Results are presented in Figure (2) when dry-weathe
Kx+Xnp / XB H Ko +Xa h Kon+ X3 data are used to characterize the influent wases\iat
the reduced-order model.
X ey (12)
Kno *+ X4 B.H First, access to one measuremé&y) {s considered and

the local observability test is performed in the

_— . . neighbourhood of five different operating condigon
The stoichiometric parameters are the autotropiaicy (points 1 to 5 on the x-axis of Figures (2) and).(3)

(Ya), the heterotrophic yield Y(), the fraction of — Thon ™ the number of (hypothetically) ~available
biomass to particulate products, and nitrogen in meas,urements is increased to & and Syg), and
biomass, f, ixe. respectively). The kinetic parameters finally to three &, Svo, and Syy) in order to éatisfy
are the maximum heterotrophic growth rate)( the  (when possible) the local weak observability proper
anoxic growth rate correction factorsg, the  in the neighbourhood of the selected points (atdted
heterotrophic decay ratby), the anoxic hydrolysis rate  gperating conditions in this paper), given in Taidlp



Observability analysis (dryinfluent)

X
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S [ ]1 measu'rement. So
g 2 meas.: SO & SNo
T 3meas. SO, SNO & SNH
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Fig. 2. Non-linear (and piece-wise) observability
analysis during dry weather conditions.

The black bars in Figures (2) and (3) are detaifed
Section (4.2). Results show that local observahilit
failed at certain points. For instance, when onhe o
measurement is available, the local invertibilifytioe
observability map (rank test) failed at some seldct
neighbourhood, which indicates that the systemots n
locally weakly observable in the whole domain of
definition. By increasing the number of measurement
to two or three, the rank tests (given by Equafibs))
also failed at the fourth operating condition.

Observability analysis (storm influent)
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Fig. 3. Non-linear (and piece-wise) observability
analysis during storm conditions.

The storm influent is a variation of the dry-weattata
(normal diurnal variations) with two different shor
events added. It is important to analyse local
observability during storm events because the plant
reach highly non-linear concentrations at certaiimigs,
which cannot be obtained with dry-weather condgion
Consequently, some of these highly non-linear
conditions are selected as operating points fotdbal
observability analysis. Results are presented gurei
(3), where it can be seen that local observabititied

at certain points. For instance, when using three

Consequently, the number of measurements has beefeasurements, the rank test is satisfied for few

increased to four (assuming from respirometer or an
EKF) in order to achieved local observability at th
fourth point. However, results are not displayed in
Figure (2) as the rank test also failed at thecsetk
operating point. Furthermore, increasing the nunafer
measurements in order to reach local observahgity
not a suitable solution for the wastewater indusiing

to the expensive sensors prices.

In Figure (3), the rank test given by Equation (is3)

operating conditions but local observability fadd
some selected neighbourhood (first and fifth pgints
Increasing the number of measurement to threeuwy fo
also failed to reach local observability in the \eho
domain of definition. Therefore, local weak
observability is lost at some operating conditionghe
whole domain of definition, when three or even four
measurements are considered.

performed when storm influent wastewater data are4.2 Piece-wise observability applied on the reduced

used to characterize the influent wastewater fa th
reduced-order model.

Table 1 Operating conditions (OC), which represkat
x-axis of Figure (2), used to test the non-lineaakv
observability of the ASM1 during dry weather
conditions (Q: riYd unit; fromS;s to S: g COD nt®
units and fronByo to Syp: @ N mi® units)

oC 1 2 3 4 5
Qmer 92235 00180 97825 100489 93253
Sn» 099 1.02 073 139 157
S 088 092 066 116 1.38
Xsim 53.88 56.59 38.73 70.23 84.94
Xs 47.47 50.16 3524 57.79 72.86
Son 249 242 406 217  1.92
S 047 044 296 035 0.29
Swn 984 966 11.11 6.63 5.87
Sw 11.08 1074 11.78 823  6.48
Swin 408 407 09 1226 941
Sw 277 271 028 1003 8.88
Swn 076 077 061 1.05 1.06
So 068 07 057 088 0.94

order ASM1 model.

One of the approaches, that is often used in cbntro
engineering to check the observability of non-lmea
models is to use linear observability theory apmplie
piece-wise in time. In other words, it is assumbedt t
exactly the same reduced-order ASM1, as described i
Section (2), is composed of a linear model at each
sampling point. Under this assumption, the Kalman
rank test (C CA...CA™) for observability of linear
systems has been successfully applied piece-wise in
time (at each sampling point, during 10 days of
simulation), assuming up to three measurements.
Results are presented in Figures (2) and (3) bldoek
bars (piece-wise: 2 meas. / 3 meas.) and in easd ca
these last ones represent more than three thousand
operating points. In other words, the Kalman ragdt t

is performed at each sampling time during 10 ddys o
simulation. In the first case (dry influent), two
measurementsS§ and Syp) are necessary to achieve
observability while in the second case (storm ierfit),
three measurement§&{ Svo and Syy) are required to
satisfy the linear observability property in the ol
domain of definition. Furthermore, a reduced-order
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