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Abstract: This paper presents a new approach tentheeling and identification of
continuous nonlinear dynamic systems in terms oédr local models. In this
approach, each local model is associated with abeewof the linearization family of
the original nonlinear system. Based on this famdynonlinear model can be
constructed, constituting an approximation of thalmear system around the entire
equilibrium manifold. As a result, empirical modeterpolation procedures are not
necessary. It is also shown how this method cansed for plant identification. A
numerical example demonstrates the efficiency ef rttethod. Copyright © 2005
IFAC
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1. INTRODUCTION models can be identified more easily. Examples of
this methodology are the local linear models tree
The availability of nonlinear dynamic models has (Nelles, 1997), the identification through the
been recognized in the literature as one of theamai decomposition into operating regimes (Johansen and
obstacles, if not the most important, for the Murray-Smith, 1997) and Takagi-Sugeno fuzzy
application of nonlinear control strategies. First- systems (Takagi and Sugeno, 1985). In order to
principles or “white-box” models are often too provide a global model of the process, the local
expensive to be obtained in practice and frequentlymodels must be combined in some manner. In the
too complex to be useful for control. Another |iterature, this is usually done by means of a
possibility is the determination of the dynamic rabd  nonlinear combination of the local models using e.g
directly from plant data in terms of “black-box” weighting functions that quantify the influence af
structures, what results in a model that has nectlir  specific local model on the global one. These
physical interpretation and that may exhibit poor weighting functions have a different interpretation
extrapolation capabilities. each of the techniques above, e.g. the scheduling
between operation regimes, the validity function of
A hybrid solution to this problem, which can be each model, the probability that a given local mode
termed “grey-box” modeling, is the use of several corresponds to the “true” model at a given instant,
“local models”, understood as approximations of the the fuzzy inference rule, etc. Although this kinfl o
original system in a limited sub-region of the structure exhibits a certain type of “uniform
operating domain, to construct a nonlinear model. gpproximation property” (Johansen and Foss, 1993;
The underlying principle is that the system behavio Johanseret al, 2000), the resulting global model,
is “simpler” locally than globally and as a resoltal ~ when analyzed locally, may keep very little siritiar



with the respective local model. As a result, the

The function) andW¥ above represent the maps that

appeal of this technique is considerably reducedgive, for each constant input (at least sufficiently

(Shorteret al, 1999).

This paper is organized as follows: Section 2 prisse

close to the origin), the corresponding steadyestat
and stationary output.

the theoretical basis for the development of a 2.1 Parameterized Linear Systems

nonlinear system approximation by means of local

linearizations, and Section 3 gives an alternative Having in mind the parameterization of the famify o

interpretation of this model in terms of linearinas

equilibrium points by means of the input it is

around submanifolds. Section 4 discusses how theséatural to use them to parameterize also the “famil
ideas can be used for system identification. The Of linearizations” of (1). In the case of the state

method is then applied in Section 5 to the
approximation and identification of a nonlinear

system in a numerical example. Concluding remarks

can be found in Section 6.

2. LINEARIZATION FAMILIES AND
PARAMETERIZED LINEAR SYSTEMS

equation, we have

. _[ or(xs,ug orXs
x:{ r(gxu)}(x—xs){ r()(;uuﬂ(u—us) (4)

where the coefficient matrices are continuous
functions ofus. The meaning of this expression is
that, for each constant input, there will be an

associated linearization (4). Conversely, given a

Consider a continuous SISO nonlinear dynamic parameterized linear state-equation of the form

system of the form

X =r(x,u)
y = h(x)

(1)

wherer: XxU- R" is at least once continuously

differentiable X O R", UO R, andh: X — R is at
least once continuously differentiable. The output
equation will be frequently omitted for shortness i
the sequel. Suppose without loss of generality (that

possesses a constant operating point at the origi
(0,000 X x U, that is,r(0,0)=0 andh(0,0) =0 (this

can be always achieved by means of a suitable

translation of the origin). The “family” of constian
equilibrium points corresponding to nonzero constan
inputs is defined as the set

=={(xu,y)OR"xRxR:

)
r(x,u)=0, y= h(x, u}

The interest is to characterize the set of constant

operating points in terms of the external process
variable u. More precisely, we want to state the
conditions under which the set of equilibrium peint
can be parameterized by the input.

Proposition 1(Wang and Rugh, 1987): Suppose the
nonlinear system (1) satisfies

rank{—ar ©, O)} =n
0

X

3)

Then, in an open neighborhoadof 00 R, there is

a continuously differentiable functio®: R —»R",
with Q(0) =0, such that (Q(u), u) =0, u O 4; In this
case, we also writé’(u) = h(Q(u), u).

Proof. Application of the implicit function theorem
tor(x,u) =0. O

X =A(Ug) (x-Q(ug)) +B(u) (u-uy, (5)

then (5) is said to constitute a linearization fignfi
there is a nonlinear system (1) such that, in a
neighbourhood of @R, r(Q(u),u) =0.

Proposition 2(Wang and Rugh, 1987): Suppose the
parameterized linear state equation (5) is such tha
A(D, B(DO are continuous, andQ(D is

continuously differentiable. Then (5) constitutes a

Ninearization family if and only if

dQ(u)

u

(6)

O

A(u) +B(u)=0-

The sufficiency part of the proposition above can b
proven by constructing a nonlinear system of the
form (1) which yields a family of linearizations)(4
In the case of input parameterization, this nomline
state-affine system is of the form
r(x,u) = A(u)(x-Q(u)) - (7
This representation is of course not unique; & ha
to be interpreted asnonlinear system that possesses
the same family of equilibrium points (2) and the
same linearization family (4) as the nonlinear eyst
This characteristic will be used in the sequel for
constructing an approximation to (1) by means of a
finite number of linear local models that are
considered as members of its linearization family.

3. LINEARIZATION ON THE EQUILIBRIUM
MANIFOLD

The system (7) can be considered as a linearizafion
(1) not arounda single equilibrium pointxs,us) but
around theentire equilibrium submanifoldConsider
the Taylor linearization (or linear tangential mde



of a scalar-valued nonlinear functid(e,v): ZxV
OR*xRY - R:

— of
f(z,v)= f(zo,v0)+{—} (z—zp)+
0z 29V (8)

B_I’L,vo (V=vop)

where ¢,,Vo) represents a point aax V. Suppose
now that besides the valuefadnd its derivativeat a
single point one knows their values on an entet

of points of the form ®: {(zvw) O ZxVx R:
(z,9(2),f(z,0(2)))}, with @(z) a smooth function oi.
The set determined byz{z)) represents az-
dimensional submanifold an x V, parameterized by
z. It is then natural to use this information to
construct a Taylor-like approximation around the
entire submanifold, which is given by:

v-9@) ©

(=1 o)+ 2 |
oV J; 002)
Note thatz enters in (9) solely by means of the
(known) function@(z); that is,z degrees of freedom
are eliminated in the approximation (9). The limfi
case whemz spans the entire domain of the functfon
(that is, V is empty) corresponds to the situation
when f is perfectly known. Furthermore, it can be
easily shown that the linearization of (9) at astant
point (o,vo) agrees with (8).

In the case of a system given by (7), the submhhifo
is defined as the seufQ(u),ri(Q(u),w)}, i=1,...,n,
where ri(Q(u),u) =0. In this sense, (7) can be
considered as a linearization around the equilibriu
manifold (LEM), and it wil be called
correspondingly a LEM system.

4. CONSTRUCTING AN APPROXIMATION OF
THE LEM SYSTEM

The interest will be focused now on the situation i
which one wants to construct an approximation ef th

e it circumvents the problem of obtaining local
models away from the equilibrium manifold (Shorten
et. al 1999);

* there is no need forempirical interpolation
procedures, which are associated with a series of
problems (Johansen and Murray-Smith, 1997);

» the resulting LEM system can be analyzed on the
basis of the local models in a straightforward neann
and control strategies such as pseudo- or extended
linearization can be applied directly (Reboulet and
Champetier, 1984).

The focus on input parameterization is due to #ut f
that the identification experiments are carried loyt
exciting the plant with a designed input signaltHis
sense, if one assumes that the local models can be
identified by perturbing the plant around isolated
equilibrium points, it is natural to use the ingat
parameterizing the linearization family.

The exact LEM system involves the infinite famiffy o
linearizations and of the equilibrium points of ,(1)
described by the matrix functiods(u) and Q(u). In

the identification context, just a finite (and padiby
small) number of the members of these families are
known, but one can still use approximation or
interpolation methods in order to “reconstruct’dbe
functions from the known members. This plays an
equivalent role to the weighting functions of the
original technique, although in this case the dbjec

of the interpolation is clear. Moreover, there isam
more flexibility in choosing the interpolation meth
and the problems due to function normalization
disappear. The resulting model will be called iis th
case the approximated LEM system

Another difficulty is that it is not possible to
associate directly the local linear models with the
linearizations of any specific form (realizatiorf)tbe
nonlinear system, since they are obtained up to a
similarity transformation. However, given coeffiote
matrices A(u) and B(u), a family of equilibrium
points Q(u) can be constructed, or, equivalently, (5)
can be madea linearization family, by considering
equation (6). Moreover, following a reasoning
similar to that of Reboulet and Champetier (1984),

nonlinear system (1). As stated at the beginning, aany similarity transformation between two linear

possible way of doing this is to use linear local
models, which are theoretically easier to identify,

systems can be interpreted as the gradient of a
nonlinear coordinate transformationon the

construct a nonlinear model. If these local models equilibrium manifold provided some mild conditions

can be associated with the family of linearizatiohs
the original nonlinear system (4), then it is pblesi
to construct the LEM model (7), which is a nonlinea

hold. Obviously, more suitable representationshzn
obtained if it is possible to associate (5) to acHic
nonlinear representation, for example a canonical

approximation of the original system around the form. In this work, it will be assumed that (1) dam

equilibrium manifold. Obviously, the adequacy of
this approximation will depend on the unknown
nonlinear system itself; nonetheless, this methasl h
some interesting features:

» only local identification around the equilibrium

manifold is necessary, what is less expensive than

global experiments;

written in the following form (Byrnes-Isidori norra
form):

§ =%, i=1..r-1
§ =a(s)+B(s)u (10)
Sj = .41 j=r+1,..n-1

$ =99



where r is the relative degree, ang=s,. The
linearization of (10) around(0) will be then of the
form

§=%, i=1..,0-1

§ =p5+ku (11)
§j=;§+1 J=r+1,..n-1

§, =03

The vectorg andq can be directly associated with
the parameters of the transfer function of (11).

i =1,...4, obtained by solving (12) for eaak, can
be used to construct an approximation to the LEM
system.

Table 1 Transfer function parameters of the local
models at the four operating points

oP 1 2 3 4
Gain 0.193 -0.236 -0.226 -0.206
Polelp) -823 -11.49 -1551 -18.96
Pole2p;) -1.70 (-3.0+ (-55%+ (-8.0%
Pole3ps) -1.33 0.14) 0.18) 0.17)
Zerolf) +554 -0.842 -3.02 -6.05
Zero2¢) -1.25 282 -531  -7.79

5. NUMERICAL EXAMPLE: CSTR REACTOR
WITH REVERSIBLE REACTION

The ideas presented in the previous sections will b
applied to the identification of a nonlinear modéh
CSTR carrying out the following reaction scheme:

AQEQBD@aC
g .
A+CO%_-D
This system can be modeled as
% =~k t ko= kX Uy
X, = +kyx = ko= kg%t %n = %
%o = +kgXl — Ky %~ U

12)

where the states, x, andx; are the concentrations of
the components A, B and C, respectivety= 2,

k, =5, ks =3 andk, =1 are the kinetic parameters,
andx,;, = 1 is the inlet concentration of component B
(units are disregarded in this example). The
manipulated input is the inverse of the residence
time in the reactor (total volumetric inflow divide
by reactor volume). The controlled outputis the
concentration of component A. This system has a
well defined relative degree of 1 for allith x; # 0.

The approximated LEM is constructed by means of 4
linear local models corresponding to the operating
pointsus; = 1 (ys1 = 0.193),us> = 2.5 §/s> = 0.236),

Uz = 5 (Ys3 = 0.226),us4 = 7.5 {/s4 = 0.206). No
special methodology was employed to select the
number or the location of these points; they were
simply distributed over the range of the manipulate
input (0.5< u < 10) around the maximum g§.

5.1 Reconstructing the LEM system with local
models from linearizations of the nonlinear
model in original coordinates

The model (12) was linearized at the four
operating points (OP) given above. Table 1
summarizes the parameters of these linear local
models. Among the remarkable features concerning
the variation of the dynamic character along the
equilibrium manifold, the most important is thersig
change ofz. The local models in state-space form
{Ai, By, ¢}, together with the equilibrium points;,

Each of the elements of the matricAs and the
vectors Xg; were interpolated in order to construct
approximations to the functioms(u) andQ(u) in (7).

For the A matrix, smoothing unidimensional spline
functions were constructed with the Matlab function
spaps (tolerance of 18). The interpolation of the
steady-state function can be improved by using the
derivatives given by (6), that is, by using Hermite
interpolation (Matlab functiospap).

The response of the approximated LEM system with
the input signal depicted in Fig. 1 is comparethi®
corresponding response of the nonlinear model in
Fig. 2. The output of the exact LEM syste(y)

and Q(u) are perfectly known from the nonlinear
model) is also plotted for reference, as well as th
response of the best linear model of Table 1 ia thi
case. Observe that the curves corresponding to the
exact and approximated LEM systems are practically
indistinguishable and very close to the response of
the nonlinear system.

5.2 Reconstructing the LEM system with local
models in Byrnes-Isidori Normal Form

In this section, we demonstrate that differentestat
space bases will lead to LEM systems with different
approximation characteristics. Furthermore, this
situation is closer to practice, where one does not
have a basis for the state-space. The four local
models A, B;, ¢} were transformed by means of a
similarity transformation into the linear Byrnes-
Isidori normal form discussed in Section 4,
producing a set of local modela{”, B, ¢™}.
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Fig. 1. Test input signal
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Fig. 2. Responses of the nonlinear, linearizechatthird OP, exact and approximated LEM systemkoithn
original and Byrnes-Isidori normal coordinatestte test input signal in Fig. 1.

Element-wise interpolation of the matrices®, evident heuristics is perhaps to ugkentification
i=1,...,4, was performed as in 5.1. The steady- signals with amplitude as small as possibfeorder
states of this particular realization are not knpwn to avoid that the nonlinear effects become strong.
since the local models were obtained by a poinewis From one point of view, this is a quite “plant-
linear transformation (assumed to be the gradiat o  friendly” condition, but it on the other hand imss
nonlinear coordinate change). In this case, it is important practical requirements (sufficient pressis
necessary to use equation (6) to interpolate fivat  in measuring and setting inputs and outputs, for
derivatives of Q™(u), given by -A™'B". The  example).

function Q™ itself can be obtained by integration of
this spline (Matlab functiorfnint); the integration

constant was chosen in order that the origirRiH

In order to illustrate this point, experiments were
made with the nonlinear model (12). For each of the

. operation points, pseudo-random binary
was the steady-state corresponding to the constanfyantification signals (PRBS) were generated by
inputus, = 1. means of the Matlab functionidinput with

determined length (in terms of number of samples)

Th f th i LEM h . . .
e response of the approximated system to'{ eand amplitude (inA percent ofus;). The period

input signal depicted in Fig. 1 is shown in Fig. 2. ) X ) )
Although the local models are related by means of a(S2mpling time)c of the signal was determined
similarity transformation (that is, they represent Pre€viously as a fraction dfs wherets; is the time
linear models with the same input/output behavior), N€€ded for the step response of the nonlinear model
the LEM systems in both forms are not equivalent. [0 réach 63% of its steady-state value.

Other tests showed that this fact is not relatethéo The routine subid of the Subspace Identification

poorer interpolation OA(H)(U? andQ(")(u)_in 'ghg NEW " Toolbox (van Overschee and de Moor, 1996) was
basis, but to the fact that different realizationls be used for identifying the linear local models wittet
more or less nonlinear aroudd Consequently, the  pagis of the responses of the nonlinear model with
LEM systems constructed by means of linearization rggpect o the PRBS. A similar sequence was used fo
families corresponding to different state-spaceebas gjigation purposes. Table 2 summarizes the results
of the nonlinear system will show different gpiained for the best identification setting imterof
approximation capabilities with respect to it. A and o in each case: the term “best’ refers to

resulting parameter values closest to those ineTabl
5.3 Reconstructing the LEM system from Other test signals (for example, Gaussian white

identification experiments noise) did not perform_ .better. The signal length

turned out to be not critical and was taken as 100
This case is certainly of most interest for pratic samples for all operating points. The most impdrtan
applications. It is crucial for the success of the parameters were the input amplitutland the period
method that the identified local models are good of the signab. Table 3 shows the optimal parameters
approximations of the linearizations of (1). Thestno  corresponding to Table 2.



Table 2 Identified parameters at each operatingtpoi 0.24 — Nonlinear System

— LEM System Linearized Local Modg
0.27 N LEM System Identified Local Model

OoP 1 2 3 4

Gain -0.193 -0.235 -0.226 -0.206 0-24
Polelp) -8.19 -11.38 -1558 -19.53
Pole2p,) -1.72 (-3.1+ (-59+ (-10.1
Pole3p) -1.15 0.6) 1.3) +2.49)
Zerolg) +554 -0.809 -3.28 -7.60
Zero2 @) -1.08 -284 -596 -11.04

Table 3 Characteristics of the PRBS used in Table 2

2 3 4 5 6 7 8 9 10

OF 1 2 3 4 _ t ) ) )
A (%) 3 10 3 3 Fig. 3. Responses of the nonlinear, linearized and
G 0.101 0.047 0.02¢ 0.01¢ identified LEM systems (both in Byrnes-Isidori
* 3% was considered a lower bound for practicasoes. normal form) to the test input signal in Fig. 1.

The differences in Table 3 can be interpreted ley th
fact that the system shows different charactesisdic AKNOWLEDGMENTS

the different OP’s. The first OP lies in a regiohexe

the dynamics vary more pronouncedly gndandz, The first author would like to thank the German
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to be small enough to capture these features. Thehis work.
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