

AN RBF BASED NEURO-DYNAMIC APPROACH FOR THE CONTROL OF STOCHASTIC

DYNAMIC SYSTEMS

Panagiotis K. Patrinos, Haralambos Sarimveis

School of Chemical Engineering, National Technical University of
Athens, 9, Heroon Polytechniou str., Zografou Campus, Athens

15780, Greece
patrinos@central.ntua.gr, hsarimv@central.ntua.gr

Abstract: This paper presents a neuro-dynamic programming methodology for the control
of markov decision processes. The proposed method can be considered as a variant of the
optimistic policy iteration, where radial basis function (RBF) networks are employed as a
compact representation of the cost-to-go function and the λ-LSPE is used for policy
evaluation. We also emphasize the reformulation of the Bellman equation around the
post-decision state in order to circumvent the calculation of the expectation. The
proposed algorithm is applied to a retailer-inventory management problem. Copyright ©
2005 IFAC

Keywords: Markov decision processes, Radial base function networks, uncertain
dynamic systems, optimal control

1. INTRODUCTION

1.1 Overview

In this paper we deal with the control of discrete-time
stochastic dynamic systems using neuro-dynamic
programming methods. We consider dynamic systems
which evolve through time according to:

1 (, ,)t t tx f x u tω+ = (1)
where is the state of the system at time t,

is the control action and
tx ∈X

tu ∈U tω takes values in a
finite set with given probability distribution W

(),t t tp x u⋅ depending on xt and ut. The state and

control sets, , respectively are assumed to be
finite as well. With each state-control pair and
disturbance we associate a bounded cost
function . We define an admissible
control policy π as a sequence of functions µ

X U

:g × × 6X U W R
t that

map states on control actions that are taken at each
time instance t. The objective of the control problem

is to find an optimal policy, that is, an admissible
policy { }0 1, ,...π µ µ= which minimizes the expected
infinite horizon discounted cost:

(0() , (),t
t t t t

t=0

J x a g x xπ µ ω
∞

)⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑E� (2)

where 0()J xπ is the cost-to-go of policy π starting
from state 0x and ()0,1a ∈ is the discount factor.

We define the optimal cost-to-go function *J as:
* () min ()J x J x x∀ ∈Xπ

π
= (3)

The above formulation is known as the Markov
decision problem and has been studied thoroughly by
researchers in the control and operations research
community. The problem originated from the seminal
work of Bellman (1957), where a new theoretic and
algorithmic framework named dynamic programming

was proposed for addressing optimal control
problems

1.2 Dynamic Programming

The optimal cost-to-go function is given by the
solution of the Bellman equation:

()* *() min ((, ,)) , ,
u

J x g x,u,ω aJ f x u x u xω
∈

⎡= +⎣U
E ⎤ ∀ ∈⎦ X

 (4)

where ,x u⎡⋅⎣E ⎤⎦ denotes the expected value with
respect to the probability distribution of ω. Once the
optimal cost-to-go value is determined for each state,
the optimal control policy is defined as follows:

()* *() arg min ((, ,)) ,
u

x g x,u,ω aJ f x u x uµ
∈

⎡= +⎣U
E ω ⎤⎦

(5)

There exist two central algorithmic techniques for
calculating the optimal cost-to-go function, that is,
value iteration and policy iteration.
Value iteration starts with an n-dimensional vector J,
where n is the cardinality of set X and successively
computes approximations of the optimal cost-to-go
value for each by using the Bellman equation.
Thus, at iteration k the method performs updates of
the optimal cost-to-go value for each

x ∈X

x ∈X as
follows:

()1() min ((, ,)) , ,k k

u
J x g x,u,ω aJ f x u x u xω+

∈
⎡= +⎣U

E ⎤ ∀ ∈⎦ X
(6)

The method terminates when the values Jk(x)
converge for every . It is proven that the values
at which the successive approximations converge are
the optimal cost-to-go values

x ∈X

* ()J x for each x ∈X .
The method generally requires an infinite number of
iterations.
Policy iteration involves a two-step procedure
comprised of policy evaluation and policy
improvement. The method starts with a specific
stationary policy π0, that is, a policy of the
form{ }0 0, ,.....µ µ . At each iteration k the method
retains a stationary policy πk and the corresponding
cost-to-go values denoted by

k

J µ are calculated for
each from the solution of the system of
equations:

x ∈X

()() ((, ,)) , ,
k k

J x g x,u,ω aJ f x u x u xµ µ ω⎡ ⎤= + ∀⎣ ⎦E X∈

 (7)
Once ()kJ xµ has been calculated for every state, the
policy improvement step takes place:

()1() arg min ((, ,)) ,kk

u
x g x,u,ω aJ f x u x uµµ +

∈
⎡= +⎣U

E ω ⎤⎦
 (8)

The above procedure is repeated with 1kµ + in place of
kµ unless

1

() (),
k k

J x J x xµ µ+

= ∀ ∈X . The main
characteristic of policy iteration is that the sequence
of stationary policies generated by the method is
improving.
There exist numerous other algorithms that involve
variants or combinations of the above two methods,
such as the modified policy iteration (Puterman,
1994) method.

1.3 Neuro-Dynamic Programming

Dynamic programming techniques are inapplicable in
practice because they suffer from the well known
curse of dimensionality of the state space, i.e. the
exponential growth of the cardinality of set X with
respect to the number of state variables. For this
reason the computation and storage of the cost-to-go
value for each state that is required by value and
policy iteration, is prohibitive for even medium –
scale systems. One more difficulty that arises in
classical dynamic programming is the requirement of
the explicit dynamics of the system, that is, the
transition probabilities of the underlying Markov
model. To overcome these difficulties, a new class of
simulation-based approximate dynamic programming
methods has been developed. This class of suboptimal
methods originated from the artificial intelligence
research community under the name reinforcement
learning (Sutton, 1988, Sutton & Barto, 1998). The
methods were adopted and mathematically
substantiated by the engineering community which
used the name neuro-dynamic programming
(Bertsekas, Tsitsiklis, 1996). The key points of these
methods are the utilization of compact representations
of the cost-to-go vectors by function approximators
such as neural networks and the use of system
simulators in order to obtain sample trajectories and
train the approximators. Most of these methods lead
to an approximate cost-to-go function (),J x w� of the

optimal cost-to-go function * ()J x . The main purpose
of neuro-dynamic algorithms is to compute the
appropriate parameter values , such that the
cost-to-go approximator is as close as possible
to

kw∈R

* ()J x . Once the approximate cost-to-go is
determined off-line, the corresponding greedy policy
can be implemented on-line for controlling the system
in a suboptimal fashion, according to:

()() arg min ((, ,),) ,
u

x g x,u,ω aJ f x u w x uµ ω
∈

⎡ ⎤= +⎣ ⎦
�

U
E

(9)

In this paper we will focus on a variant of the neuro-
dynamic programming method named approximate
policy iteration, which we briefly describe next:
We start with some stationary policy µ0 and at each
iteration k we approximately evaluate the cost of the
corresponding policy in eq. (2) by linear regression,
fitting the cost-to-go approximator to the results
(state/cost-to-go pairs) of a theoretically infinitely

long trajectory. However, in practice we cannot carry
out an infinitely long simulation. Thus, we constraint
ourselves to trajectories consisting of only a finite
number of N steps, and we accumulate the discounted
costs of only the first N – M states, considering for
each one of them an M-step horizon. In this way we
collect N-M pairs of state - cost-to-go values. These
sampled cost-to-go values c(x) are within GaM/(1- a)
of Jµ, where G is an upper bound on (, ,)g x u ω
(Bertsekas & Tsitsiklis, 1996).
Assuming that the state - cost-to-go pairs have been
collected, one can solve the least-squares
optimization problem in batch mode in order to
determine the parameter vector w:

()arg min
w

x

J(x,w) - c(x)
∈
∑ �

X
 (10)

Another option is to solve the least squares problem
‘on-line’, as the simulation progresses and new data
are becoming available. The most famous of these
methods is the so called temporal difference learning
(Sutton, 1988) which is considered as a major
breakthrough in neuro-dynamic programming. The
method can be described as an incremental gradient-
like least squares method, where the parameter values
are updated upon each observation of a state
transition and the associated cost. The method is
based on the notion of temporal difference dt
corresponding to the transition from xt to xt+1:

() () (1, , , ,t t t t t t td g x u aJ x w J x wω += + −� �)t (11)
Favorable convergence results for the method are
presented in (Tsitsiklis and Van Roy, 1997) in the
case of linear function approximators. Other methods
proposed in the literature for approximate policy
evaluation are least-squares temporal difference
learning (LSTD) and λ-least squares policy
evaluation (λ-LSPE) (Nedic, Bertsekas, 2003), which
will be described in detail in 2.3.
After the approximate policy evaluation step has been
performed, the policy improvement step follows:

() ()()1() argmin , , , ,kk

u
x g x,u,ω aJ f x u x u xµµ +

∈
⎡= +⎣

�
U
E ω ⎤ ∀ ∈⎦ X

 (12)
The steps of approximate policy evaluation and
policy improvement are repeated in an interleaved
fashion. It is worth mentioning that contrary to policy
iteration, approximate policy iteration is not
producing improving policies in each iteration.
There are also optimistic variants of the approximate
policy iteration method, where the policy
improvement step is performed after few transitions
of the simulated dynamic system, or even after each
transition. Although optimistic policy iteration has
been proven convergent only for look-up table
representation (Tsitsiklis, 2002) there is no similar
result in the case of function approximators.
However, this method has produced the most
encouraging results in the literature of approximate
dynamic programming. The most noticeable
application of the method is its incorporation in the
Tesauro’s backgammon player (Tesauro, 1994).

2. PROPOSED METHODOLOGY

We propose the use of radial basis functions as
function approximators of the cost-to-go functions
within an optimistic policy iteration scheme for the
control of stochastic discrete-time dynamic systems.
We employ λ-LSPE for the policy evaluation step.

2.1 Radial Basis Functions

The true cost-to-go function is inherently nonlinear
with respect to the state variables. So in order to
achieve a good approximation performance, which is
the key for success in approximate dynamic
programming, nonlinear function approximators, such
as neural networks can be employed. However,
classical feedforward neural networks are nonlinear
with respect to their weight parameters. This fact
complicates the development of a method that can
guarantee convergence of the existing policy
evaluation methods, since no policy evaluation
method has proven to converge for nonlinear (in the
parameters) approximators. Instead, we employed the
RBF neural network architecture for approximating
the cost-to-go function. In this way, we manage to
capture the nonlinearities of the true cost-to-go
function, while assuring that the policy evaluation
method will not diverge.
The approximation architecture we employ has the
form:

() (), ' , J x w x w xφ= ∀ ∈� X (13)

where ()xφ is an L-dimensional vector associated

with the state x that has components ()1 xφ , ()2 xφ ,
()..., L xφ while w is a weight vector with components

. We use Gaussian functions with
fixed centers as basis functions. The centers of the
basis functions are selected in batch mode before the
method starts operating. Special care needs to be
taken for the center selection due to the localized
character of the radial basis functions. The centers
must span the entire state space in order to achieve a
global behavior of the network. Once this is
accomplished, the network can combine good
approximation properties through the entire state
space while retaining its simple linear structure with
respect to the weight parameters.

(1), (2),.., ()w w w L

2.2 Importance of the Post Decision State

Notice that the policy improvement step in eq. (12)
involves the calculation of the minimum of an
expectation that implies knowledge of the transition
probabilities of the markov chain. However, these
probabilities are generally not known. To overcome
this problem we reformulate the problem using the
post decision state u

tx , i.e. the state of the system that
emerges after the control has acted on it. We denote
by tx the pre-decision state, that is the state before
control has been applied but after information ωtu t-1
has arrived. To make it clearer, we define the

information history of the markov decision process up
to time t, using the pre-decision state:

()t 0 0 0 1 1 1 t t tx ,u ,ω ,x ,u ,ω ,...,x ,u ,ω=F (14)
The dynamics of the system are given by eq. (1). We
notice that the transition from one state to another is
stochastic. The control function is given by:

()*
1 1() arg min (, , ()) (()

t
t t t t t tu

x g x u x aJ xµ ω+ +∈
⎡= +⎣U

E tω ⎤
⎦ (15)

)

 If a single simulation is used (i.e. if we use a single
sample ωt) to approximate the expectation in (15) we
have:

(*
1 1() arg min (, , ()) (()

t
t t t t t t tu

x g x u x aJ xµ ω ω+ +∈
= +

U
(16)

Eq. (16) implies that in order to calculate ut, the value
of xt+1(ωt) is needed, which is not yet available.
We define the post decision state u

tx as the state of
the system after decision has been applied, but
before new information

tu

tω has arrived. Now the
history of the process is given by:

(0 0 0 0 1 1 1 1, , , , , , , ,..., , , ,u u u
t x u x x u x x u x)t t t tω ω ω=F (17)

The transition from the pre-decision state to the post-
decision state is given by a function of the form:

(,)u u
t t tx f x u= (18)

Notice that the transition from the pre-decision to the
post-decision variable is deterministic.
We also define the transition from the post-decision
state to the pre-decision state as a function f ω of the
form:

1 (,)u
t tx f xω

tω+ = (19)
The transition from the post-decision to the pre-
decision state is stochastic. The relationship between
the optimal pre-decision and the post-decision cost-
to-go functions, J* and Ju respectively is given by:

() () (), (u u u * u
t t t t+1 t) tJ x g x +aJ x xω ω⎡ ⎤= ⎣ ⎦E� (20)

() (
1

*
1 min

t

u u
t u

)t+1J x J x
+

+ ∈
=

U
 (21)

The Bellman equation for the post-decision state
becomes:

() () ()
1

1, min
t

u u u u u u
t t t tu tJ x g x a J x xω

+
+∈

⎡ ⎤= +⎢⎣ U
E ⎥⎦

 (22)

Notice that the expectation has been drawn out of the
min operator. The optimal policy *µ is determined
by:

(* () arg min ()
t

u u
t u

)t tx J x uµ
∈

=
U

 (23)

Here, we calculate ut given the value of ωt-1 which is
available at the time we make the decision. So, we do
not violate any informational constraints, i.e. we are
not using information that is not available at the time
we make the decision. Hence a single simulation is
enough to generate an unbiased estimate of cost-to-go
function. More generally, we can use a single
simulation when we need to approximate terms of the

form { }minE ⎡ ⎤⎣ ⎦i , but for terms of the form

[]{ }min E i we must use multiple simulations.

2.3 λ- Least Squares Policy Evaluation

Perhaps the most crucial part for the success of a
neuro-dynamic programming method is the policy
evaluation step. The method that is utilized must be
reliable and must converge as fast as possible because
this is the most time consuming part of the method.
These methods originate from stochastic
approximation techniques (Kushner and Yin, 1997),
so they usually involve a positive diminishing
stepsize parameter that needs much effort and
experience to be tuned, in order to ensure
convergence. Various heuristic stepsize parameters
have been proposed in the literature, however the
choice of the stepsize parameter seems to be problem
dependent. The only temporal difference method until
now that has been proven convergent without
requiring a diminishing stepsize is λ-Least Squares
Policy Evaluation (λ-LSPE) (Nedic and Bertsekas,
2003). The convergence proof for the method can be
found in (Bertsekas et al., 2003). The proof is generic
for all models employing linear combinations of basis
functions that depend on the state of the system and
thus can be used to prove convergence of the
proposed method. Due to space limitations, no further
discussion on the convergence can be provided and
the reader is referred to the above paper.
λ-LSPE is a gradient-like method based on temporal
differences and λ-policy iteration, which involves the
solution of a least-squares problem. The essence of
the method is the progressive reduction of the
discount factor in order to accelerate the policy
evaluation step. The method involves incremental
solutions of the following least-squares problems:

2

1
0

arg min () ' () ' () (,)
t t

k m
t m m t t kr m k m

r x r x r a d xφ φ λ −
+

= =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ ∑ kx (24)

where is the temporal difference defined
in (11). The new weight vector is given by:

1(,)t k kd x x +

1 ()t t t tr r r rγ+ = + − (25)

2.4 Description of λ-LSPE based RBF Optimistic
Policy Iteration

Below describes in detail the proposed methodology.
It is an optimistic policy iteration algorithm where the
policy improvement step follows after each transition.
We use an efficient implementation scheme for λ-
LSPE by applying the Sherman-Morrison-Woodbury
formula (Golub & Van Loan, 1989) to compute the
rank one update of the inverse of the matrix Bt.

Detailed description of the λ-LSPE based RBF
Optimistic Policy Iteration

Set 1

0B Iδ− = , 0A = 0 and , where0b = 0 1
0B− is

a L L× matrix, I is the L L× identity matrix, 0A is a
L L× matrix and b0 is a 1L× vector.

1. Given the initial pre-decision state 0x , set t = 0 and
generate a control according to the steps a and b: 0u
a. Simulate the system from 0x to 0

ux
deterministically according to eq. (18) for each

 0u ∈U

b. Select ()
0

0 0arg min (),u u

u 0 0x u w
∈

= �
U

u J

2. Simulate the system from 0x according to eq. (18),
applying control 0u to get the post-decision state 0

ux .

3. Set t t . Simulate the system from 1← + u
tx

generating a random sample ωt and applying eq. (19)
to obtain the next pre-decision state 1tx + and the one-

stage cost (),u
t tg x ω .

4. Generate a control 1tu + according to

()
1

1 1arg min (),
t

u u
t t tu

u J x u
+

+ + +∈
= �

U 1 1tw −

5. Simulate the system from 1tx + applying control

1tu + according to eq. (18), to get the post-decision
state 1

u
tx + .

6. Update the weight parameters of the RBF network
using the recursive form of λ-LSPE:

()1
1 1 1 1 1 1t t t t t t tw w B A w bγ −

− − − − − −= + +

() ()
() ()

1 1
1 11 1

1 1
1

'

1 '

u u
t t t t

t t u u
t t t

B x x B
B B

x B x

φ φ

φ φ

− −
− −− −

− −
−

= −
+

()1
u

t t tz a z xλ φ−= +

()1 1() ' () 'u u
t t t t tA A z a x xφ φ− += + −

()1 1,u u
t t t t tb b z g x x− += +

and return to step 3.

3. SIMULATION RESULTS

We applied the proposed λ-LSPE-based Optimistic
Policy Iteration with RBF networks (OPI-λ-LSPE-
RBF) as the cost-to-go approximator to a retailer-
inventory problem presented in Van Roy et al.
(1997). The system under investigation consists of
one production facility, one warehouse and ten stores.
The goal is to efficiently manage inventory levels at
warehouses and stores in order to meet customer
demands and minimize storage and transportation
costs. For detailed information about the model we
refer the interested reader to the aforementioned
technical report. In table 1 we list the problem
parameters that were used in this work. The proposed
method was compared with an s-type policy that is
described in (Van Roy et al., 1997). The method was
further compared to a neuro-dynamic programming
algorithm using linear- with respect to the state
variables- function approximators (OPI-λ-LSPE-
LINEAR). We finally tested the method using an ε-
greedy soft policy scheme (OPI-λ-LSPE-RBF-ε) as
the cost-to-go approximator, that will be described
later.

Table 1. Values for the parameters of the retailer-
inventory management problem

Parameters of the model PValues
number of stores 10
delay to stores 2

Delay to warehouse 2
production capacity 100
warehouse capacity 1000

store capacity 100
Probability of customer waiting 0.8

Cost of special delivery 10
Warehouse storage cost 3

store storage cost 3
shortage cost 60
mean demand 5

standard deviation of demand 14

The heuristic s-type policy is parameterized by two
decision variables: a warehouse-order-up-to level and
a store-order-up-to level. These two variables also
constitute the vector of manipulated variables in the
control model we propose using the neuro-dynamic
approach. Hence, control ut consists of these two
variables. The number of state variables is 33, which
produces an enormous cardinality, thus making
classical dynamic programming techniques
impractical. The optimal order-up-to levels for the s-
type policy were optimized by evaluating all possible
combinations using lengthy simulations. The optimal
values resulting from the exhaustive enumeration
were 250 for the warehouse and 12 for the stores. All
the states visited and their corresponding cost-to-go
values during the above simulations were used to
locate the centers of the RBF weights and calculate an
initial estimate of the weight parameters. Specifically,
the centers of the RBF network were selected from a
normal distribution with mean and standard deviation
equal to the ones of the collected states. The weight
parameters were calculated using standard least
squares on the above data. After the preliminary
training phase, the λ-LSPE-based Optimistic Policy
Iteration was applied as described in the previous
section. The step size parameter was set equal to 1
and remained constant during the execution of the
method while λ was set equal to 0.8. As we can see in
figure 1 the weights of the RBF network converge
after approximately 1,500,000 state transitions.

0 0.5 1 1.5 2 2.5

x 106

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 106

Transition Number

W
ei

gh
t P

ar
am

et
er

 V
al

ue
s

Fig.1. Evolution of weight parameters of the RBF

network during the course of λ-LSPE-based
Optimistic Policy Iteration

As mentioned previously, we experimented with a
linear combination of the state variables as a cost-to-
go approximator. The method failed badly, since the
linear architecture was not able to capture the
nonlinearities of the true cost-to-go function, thus
resulting to a very large value bias value, while the
values of the other weights were very close to zero.
We also tested a variant of the λ-LSPE-based
Optimistic Policy Iteration with RBF networks that
employed an ε-greedy policy in order to achieve
exploration of the state space during the training
phase. In de Farias & Van Roy (2000) it was shown
that the trajectory of the weight vector can be
considered as an approximation of the trajectory of an
ordinary differential equation, where the limits of
convergence correspond to the stationary points of the
ODE. However, they pointed out that if no sufficient
exploration is achieved, the respective ODE need not
possess any stationary points. ε-greedy policy is a soft
stochastic policy where the control action is selected
randomly with probability ε, while the greedy control
action with respect to the current estimate of the cost-
to-go values is selected with probability 1-ε. We
selected the initial value of ε close to one and as the
algorithm progressed we gradually reduced its value
asymptotically to zero. The weight parameters
converged, but to completely different values from
the ones shown in Fig. 1.
Finally, we tested the approximation architectures
using a validation set which was common to all four
methods. By the term validation set we mean a new
initial state and a new independent realization of the
random variable, which for the specific problem is
customer demand. The results are summarized in
table 2, where we observe that OPI-λ-LSPE-RBF
exhibits the best performance in term of average cost,
while OPI-λ-LSPE-LINEAR performs poorly.

Table 2. Performance comparison for the various
methods

Method Average
Cost

Average Cost-
to-go

s-type policy 1106.4 110790
OPI-λ-LSPE-RBF 1090.4 108115

OPI-λ-LSPE-
RBF-ε 1199.3 119124

OPI-λ-LSPE-
LINEAR 1742.7 173990

4. CONCLUSIONS

The concept of dynamic programming for the control
of stochastic discrete-time dynamic systems has
revived due to the emergence of neuro-dynamic
programming techniques which circumvent the
classical curse of dimensionality by employing
simulation and function approximation. In this paper
we presented an optimistic policy iteration algorithm
based on RBF networks and the λ-LSPE method.
Utilization of the RBF network architecture provides
excellent approximations of the cost-to-go function,
while retaining a linear, with respect to the
parameters, model structure. The λ-LSPE method is a

robust policy evaluation technique which does not
require a diminishing stepsize parameter. We applied
the method to a retailer-inventory management
problem found in literature and obtained very
encouraging results. We also discovered that
employing a linear approximation of the cost-to-go
function does not produce similar results, a fact that
emphasizes the need for nonlinear approximation
techniques such as RBF networks.

REFERENCES

Bellman, R. E. (1957). Dynamic Programming,

Princeton University Press, Princeton, NJ
Bertsekas, D. P. (2001). Dynamic Programming and

Optimal Control, 2nd edition, Athena Scientific,
Belmont, MA.

Bertsekas, D.P., Borkar, V.S. and Nedic, A. (2003).
Improved Temporal Difference Methods with
Linear Function Approximation. Lab. for Info.
and Decision Systems Report LIDS-P-2573,
MIT, Cambridge, MA.

Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-
Dynamic Programming, Athena Scientific,
Belmont, MA.

Boyan, J. A. (2002). Technical Update: Least-
Squares Temporal Difference Learning. Machine
Learning, Vol. 49, pp. 1-15.

de Farias D.P. and Van Roy, B.. On the Existence of
Fixed Points for Approximate Value Iteration
and Temporal Difference Learning. Journal of
Optimization Theory and Applications, vol. 105,
no. 3, June 2000.

Kushner, H. J. & Yin, G. G. (1997). Stochastic
Approximation Algorithms and Applications.
Springer, New York.

Nedic, A., and Bertsekas, D. P. (2003). Least Squares
Policy Evaluation Algorithms with Linear
Function Approximation. Discrete Event
Dynamic Systems: Theory and Applications,Vol.
13, pp. 79-110.

Puterman, M. L., Markov Decision Processes, John
Wiley Inc., New York, 1994.

Tsitsiklis, J. N., and Van Roy, B. (1997). An Analysis
of Temporal-Difference Learning with Function
Approximation. IEEE Transactions on Automatic
Control, 42, pp. 674–690.

Sutton, R. S. (1988). Learning to Predict by the
Methods of Temporal Differences. Machine
Learning, vol. 3, pp. 9–44.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement
Learning, MIT Press, Cambridge, MA.

Tesauro, G.J. (1994). TD-Gammon, a Self-Teaching
Backgammon Program, Achieves Master-Level
Play. Neural Computation, Vol. 6(2), 215-219.

Van Roy, B., Bertsekas, D. P., Lee, Y. and Tsitsiklis,
J. N. (1997). A Neuro-dynamic Programming
Approach to Retailer Inventory Management,
Technical report, Laboratory for Information and
Decision Systems, MIT, Cambridge, MA.

Golub, G. H., and Van Loan, C. F. 1989.
Matrix Computations, Johns Hopkins University
Press, Baltimore, second edition.

