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Abstract: This paper is concerned with a KYP-type result for descriptor systems.
A matrix inequality is shown that provides a necessary and sufficient condition
of dissipativity of descriptor systems, without any additional restriction on the
realization unlike previous results. Further, a dual matrix inequality condition is
derived and applied to synthesis of control gains to attain dissipativity by solving
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1. INTRODUCTION

It has been well understood that the descrip-
tor form provides system representations that
are more natural and general than state-space
systems (See e.g., Lewis (1986)). The descriptor
form is useful to represent such as mechanical
systems, electric circuits, interconnected systems,
parameter-varying systems, and so on. Among
considerable number of basic notions of dynamical
systems generalized to descriptor systems, dissipa-
tivity, including positive and bounded realness, is
one of the most important properties and plays
crucial roles in various problems of analysis and
synthesis of control systems.

For linear time-invariant systems, Kalman-Popov-
Yakuvobich (KYP) Lemma and related results
give characterization of positive or bounded real-
ness in terms of the state space realization (Ander-
son, 1967; Willems, 1971; Rantzer, 1996). Those
results have been generalized to descriptor sys-
tems, providing matrix equations and inequalities
(Takaba et al., 1994; Masubuchi et al., 1997; Wang
et al., 1998; Rehm, & Allgower, 2000; Zhang et

al., 2002). However, for continuous-time systems,
most of the existing results require a certain as-
sumption or restriction on the realization of de-
scriptor systems, while KYP Lemma for state-
space systems is valid independently of the choice
of the realization. Recently, a modified matrix
inequality condition is proposed that is necessary
and sufficient for dissipativity of descriptor sys-
tems with any realization (Masubuchi, 2004).

One of the merits of matrix inequality conditions
for dissipativity is the fact that they can yield
LMI conditions for synthesis of a controller that
attains closed-loop dissipativity in the control sys-
tem. Several standard techniques are developed to
derive LMIs for synthesis. However, the new dis-
sipativity condition possesses structure to which
such methodology is not obviously applicable. In
this paper, we show some variants of the dissi-
pativity inequality and derive LMI conditions for
synthesis of control gains to attain dissipativity
and admissibility of the control system.

Notation. For a matrix X, we denote by X1,
XT, X~ T and X* the inverse, the transpose, the



inverse of the transpose and conjugate transpose
of X, respectively. HeX stands for X + X . For
a symmetric matrix represented blockwise, such

X1 X
asX:[ 11 A12

, offdiagonal blocks can be
X7, Xzz] &

Xll X12:|

abbreviated with ‘x’, as X = {
* Xop

2. PRELIMINARIES
2.1 Dissipativity of descriptor systems

Consider the following descriptor system:
Ei = Az + Bw, (1)
z = Czx + Dw,

where ¢ € R™ is the descriptor variable, w € R™
is the input and z € RP is the output of the
system. Let £ € R™*" and rankFE = r.

Next, let S = ST € R(™+P)x(m+p) and consider
the following quadratic form of (u,y):

wo-[ss]. w

which defines a supply rate.

Definition 1. The descriptor system (1) is said to
be dissipative with respect to the supply rate s(-, )
if the pencil sE — A is regular, the descriptor
system (1) have no impulsive modes and for any
u(t) it holds that

provided z(0) = 0.

Suppose that uw € L3[0,00). Then the condi-
tion (3) is equivalent to the following frequency-
domain condition:

17 I
[G(jw)] S [G(jw)] <0, Vw € RU{o0},
(4)
where G(s) = C(sE — A)~'B + D. By setting

we 03528 o

the inequality (4) is written as

[(wa —IA)IB} : u {(wa —IA)lB] <0

which we consider in the next subsection.

2.2 KYP-type Lemma for descriptor systems

Consider the inequality (6), without assuming
that M has the structure of (5).

Theorem 2. (Masubuchi (2004)). Suppose that the
following assumptions (7)—(9) hold.

det(jwE — A) #0, YweR (7)
lim (jwE — A) ! exists. (8)
w—r0o0

(E, A, B) is finite-dynamics controllable. (9)

Then the following two conditions are equivalent.
(i) For any w € RU {oo}, it holds that
. 1 * . 1
(JwE—A)"B M (JwE - A" B <o.
I I
(10)
(ii) There exist matrices X € R™" and W €

R™ ™ that satisfy the following matrix equa-
tions and inequalities.

E'X=XTE, E"W =0,

M + He H{;] (48] <0 1

Proof. See Appendix.

Remark 8. f E = I, we have W =0, X = X'
and the inequality condition (11) reduces to that
for state-space systems (Rantzer, 1996).

Remark 4. The result of Theorem 2 gives a neces-
sary and sufficient condition for the dissipativity
inequality (10) to hold for w € R U {oo}. A
generalization of the KYP lemma for descriptor
systems with finite regions of w has been derived
(Iwasaki & Hara, 2003).

Below are corollaries of Theorem 2.

Corollary 5. Suppose that the assumptions (7)
and (8) hold. Then the following two conditions
are equivalent.

(i) For any w € R U {oo}, it holds that

{(wa —IA)IB]* v {(wa —IA)lB] <0

(12)

(ii) There exist matrices X € R"*™ and W €
R™™ satisfying

E'X=XTE, E"W =0,

xT
M+He{WT] [AB]<o0.

(13)



Definition 6. The descriptor system (1) is said
to be admissible if the pencil sE — A is regular
and has no impulsive modes and no unstable
exponential modes.

The following corollary gives a matrix inequality
condition for dissipativity with admissibility.

Corollary 7. Consider partition of M as

My Mo

M =
{Msz Mss

} , My e R™"

and suppose that M;; > 0. Then the descriptor
system (1) is admissible and satisfies (12) if and
only if the matrix inequality (13) holds as well as
ETX >0.

The (1,1)-block of (13) is ATX + XTA + M;; <
0. Hence the inequality (13) implies that X is
regular.

2.8 LMI conditions for strict positive realness and
bounded realness

Here we show LMI conditions for strict positive
realness and bounded realness (H., norm condi-
tion) of descriptor systems, by setting matrix S
appropriately.

Corollary 8. The descriptor system (1) is admis-
sible and strictly positive real if and only if there
exist matrices X € R™*™ and W € R™™™ satis-
fying the following LMI condition.

E'X=X"E>0, E'W =0,
ATX +XTA A"W+X"B-CT
* W'B+B"W —-D-D7

Corollary 9. The descriptor system (1) is admis-
sible and H., norm from w to z is less than ~ if
and only if there exist matrices X € R™*™ and
W € R™™ that satisfy

E'X=XTE>0, E"W =0,

He {v);:] [[féBl]); [8 —321} _*I <o.

In Zhang et al. (2002), a necessary and sufficient
condition has been proposed for strict positive
realness under the assumption D+DT > 0. Matrix
inequalities for bounded realness have been shown
(Takaba et al., 1994; Wang et al., 1998) with
[|D|| < 7 and in Masubuchi et al. (1997) with D =
0. The LMI condition for dissipativity presented
in Rehm, & Allgéwer (2000) is not a necessary

< 0.

condition unless Si» = 0 and D = 0. Unlike
these results, Theorem 2 provides a necessary
and sufficient condition for every realization of
a descriptor system and for every supply rate.
Roughly speaking, previous results are retrieved
by setting W = 0. As shown in Masubuchi (2004),
this restriction can bring conservatism.

3. A PSEUDO-DUAL MATRIX INEQUALITY

In this section, assuming that the matrix M has
the form of (5), we consider a certain ‘dual’ of the
matrix inequality condition stated in Corollary 7.
It will play an important role in the following sec-
tion. Let us denote S in the following partitioned
form

S = |:Sll Sl2

, S E Rme
Sty 522} H

according to the sizes of u,y. Further, we assume
that Sso > 0. Substituting (5) to (11) and simple
manipulations yield

E'X=XTE>0, E"TW =0,

e (] [00] + s ]t )

w0 g ]+ 57| sm1e D1 <0

(14)

Since Ss2 > 0, this matrix inequality is equivalent
to an LMI of decision variables (X, W), which
is affine also with respect to coefficient matrices
(E; A, B,C, D). Further, positive semidefiniteness
of Syz implies that X is regular, whereby we define

Y=XT, =-WwTxT. (15)
From the first and second items of (14), we derive

Y7'E=E"Y" T, 0= —-ZY'E and immedi-
ately

EYT=YE" >0, ZET"=0. (16)

Multiplying

—1
XTo Y 0
[WT I} = {Z 1} (17)
o (14) from the left and the transpose of (17)
from the right, respectively, we obtain

EYT=YE" >0, EZ" =0,

He <[5£0 5121)} {YT ZTD/* 0511}

: gt
+{ZIHC]S“ {OZI}

(18)



Proposition 10. The descriptor system (1) satis-
fies dissipativity as well as admissibility if and
only if the matrix inequality condition (18) holds
for some Y € R™"*", Z € R™*",

Remark 11. The LMI condition (18) is utilized
in the next section to obtain LMIs to compute
control gains. If £ = I, the inequality (18) is
simplified to

Y=Y">0,
AY +Y AT *
[BT +S15C Si1 + S12D + DTS, | (19)
ycT T
+|:DT:|522[CY D:|<O

If S;2 =0 € R™*P or S5 = £1 € R™*™ with
m = p for the latter, the inequality condition (19)
gives a necessary and sufficient condition for dis-
sipativity and internal stability of the dual state-
space system, with GT(s) = BT(s[ — AT)71CT +
DT. In the general case, the inequality condition
(18) may not be obtained by applying the results
of the previous sections to the dual descriptor
system G (s).

4. SYNTHESIS OF CONTROL GAINS

Based on the results on dissipativity analysis of
descriptor systems in the previous sections, we
consider synthesis of a control gain to attain
dissipativity of the closed-loop descriptor system.
Let us represent the plant as follows:
{ Ez = Az + Biw + Bsu, (20)

z = Cixz + Dyiw + Dysu,

where z € R"™ is the descriptor variable, w €
R™ is the external input, u € R™2 is the
control input and z € RP' is the controlled
output. We consider two different control laws: (i)
constant-gain feedback of the dynamic part of the
descriptor variable and (ii) constant-gain feedback
of the descriptor variable and feedforward of the
external input.

First, let K € R™2*™ and consider the following
control input:

uw=KEz, (21)

by which all of the dynamic part of the descriptor
variable is available to compute u. Applying this
input to the plant (20) yields the closed-loop
system as follows:

z = (Cl + DlzKE):U + Djiw.

Proposition 12. There exists a gain K for which
the closed-loop system (22) is admissible and
satisfies dissipativity if and only if the following
LMIs hold for Y € R™*", Z € R™*™ and K €

ngxn.

EYT=YE" >0, EZ" =0,
R11 * (23)
[Rm _I} <0,

where

_ A B A
i =He ({51201 512D11] { 0 I ]
B, o 0 0
KFE ,
* {5121712} [ 0]>+{0 511]
vyt zT
0 71
+T5D1> [KET 0]

Ry =Ty, [C1 Dy | [

and T5s is any decomposition of Sso > 0 as Soy =
Ty T, If the LMIs (23) have a solution, without
loss of generality the matrix ¥ can be assumed
to be regular!. One of the gains satisfying the
admissibility and dissipativity of the closed-loop
system is given by K = Ky T,

Proof. (Necessity) Substitute the expression of the
closed-loop system (22) to the matrix inequality
(18). Then we see a bilinear terms of KEY T and
KEZT. The latter vanishes since EZT = 0 and by
EYT = YET the former reduces to KET, where
K = KYT. Then performing Schur complement
completes the proof. (Sufficiency) The proof of
the sufficiency follows easily.

By virtue of the structure of the matrix inequality
(18), the standard technique of linearizing change
of variables for state-feedback gains is applicable
to remove bilinear terms. This is not obvious
for dissipativity inequalities of descriptor systems
other than (18).

Next, consider the following control input

u=Fz+Guw (24)

with F' € R™2*™ and G € R™2*™1, The closed-
loop system is given by

z = (Cy + D12 F)z + (D11 + D12G)w.

(25)

Proposition 13. There exists a pair of gains (F, G)
satisfying the admissibility and dissipativity of
the closed-loop system if and only if there exist

1 See e.g., Masubuchi et al. (1997).



matrices Y € R"*", Z € R"™*", F e R™*" and
G € R™2*™ guch that the following LMIs hold:

EYT=YE" >0, EZ" =0,
|: :11 *I:| < 07 (26)
21

where

P A B vyt z7
n = He <[51201 S12D11 0 I

B, . 00
+ |:SI2D12:| [F G]) + [0 Sn}’
Yyt z7t
0 I

If the LMIs (26) is solvable, the matrix Y can be
assumed to be regular without loss of generality
and one of the gains satisfying the admissibility

and dissipativity of the closed-loop system is given
by F=KY ', G=G-FY"Z".

b =T [C1 Dun ] [

Proof. Straightforward.

Remark 14. Sometimes it is pointed out that non-
strict LMI condition K (£) > 0, where K (&) is a
symmetric-matrix-valued affine function of &, is
involved with numerical problems. This is true if
there exist no relatively interior point solutions to
K (&) > 0. All the nonstrict inequalities in this
paper has the form of ETX = XTE > 0 and the
other inequalities are strict. The set of relatively
interior point solutions to ETX = XTE > 0 is
given by

| X 0 1. .
{X_L[X21X22}R X =X >0,

where L and R are regular matrices such that
LTER = diag{I,«,,0}. This set is nonempty.
5. NUMERICAL EXAMPLES

Consider the following coefficient matrices for the
descriptor system (1):

e-|010] A:Fgfzﬂ
0

[000J7 —1J7

0

Bi=|0|, By=|1],
1 0
131-+

Cl_[oo 0 }

nu[5) oe- ]

Note that this descriptor representation gives the
same system for any k.

]+T2TZD12[F al.

First, we solved the LMI (23) resulting optimal
v = 2.247 for every k. The solution (Y, Z, K) to
(23) for, e.g., k = —10is

0.0456 —0.001127 —0.003379
Y = | -0.001127 0.1079  —0.03235 |,
0 0 0.00727

Z=10009178],
K=1[0-01110]

and the control input is given by

u = [-0.0253 —1.0307 0] .

The second LMI (26) also resulted the same
optimal value y = 2.247, for every k. For k = —10,
the solution (Y, Z, F',G) to (26) is derived as

[ 0.0456 —0.001127 —0.00423-|
Y =} —0.001127 0.1079 —0.04325 |,
[ 0 0 0.00882 J

Z=10009127],
F = [0.001641 0.0887 —0.00286 ] ,

G = 0.00260.

The corresponding control law is

u=[-0.0175 —0.9524 —0.3244 | z + 0.2987w.

6. CONCLUSIONS

In this paper, we have shown matrix inequalities
that provide a necessary and sufficient condition
for dissipativity of descriptor systems, without
additional restriction. Based on this result, we
have proposed an LMI condition to synthesize a
control gain of two types to satisfy dissipativity of
the closed-loop system. An important extension of
the results of this paper is to develop an output
feedback control synthesis method, to which the
solution to the full information problem of the
paper can be a first step.
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Appendix A. PROOF OF THEOREM 2

Proof. Let L and R be regular matrices for which

SI—Al 0
o L]

where 4; € R™", and A € R(»Mx(n=7) jg
a nilpotent matrix. Since lim, o (JwE — A)~!
exists, A = 0 and # = 7. Denoting L'B =
[Bf B;]T, we have

LT(sE— AR = {

(jwE—A)"'B=R {(J’wl —A)'By }

—B,
(A.2)

and that (A, By) is controllable. Let
T
~ RO RO
=g e] w[o1]:

Then the inequality (10) is expressed as

.
. e [0
|:(]W[_f;11) 1B1:| [O —Bz-l M
Lo 1]
I o . -
0 —B, [(wa—z;h) 131] <0
0 1

From the KYP-Lemma for state space systems
(Rantzer, 1996), the above inequality holds for all
w € RU {oo} if and only if there exist a matrix
P =P € R"*" such that

T

I 0 I o
0-By| M|0—Bs
0 I 0 I
PA, + ATP PB,
< .
[ BTP o | S0(A3)

holds. By the elimination lemma, (A.3) is equiva-
lent that for some matrices F,G, H.

) {PA1+AIP0PB1'|
M+[ 0 0 0J

BfP 0 0
F

+He |G | [0I By] <0
H

holds. This inequality is rewritten as

PF
M+He|0 G [%1?gl}go,
0 H 2

which implies the inequality in (11). This is seen
by setting

P F

-1 s8] o

and performing congruent transformation. Also it
is easy to see that the equality conditions in (11)
hold if and only if X and W have the form of
(A.4).



