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Abstract: This paper presents a neuro-dynamic programming methodology for the control 
of markov decision processes. The proposed method can be considered as a variant of the 
optimistic policy iteration, where radial basis function (RBF) networks are employed as a 
compact representation of the cost-to-go function and the λ-LSPE is used for policy 
evaluation. We also emphasize the reformulation of the Bellman equation around the 
post-decision state in order to circumvent the calculation of the expectation. The 
proposed algorithm is applied to a retailer-inventory management problem. Copyright © 
2005 IFAC 
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1. INTRODUCTION 
 
1.1 Overview 
 
In this paper we deal with the control of discrete-time 
stochastic dynamic systems using neuro-dynamic 
programming methods. We consider dynamic systems 
which evolve through time according to: 

1 ( , , )t t tx f x u tω+ =   (1) 
where  is the state of the system at time t, 

is the control action and 
tx ∈X

tu ∈U tω  takes values in a 
finite set  with given probability distribution W

( ),t t tp x u⋅  depending on xt and ut. The state and 

control sets, ,  respectively are assumed to be 
finite as well. With each state-control pair and 
disturbance we associate a bounded cost 
function . We define an admissible 
control policy π as a sequence of functions µ

X U

:g × × 6X U W R
t that 

map states on control actions that are taken at each 
time instance t. The objective of the control problem 

is to find an optimal policy, that is, an admissible 
policy { }0 1, ,...π µ µ=  which minimizes the expected 
infinite horizon discounted cost: 
 

(0( ) , ( ),t
t t t t
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J x a g x xπ µ ω
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⎣ ⎦
∑E�   (2) 

 
where 0( )J xπ  is the cost-to-go of policy π starting 
from state 0x  and ( )0,1a ∈  is the discount factor. 

We define the optimal cost-to-go function *J as: 
* ( ) min ( )J x J x x∀ ∈Xπ

π
=      (3) 

 
The above formulation is known as the Markov 
decision problem and has been studied thoroughly by 
researchers in the control and operations research 
community. The problem originated from the seminal 
work of Bellman (1957), where a new theoretic and 
algorithmic framework named dynamic programming 

     



was proposed for addressing optimal control 
problems  
 
1.2 Dynamic Programming 
 
The optimal cost-to-go function is given by the 
solution of the Bellman equation: 
 

( )* *( ) min ( ( , , )) , ,
u

J x g x,u,ω aJ f x u x u xω
∈

⎡= +⎣U
E ⎤ ∀ ∈⎦ X

  (4) 
 
where ,x u⎡⋅⎣E ⎤⎦ denotes the expected value with 
respect to the probability distribution of  ω. Once the 
optimal cost-to-go value is determined for each state, 
the optimal control policy is defined as follows: 

( )* *( ) arg min ( ( , , )) ,
u

x g x,u,ω aJ f x u x uµ
∈

⎡= +⎣U
E ω ⎤⎦    

(5) 
 
There exist two central algorithmic techniques for 
calculating the optimal cost-to-go function, that is, 
value iteration and policy iteration.  
Value iteration starts with an n-dimensional vector J, 
where n is the cardinality of set X and successively 
computes approximations of the optimal cost-to-go 
value for each  by using the Bellman equation. 
Thus, at iteration k the method performs updates of 
the optimal cost-to-go value for each 

x ∈X

x ∈X as 
follows: 
 

( )1( ) min ( ( , , )) , ,k k

u
J x g x,u,ω aJ f x u x u xω+

∈
⎡= +⎣U

E ⎤ ∀ ∈⎦ X
(6) 

 
The method terminates when the values Jk(x) 
converge for every . It is proven that the values 
at which the successive approximations converge are 
the optimal cost-to-go values 

x ∈X

* ( )J x  for each x ∈X . 
The method generally requires an infinite number of 
iterations. 
Policy iteration involves a two-step procedure 
comprised of policy evaluation and policy 
improvement. The method starts with a specific 
stationary policy π0, that is, a policy of the 
form{ }0 0, ,.....µ µ . At each iteration k the method 
retains a stationary policy πk and the corresponding 
cost-to-go values denoted by 

k

J µ  are calculated for 
each  from the solution of the system of 
equations: 

x ∈X

 

( )( ) ( ( , , )) , ,    
k k

J x g x,u,ω aJ f x u x u xµ µ ω⎡ ⎤= + ∀⎣ ⎦E X∈

   (7) 
Once ( )kJ xµ  has been calculated for every state, the 
policy improvement step takes place: 
 

( )1( ) arg min ( ( , , )) ,kk

u
x g x,u,ω aJ f x u x uµµ +

∈
⎡= +⎣U

E ω ⎤⎦
   (8) 

The above procedure is repeated with 1kµ + in place of 
kµ  unless

1

( ) ( ),    
k k

J x J x xµ µ+

= ∀ ∈X . The main 
characteristic of policy iteration is that the sequence 
of stationary policies generated by the method is 
improving.  
There exist numerous other algorithms that involve 
variants or combinations of the above two methods, 
such as the modified policy iteration (Puterman, 
1994) method.  
 
1.3 Neuro-Dynamic Programming 
 
Dynamic programming techniques are inapplicable in 
practice because they suffer from the well known 
curse of dimensionality of the state space, i.e. the 
exponential growth of the cardinality of set X with 
respect to the number of state variables. For this 
reason the computation and storage of the cost-to-go 
value for each state that is required by value and 
policy iteration, is prohibitive for even medium – 
scale systems. One more difficulty that arises in 
classical dynamic programming is the requirement of 
the explicit dynamics of the system, that is, the 
transition probabilities of the underlying Markov 
model. To overcome these difficulties, a new class of 
simulation-based approximate dynamic programming 
methods has been developed. This class of suboptimal 
methods originated from the artificial intelligence 
research community under the name reinforcement 
learning (Sutton, 1988, Sutton & Barto, 1998). The 
methods were adopted and mathematically 
substantiated by the engineering community which 
used the name neuro-dynamic programming 
(Bertsekas, Tsitsiklis, 1996). The key points of these 
methods are the utilization of compact representations 
of the cost-to-go vectors by function approximators 
such as neural networks and the use of system 
simulators in order to obtain sample trajectories and 
train the approximators. Most of these methods lead 
to an approximate cost-to-go function ( ),J x w�  of the 

optimal cost-to-go function * ( )J x . The main purpose 
of neuro-dynamic algorithms is to compute the 
appropriate parameter values , such that the 
cost-to-go approximator is as close as possible 
to

kw∈R

* ( )J x . Once the approximate cost-to-go is 
determined off-line, the corresponding greedy policy 
can be implemented on-line for controlling the system 
in a suboptimal fashion, according to: 
 

( )( ) arg min ( ( , , ), ) ,
u

x g x,u,ω aJ f x u w x uµ ω
∈

⎡ ⎤= +⎣ ⎦
�

U
E       

(9) 
 
In this paper we will focus on a variant of the neuro-
dynamic programming method named approximate 
policy iteration, which we briefly describe next: 
We start with some stationary policy µ0 and at each 
iteration k we approximately evaluate the cost of the 
corresponding policy in eq. (2) by linear regression, 
fitting the cost-to-go approximator to the results 
(state/cost-to-go pairs) of a theoretically infinitely 

     



long trajectory. However, in practice we cannot carry 
out an infinitely long simulation. Thus, we constraint 
ourselves to trajectories consisting of only a finite 
number of N steps, and we accumulate the discounted 
costs of only the first N – M states, considering for 
each one of them an M-step horizon. In this way we 
collect N-M pairs of state - cost-to-go values. These 
sampled cost-to-go values c(x) are within GaM/(1- a) 
of Jµ, where G is an upper bound on ( , , )g x u ω  
(Bertsekas & Tsitsiklis, 1996).  
Assuming that the state - cost-to-go pairs have been 
collected, one can solve the least-squares 
optimization problem in batch mode in order to 
determine the parameter vector w: 

( )arg min
w

x

J(x,w) - c(x)
∈
∑ �

X
  (10) 

Another option is to solve the least squares problem 
‘on-line’, as the simulation progresses and new data 
are becoming available. The most famous of these 
methods is the so called temporal difference learning 
(Sutton, 1988) which is considered as a major 
breakthrough in neuro-dynamic programming. The 
method can be described as an incremental gradient-
like least squares method, where the parameter values 
are updated upon each observation of a state 
transition and the associated cost. The method is 
based on the notion of temporal difference dt 
corresponding to the transition from xt to xt+1: 

( ) ( ) (1, , , ,t t t t t t td g x u aJ x w J x wω += + −� � )t  (11) 
Favorable convergence results for the method are 
presented in (Tsitsiklis and Van Roy, 1997) in the 
case of linear function approximators.  Other methods 
proposed in the literature for approximate policy 
evaluation are least-squares temporal difference 
learning (LSTD) and λ-least squares policy 
evaluation (λ-LSPE) (Nedic, Bertsekas, 2003), which 
will be described in detail in 2.3. 
After the approximate policy evaluation step has been 
performed, the policy improvement step follows: 
 

( ) ( )( )1( ) argmin , , , ,kk

u
x g x,u,ω aJ f x u x u xµµ +

∈
⎡= +⎣

�
U
E ω ⎤ ∀ ∈⎦ X

     (12) 
The steps of approximate policy evaluation and 
policy improvement are repeated in an interleaved 
fashion. It is worth mentioning that contrary to policy 
iteration, approximate policy iteration is not 
producing improving policies in each iteration. 
There are also optimistic variants of the approximate 
policy iteration method, where the policy 
improvement step is performed after few transitions 
of the simulated dynamic system, or even after each 
transition. Although optimistic policy iteration has 
been proven convergent only for look-up table 
representation (Tsitsiklis, 2002) there is no similar 
result in the case of function approximators. 
However, this method has produced the most 
encouraging results in the literature of approximate 
dynamic programming. The most noticeable 
application of the method is its incorporation in the 
Tesauro’s backgammon player (Tesauro, 1994). 
 

2. PROPOSED METHODOLOGY 
 
We propose the use of radial basis functions as 
function approximators of the cost-to-go functions 
within an optimistic policy iteration scheme for the 
control of stochastic discrete-time dynamic systems. 
We employ λ-LSPE for the policy evaluation step.  
 
2.1 Radial Basis Functions 
 
The true cost-to-go function is inherently nonlinear 
with respect to the state variables. So in order to 
achieve a good approximation performance, which is 
the key for success in approximate dynamic 
programming, nonlinear function approximators, such 
as neural networks can be employed. However, 
classical feedforward neural networks are nonlinear 
with respect to their weight parameters. This fact 
complicates the development of a method that can 
guarantee convergence of the existing policy 
evaluation methods, since no policy evaluation 
method has proven to converge for nonlinear (in the 
parameters) approximators. Instead, we employed the 
RBF neural network architecture for approximating 
the cost-to-go function. In this way, we manage to 
capture the nonlinearities of the true cost-to-go 
function, while assuring that the policy evaluation 
method will not diverge. 
The approximation architecture we employ has the 
form: 

( ) ( ), ' ,    J x w x w xφ= ∀ ∈� X  (13) 

where ( )xφ  is an L-dimensional vector associated 

with the state x that has components ( )1 xφ , ( )2 xφ , 
( )..., L xφ while w is a weight vector with components 

. We use Gaussian functions with 
fixed centers as basis functions. The centers of the 
basis functions are selected in batch mode before the 
method starts operating. Special care needs to be 
taken for the center selection due to the localized 
character of the radial basis functions. The centers 
must span the entire state space in order to achieve a 
global behavior of the network. Once this is 
accomplished, the network can combine good 
approximation properties through the entire state 
space while retaining its simple linear structure with 
respect to the weight parameters. 

(1), (2),.., ( )w w w L

 
2.2 Importance of the Post Decision State 
 
Notice that the policy improvement step in eq. (12) 
involves the calculation of the minimum of an 
expectation that implies knowledge of the transition 
probabilities of the markov chain. However, these 
probabilities are generally not known. To overcome 
this problem we reformulate the problem using the 
post decision state u

tx , i.e. the state of the system that 
emerges after the control has acted on it. We denote 
by tx the pre-decision state, that is the state before 
control has been applied but after information ωtu t-1 
has arrived. To make it clearer, we define the 

     



information history of the markov decision process up 
to time t, using the pre-decision state: 

( )t 0 0 0 1 1 1 t t tx ,u ,ω ,x ,u ,ω ,...,x ,u ,ω=F        (14) 
The dynamics of the system are given by eq. (1). We 
notice that the transition from one state to another is 
stochastic. The control function is given by: 

( )*
1 1( ) arg min ( , , ( )) ( ( )

t
t t t t t tu

x g x u x aJ xµ ω+ +∈
⎡= +⎣U

E tω ⎤
⎦  (15) 

)

 If a single simulation is used (i.e. if we use a single 
sample ωt) to approximate the expectation in (15) we 
have: 

( *
1 1( ) arg min ( , , ( )) ( ( )

t
t t t t t t tu

x g x u x aJ xµ ω ω+ +∈
= +

U
(16) 

Eq. (16) implies that in order to calculate ut, the value 
of xt+1(ωt) is needed, which is not yet available. 
We define the post decision state u

tx  as the state of 
the system after decision  has been applied, but 
before new information 

tu

tω  has arrived. Now the 
history of the process is given by: 

( 0 0 0 0 1 1 1 1, , , , , , , ,..., , , ,u u u
t x u x x u x x u x )t t t tω ω ω=F   (17) 

 
The transition from the pre-decision state to the post-
decision state is given by a function of the form: 

( , )u u
t t tx f x u=       (18) 

Notice that the transition from the pre-decision to the 
post-decision variable is deterministic. 
We also define the transition from the post-decision 
state to the pre-decision state as a function f ω of the 
form: 

1 ( , )u
t tx f xω

tω+ =           (19) 
The transition from the post-decision to the pre-
decision state is stochastic. The relationship between 
the optimal pre-decision and the post-decision cost-
to-go functions, J* and Ju respectively is given by: 
 

( ) ( ) ( ), (u u u * u
t t t t+1 t ) tJ x g x +aJ x xω ω⎡ ⎤= ⎣ ⎦E�  (20) 

( ) (
1

*
1 min

t

u u
t u

)t+1J x J x
+

+ ∈
=

U
  (21) 

The Bellman equation for the post-decision state 
becomes: 

( ) ( ) ( )
1

1, min
t

u u u u u u
t t t tu tJ x g x a J x xω

+
+∈

⎡ ⎤= +⎢⎣ U
E ⎥⎦

 (22) 

 
Notice that the expectation has been drawn out of the 
min operator. The optimal policy *µ  is determined 
by: 

(* ( ) arg min ( )
t

u u
t u

)t tx J x uµ
∈

=
U

 (23) 

Here, we calculate ut given the value of ωt-1 which is 
available at the time we make the decision. So, we do 
not violate any informational constraints, i.e. we are 
not using information that is not available at the time 
we make the decision. Hence a single simulation is 
enough to generate an unbiased estimate of cost-to-go 
function. More generally, we can use a single 
simulation when we need to approximate terms of the 

form { }minE ⎡ ⎤⎣ ⎦i , but for terms of the form 

[ ]{ }min E i  we must use multiple simulations.  
 
2.3 λ- Least Squares Policy Evaluation 
 
Perhaps the most crucial part for the success of a 
neuro-dynamic programming method is the policy 
evaluation step. The method that is utilized must be 
reliable and must converge as fast as possible because 
this is the most time consuming part of the method. 
These methods originate from stochastic 
approximation techniques (Kushner and Yin, 1997), 
so they usually involve a positive diminishing 
stepsize parameter that needs much effort and 
experience to be tuned, in order to ensure 
convergence. Various heuristic stepsize parameters 
have been proposed in the literature, however the 
choice of the stepsize parameter seems to be problem 
dependent. The only temporal difference method until 
now that has been proven convergent without 
requiring a diminishing stepsize is λ-Least Squares 
Policy Evaluation (λ-LSPE) (Nedic and Bertsekas, 
2003). The convergence proof for the method can be 
found in (Bertsekas et al., 2003). The proof is generic 
for all models employing linear combinations of basis 
functions that depend on the state of the system and 
thus can be used to prove convergence of the 
proposed method. Due to space limitations, no further 
discussion on the convergence can be provided and 
the reader is referred to the above paper.  
λ-LSPE is a gradient-like method based on temporal 
differences and λ-policy iteration, which involves the 
solution of a least-squares problem. The essence of 
the method is the progressive reduction of the 
discount factor in order to accelerate the policy 
evaluation step. The method involves incremental 
solutions of the following least-squares problems: 

2

1
0

arg min ( ) ' ( ) ' ( ) ( , )
t t

k m
t m m t t kr m k m

r x r x r a d xφ φ λ −
+

= =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ ∑ kx (24) 

where  is the temporal  difference defined 
in (11). The new weight vector is given by: 

1( , )t k kd x x +

1 ( )t t t tr r r rγ+ = + −          (25) 
 

2.4 Description of λ-LSPE based RBF Optimistic 
Policy Iteration 
 
Below describes in detail the proposed methodology. 
It is an optimistic policy iteration algorithm where the 
policy improvement step follows after each transition. 
We use an efficient implementation scheme for λ-
LSPE by applying the Sherman-Morrison-Woodbury 
formula (Golub & Van Loan, 1989) to compute the 
rank one update of the inverse of the matrix Bt. 
 
Detailed description of the λ-LSPE based RBF 
Optimistic Policy Iteration 
 
Set 1

0B Iδ− = , 0A = 0  and , where0b = 0 1
0B− is 

a L L× matrix, I is the L L×  identity matrix, 0A is a 
L L× matrix and b0 is a 1L× vector. 

     



1. Given the initial pre-decision state 0x , set t = 0 and 
generate a control according to the steps a and b: 0u
a. Simulate the system from 0x  to 0

ux  
deterministically according to eq. (18) for each 

 0u ∈U

b. Select ( )
0

0 0arg min ( ),u u

u 0 0x u w
∈

= �
U

u J  

2. Simulate the system from 0x  according to eq. (18), 
applying control 0u  to get the post-decision state 0

ux . 

3. Set t t . Simulate the system from 1← + u
tx  

generating a random sample ωt and applying eq. (19) 
to obtain the next pre-decision state 1tx + and the one-

stage cost ( ),u
t tg x ω . 

4. Generate a control 1tu +  according to 

( )
1

1 1arg min ( ),
t

u u
t t tu

u J x u
+

+ + +∈
= �

U 1 1tw −  

5. Simulate the system from 1tx +  applying control 

1tu +  according to eq. (18), to get the post-decision 
state 1

u
tx + . 

6. Update the weight parameters of the RBF network 
using the recursive form of λ-LSPE: 

( )1
1 1 1 1 1 1t t t t t t tw w B A w bγ −

− − − − − −= + +  

( ) ( )
( ) ( )

1 1
1 11 1

1 1
1

'

1 '

u u
t t t t

t t u u
t t t

B x x B
B B

x B x

φ φ

φ φ

− −
− −− −

− −
−

= −
+

 

( )1
u

t t tz a z xλ φ−= +  

( )1 1( ) ' ( ) 'u u
t t t t tA A z a x xφ φ− += + −  

( )1 1,u u
t t t t tb b z g x x− += +  

and return to step 3. 
 

 
3. SIMULATION RESULTS 

 
We applied the proposed λ-LSPE-based Optimistic 
Policy Iteration with RBF networks (OPI-λ-LSPE-
RBF) as the cost-to-go approximator to a retailer-
inventory problem presented in Van Roy et al. 
(1997). The system under investigation consists of 
one production facility, one warehouse and ten stores. 
The goal is to efficiently manage inventory levels at 
warehouses and stores in order to meet customer 
demands and minimize storage and transportation 
costs. For detailed information about the model we 
refer the interested reader to the aforementioned 
technical report. In table 1 we list the problem 
parameters that were used in this work. The proposed 
method was compared with an s-type policy that is 
described in (Van Roy et al., 1997). The method was 
further compared to a neuro-dynamic programming 
algorithm using linear- with respect to the state 
variables- function approximators (OPI-λ-LSPE-
LINEAR). We finally tested the method using an ε-
greedy soft policy scheme (OPI-λ-LSPE-RBF-ε) as 
the cost-to-go approximator, that will be described 
later. 

Table 1. Values for the parameters of the retailer-
inventory management problem

Parameters of the model PValues 
number of stores 10 
delay to stores 2 

Delay to warehouse 2 
production capacity 100 
warehouse capacity 1000 

store capacity 100 
Probability of customer waiting 0.8 

Cost of special delivery 10 
Warehouse storage cost 3 

store storage cost 3 
shortage cost 60 
mean demand 5 

standard deviation of demand 14 
 
The heuristic s-type policy is parameterized by two 
decision variables: a warehouse-order-up-to level and 
a store-order-up-to level. These two variables also 
constitute the vector of manipulated variables in the 
control model we propose using the neuro-dynamic 
approach. Hence, control ut consists of these two 
variables. The number of state variables is 33, which 
produces an enormous cardinality, thus making 
classical dynamic programming techniques 
impractical. The optimal order-up-to levels for the s-
type policy were optimized by evaluating all possible 
combinations using lengthy simulations. The optimal 
values resulting from the exhaustive enumeration 
were 250 for the warehouse and 12 for the stores. All 
the states visited and their corresponding cost-to-go 
values during the above simulations were used to 
locate the centers of the RBF weights and calculate an 
initial estimate of the weight parameters. Specifically, 
the centers of the RBF network were selected from a 
normal distribution with mean and standard deviation 
equal to the ones of the collected states. The weight 
parameters were calculated using standard least 
squares on the above data. After the preliminary 
training phase, the λ-LSPE-based Optimistic Policy 
Iteration was applied as described in the previous 
section. The step size parameter was set equal to 1 
and remained constant during the execution of the 
method while λ was set equal to 0.8. As we can see in 
figure 1 the weights of the RBF network converge 
after approximately 1,500,000 state transitions. 
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Fig.1. Evolution of weight parameters of the RBF 

network during the course of λ-LSPE-based 
Optimistic Policy Iteration  

 

     



As mentioned previously, we experimented with a 
linear combination of the state variables as a cost-to-
go approximator. The method failed badly, since the 
linear architecture was not able to capture the 
nonlinearities of the true cost-to-go function, thus 
resulting to a very large value bias value, while the 
values of the other weights were very close to zero. 
We also tested a variant of the λ-LSPE-based 
Optimistic Policy Iteration with RBF networks that 
employed an ε-greedy policy in order to achieve 
exploration of the state space during the training 
phase. In de Farias & Van Roy (2000) it was shown 
that the trajectory of the weight vector can be 
considered as an approximation of the trajectory of an 
ordinary differential equation, where the limits of 
convergence correspond to the stationary points of the 
ODE. However, they pointed out that if no sufficient 
exploration is achieved, the respective ODE need not 
possess any stationary points. ε-greedy policy is a soft 
stochastic policy where the control action is selected 
randomly with probability ε, while the greedy control 
action with respect to the current estimate of the cost-
to-go values is selected with probability 1-ε. We 
selected the initial value of ε close to one and as the 
algorithm progressed we gradually reduced its value 
asymptotically to zero. The weight parameters 
converged, but to completely different values from 
the ones shown in Fig. 1. 
Finally, we tested the approximation architectures 
using a validation set which was common to all four 
methods. By the term validation set we mean a new 
initial state and a new independent realization of the 
random variable, which for the specific problem is 
customer demand. The results are summarized in 
table 2, where we observe that OPI-λ-LSPE-RBF 
exhibits the best performance in term of average cost, 
while OPI-λ-LSPE-LINEAR performs poorly. 
 

Table 2. Performance comparison for the various 
methods

Method Average 
Cost 

Average Cost-
to-go 

s-type policy 1106.4 110790 
OPI-λ-LSPE-RBF 1090.4 108115 

OPI-λ-LSPE-
RBF-ε 1199.3 119124 

OPI-λ-LSPE-
LINEAR 1742.7 173990 

 
4. CONCLUSIONS 

 
The concept of dynamic programming for the control 
of stochastic discrete-time dynamic systems has 
revived due to the emergence of neuro-dynamic 
programming techniques which circumvent the 
classical curse of dimensionality by employing 
simulation and function approximation. In this paper 
we presented an optimistic policy iteration algorithm 
based on RBF networks and the λ-LSPE method. 
Utilization of the RBF network architecture provides 
excellent approximations of the cost-to-go function, 
while retaining a linear, with respect to the 
parameters, model structure. The λ-LSPE method is a 

robust policy evaluation technique which does not 
require a diminishing stepsize parameter. We applied 
the method to a retailer-inventory management 
problem found in literature and obtained very 
encouraging results. We also discovered that 
employing a linear approximation of the cost-to-go 
function does not produce similar results, a fact that 
emphasizes the need for nonlinear approximation 
techniques such as RBF networks. 
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