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Abstract: A problem when designing Kalman filters using first principles models is
often that these models lack a description of the noises that affect the states and the
measurements. In these cases, the Kalman filter has to be estimated from data. For
this purpose many algorithms have been presented in the literature. All methods
in the literature assume that the system under consideration has an observability
matrix that has no small singular values. In this paper it will be shown that small
singular values can lead to poor performance of estimated Kalman filters. Also a
method will be introduced for estimating the Kalman filter in the case that the
system has small singular values. This method is able to construct a good filter,
even if the first principles model is badly observable. Copyright© 2005 IFAC.
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1. INTRODUCTION

Unmeasurable states of a process can be esti-
mated using measurements related to the state
and a state filter such as the Kalman filter. The
standard design methodology for such a filter
requires not only a full description of the rela-
tion between the states and measurements, but
also a full description of the noise affecting the
states and the measurements. A model relating
the measurements to the states can be obtained
using first principles modelling. At this point it is
important to note that first principles models of
physical plants are generally not fully controllable
and observable, due to the limited amount of
measurements (i.e. the limited dimension of the
measurement vector with respect to the dimen-
sion of the state vector).Moreover, although the
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deterministic behavior can often be found using
first principles modelling, this form of modelling
only very rarely admits an accurate description
of the stochastic behavior. Based on these con-
siderations, we will here address the problem of
designing a reliable Kalman filter when no noise
properties are available and when some singular
values of the observability matrix are small or
even zero. For simplicity, we will consider linear
systems of the form

x(k+ 1) = Az(k) + Bu(k) + w(k) (1)
y(k) = Cu(k) + v(k), (2)

with z(k) € R™ ! the state of the system at
time index k, u(k) € R™*! the known input of
the system, w(k) € R™*! the unknown process
noise, y(k) € RP*! the measurement vector and
v(k) € RP*! the measurement noise. The noises
w(k) and v(k) are assumed to be gaussian with:
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In this situation the optimal estimator for the
state vector x(k) is the Kalman filter (Anderson
and Moore, 1979). The optimal predictor or state

estimator can be written in the Kalman innova-
tions form:

#(k +1) = Az(k) + Bu(k) + Ke(k)  (3)
e(k) =y(k) — Cz(k), (4)

with K € R"*P the Kalman gain and e(k) € RP*!
the so-called innovation sequence. The optimal
Kalman gain is generally computed as a complex
function of (A,B,C) and (Q,R,S). As already men-
tioned, we consider the case where the matrices
Q, R, S are not available.

In the literature, many methods can be found
that are able to construct a Kalman filter us-
ing test data if the covariance matrices @, R, S
are unknown. These methods can be separated
into two main classes. The first class of meth-
ods parameterizes the matrices @, R,S, then
these parameters are estimated using test data
w(l)...u(N),y(1)...y(N). Once the matrices Q,
R, S have been estimated, the Kalman filter can
be constructed in the usual manner. The second
class of methods parameterize the Kalman gain
K. Then the Kalman gain is directly estimated
for data. The advantage of directly parameterizing
K is that if the system is fully observable, that
the K matrix will be identifiable, but a @, R, S
representation may not be.

Once a user has chosen to either estimate K
or Q,R,S, there are also different methods for
estimating the required matrix or matrices from
test data. Most estimation methods can be used
to estimate @Q,R,S as well as K. The estima-
tion methods can be roughly classified into four
categories, Bayesian estimation (Magill, 1965),
Maximum Likelihood (ML) estimation (Zhou
and Luecke, 1994), Prediction error identifica-
tion (Ljung, 1999) and correlation or covariance
matching. The first three estimation methods are
general purpose parameter estimation techniques
and thus we shall not discuss them in detail here.

The fourth class of estimators are the covari-
ance matching methods. In these methods, re-
quired matrices are solved by considering the
autocovariance function of the innovations se-
quence e(k) (see (4)). For an optimal filter it
can be shown that this sequence should be a
white noise (Anderson and Moore, 1979). This
property is used in (Mehra, 1970) and (Carew
and Bélanger, 1973) to iteratively construct the
optimal choices for either @, R, S or K. Instead
of considering the covariance of e(k), it is also

possible to use the covariance of the stochastic
part of y(k). Then it is possible to directly identify
the Kalman gain matrix K without K having
to be parameterized. This method is described
in (Mehra, 1973). The advantage of this method
over all other methods listed earlier is that for the
construction of the Kalman gain K, only linear
operations are necessary. As a consequence, we
will consider this method in order to design our
Kalman filter.

In all methods, it is assumed that the system
described by (1)-(2) is completely observable and
also that the corresponding observability matrix
has no small singular values. This can be a prob-
lem, because for many physical systems, this is
not necessarily the case.

In this paper we consider a covariance method
similar the covariance method introduced in
(Mehra, 1973). The first contribution is to show
that an ill conditioned observability matrix for
the system (1)-(2) can lead to poor results of
the Kalman Filter derived using the covariance-
based approach. Then we will also show that this
problem can be solved by using the normal covari-
ance based approach for only a part of the state
directions. For the remaining state directions, a
more robust estimator is used. Also we will show
that even if a system is completely unobservable
in certain directions of the state-space, it is still
possible to construct an useful Kalman filter.

This paper is organized as follows: section 2
starts with a summary of the covariance based
Kalman filter design method. Then, in the sec-
ond part of section 2, we demonstrate how this
Kalman derivation can be used to construct an ap-
proximately optimal filter using known matrices
A, B, C and a series of test measurements. Section
3 then discusses the sensitivity of this method
to stochastic influences, and also shows how this
sensitivity can be reduced. Section 4 presents a
simulation example, in which the results of the
previous sections are applied. The paper ends with
a summary of the main conclusions.

2. COVARIANCE BASED DESIGN OF A
KALMAN FILTER

Our methodology for designing a state filter is
based on a covariance based design procedure of
the Kalman filter. In the first part of this section
a short overview of the covariance based design
procedure is given. The second part of this section
describes how this method can be used to obtain
a state filter using only knowledge of the matrices
A, B,C, and test data consisting of a series of
inputs u(k) and corresponding outputs y(k).



2.1 Summary of the covariance based Kalman
filter design

As opposed to the standard method for the design
of a Kalman filter which requires knowledge of the
matrices (Q,R,S), the covariance based method
does not require this information. Instead, the
covariance of the measurement signal yy, is used to
construct the Kalman filter. The resulting filter is
equivalent to the filter designed using the common
design method.

The model (1)-(2) can be split into two parts, a
purely deterministic part, and a purely stochastic
part. The deterministic part is given by:

zq(k + 1) = Azy(k) + Bu(k) (5)
ya(k) = Cza(k). (6)
The stochastic part of the systems is given by:

zs(k+1)=Ax
ys(k)=Cx

s(k) + w (7)
o(k) + v (8)

The deterministic and stochastic systems are re-
lated to the complete system by:

za(k) + xs(k) )
ya(k) + ys(k). (10)

If we assume that the matrix A is stable and the
process is in steady-state, the covariance function
of the stochastic part of the measurements y; (k)
can be written as:

CA=IM i>0
Ry, (i) = Elys (k)ys (k+)T] =< CToC + Rg(lo) i=0
MT (AT e i <o

In the equation above, M is the cross-covariance
between the stochastic part of the state zs(k + 1)
and stochastic part of the output y,(k):

M =E [z,(k + Dys(k)"], (11)

R.(k) is the covariance of the innovation sequence
e(k) (see (4)):

Re(k) = E[e(k)e(k)"] (12)

and ®(k) is the covariance of the stochastic part
of the state:

®(k) = Elzs(k)zs (k). (13)

Using the definitions in this section, the optimal
steady state Kalman filter (for prediction) is given
by (3)-(4), with

K(k)=[M - ( )CTIRe (k)™ with(14)
Re(k) = R,,(0) — CX(k)CT,

Y(k+1) = AX(k)AT + K (k)Ro(k)K (k)T
£(0)=0.

In these last equations, X(k) can be interpreted
as the covariance of the estimated state Z(k):

S(k) = Elis (k)2 (k)] (15)

As can be seen from (14) B plays no role when
computing the Kalman gain K. To simplify the
natation in the remainder of this report without
loss of generality it is assumed that B = 0.

2.2 Estimation of M, R, (0)

In order to be able to use the Kalman filter with
the gain computed using (14), we will need to
estimate the unknown quantities M and R, (0).
In this section it is demonstrated how these can be
estimated, using N points of test-data generated
by (1)-(2). Note that (once the process is in
steady state) these quantities M and R, (0) are
constants for all possible input signals.

We start by showing how M can be estimated.
The estimator for M is easily derived by realizing
that the following relation holds:

OM=[RL (1) --- RE(N—1)]"  with(16)

o=[CT (AT ... (cANHT]T. )

In the previous equation, the covariance function
R, (7) is unknown, but it can be estimated using
the available test data. The covariance function
R, (i) would be easy to estimate if the signal y4(k)
would be available. If A is stable, the signal y,(k)
can be approximately recovered using:

k—1 )
=Y CA*' ' Bu(i)
=0
Vk>>1 (18)

This approximate signal §s(k) can then be used to
estimate the covariance function Ry, (7). In the re-
mainder we shall denote the estimated covariance
function by ]%y (7).

Denote the left inverse of @ € RN-Dpxn ag
Of, ie. OF = (OTO)~1O”. Using the estimated
covariance function Rya( i), a natural estimator for
M is:

M=ot [Rysu) R;S(N—l)r. (19)

Using the estimator for M and the estimate
R,,(0) of Ry, (0), an approximate Kalman filter



can be constructed using (14), after replacing M
for M and R, (0) for R,,(0).

3. IMPROVED ESTIMATION

If the technique described in the previous section
is directly used to obtain an approximate Kalman
filter, the accuracy of the estimates of the ob-
tained Kalman filter can be very poor if the matrix
O has one or several very small singular values. In
this section we will show how (given that O has
one or several small singular values) we can still
obtain good state estimates. In this section we will
thus use the following assumption:

Assumption 1. Denote the decreasing singular
values of O as o9 > ... > 07 > ... > o,. We
will assume that o; <<1 V > [.

We will start by explaining why the estimated
states can be very poor under this assumption.
The poor quality of estimated states can be easily
explained if we consider the estimation error for
M. Denote the SVD of O as:

01

0=U VT (20)
On

0

in which U € RIW-Dpx(N=Lp_ 1/ ¢ RnX" are
orthogonal matrices. Using this notation, the es-
timation error for M can be written as:

M — M = [Viy Vig 1] ¥

—1
o T
1 Ul:l

0 Ulﬂl:n AR, (21)

T
,;1 Un+1:(N71)p

with

Ry, (1) = Ry, (1)
Ap= :
Ry, (N —1) = Ry (N — 1)

and V;; and U;j; matrices consisting of the
columns ¢ through j of V and U, respectively.
From (21) we see that an error AR in the direction
of U; corresponds to an error M — M in the
direction V; after multiplication with o; . Due to
Assumption 1 small errors AR in the directions
of Ujy1., induce large errors M — M in the
directions of Vjy1.,. This relatively large error for
M — M can cause severe state estimation errors
if an approximate Kalman filter is obtained by
substituting M in (14).

In the remainder of this section we shall show how
a good estimate of the state can be obtained under

Assumption 1. When deriving this estimator, it is
convenient to first apply the following similarity
transform:

oy uToo | Vik _ [ #1(k)

The state Z1 (k) is thus the component of the orig-
inal state in the directions of V1.;, and Zo (k) corre-
sponds to the component of z(k) in the directions
Vit1.n. After having derived an estimate azc(k) the
corresponding estimate (k) can be simply com-
puted via #(k) = Vi(k). Due to the similarity
transform, the various state related matrices also
need to be transformed:

~ A A
A=VTAV = { S ~12} 23
Aoy Aoy (23)
C=0v= [él 02] (24)
_vTar — ]\:41
M=VTM = [Mz] (25)

S igzch (26)
K(k)=VTK(k). (27)

Note that after the similarity transform, M, corre-
sponds to the directions in which M can be accu-
rately estimated using (19) and M corresponds to
the directions in which M is difficult to estimate.

The estimator for Z(k) will be derived in two
steps, first we shall create an estimator for Z; (k)
then an estimator for Zo(k) will be discussed.

3.1 Estimator for &1(k)

Our estimator for the state component z;(k) is
based on the following proposition:

Proposition 2. Define M; as:

= [wrf o]”

Suppose that o; = 0 for ¢ > [ and assume we
construct a Kalman filter using (14) using M;
instead of M; Denote the vectors and matrices
Y(k), Re(k), (k) that are computed using M; as

31(k), Re(K), (k). Then it holds that:
¢ {%e,l(k) = Re(k)

. ;311,l(k) =A211(/f)
o z1,(k) = z1(k).

Proof. See (Bos et al., 2005). O

This proposition implies that the estimation result
Z1 (k) does not change if, instead of using the exact



Kalman filter, we would use a Kalman filter ob-
tained by replacing M by M; in (14). Combining
the result with the fact that we can accurately
estimate Ml with Ml = VlTlM , a natural esti-
mator for 1 (k) is thus the approximate Kalman
Filter computed with (14) where M is replaced by

(M, 0]T.

Note that even though Proposition 2 holds for
o; = 0V ¢ > 1, we assume that it still approxi-
mately holds under Assumption 1.

3.2 Estimator for Ta(k)

Now that we have an estimator for Z;(k) we still
need to construct an estimator for the remaining
states Za(k). The optimal estimate for Z2(k) cor-
responding to the optimal Kalman filter is:

Z2(k+1) = Az (il(k) + E[(#1(k) — él(k))|6(k)])
+ Aoz (&2(k) + E[(@2(k) — &2(k))e(k)]) -
Both conditional expectations can be expressed

as complex functions of M, %(k), C, R.(k) and
e(k) using the following proposition:

Proposition 3. Suppose that o; = 0 for i > [, it
holds that:

A E[(&1 (k) — 1 (k))[e(k)] =
Aoy (A7 My — 241(K)CT R (k)e(k).  (28)

AgsE[(&2(k) — Za2(k))[e(k)] =
(Mg — 1421141_11]\21 — AQQSQl(k)éf)Rgl(k)e(k)

Proof. See (Bos et al., 2005). O

In this proposition we see that the conditional
expectation for the error in #; (k) can be approx-
imately computed, since the expression contains
only elements that are either known, or can be
accurately estimated.

Computing the expectation E[(Z2(k)—Z2(k))|e(k)]
requires an accurate estimate of M27 which is un-
available. This means we cannot reliably compute
the conditional expectation for the error in Za(k).
Therefore we chose not to use this conditional
expectation and thus the best reliably obtainable
estimator for Z> becomes:

Fa(k+1) = Ay (51 + E[(@1 (k) - #1(K) fe(k))
+ Agoiy.  (29)

Combining (28) and (29), a natural estimator for
Zo(k + 1) is obtained by replacing M; with the

estimate M 1.

To(k + 1) = Aoy (k) + AgaZa(k)
+ Aoy (AT My — S04 (R)CT R M(R)e (k) (30)

Summarizing, an approximate Kalman filter can
be estimated using the procedure described in
section 2.2. However the resulting filter can pro-
duce poor estimates if some of the singular values
of O are small. In this particular case, a better
and more robust filter can be constructed. This
filter is constructed by first applying a similarity
transform #(k) = V7z(k). Then the elements cor-
responding to the first [ columns of V' (= Z1(k))
are estimated using an approximate Kalman filter
estimate that is constructed by inserting [M{ 0]7
for M in (14). Using the results of this filter, Zo (k)
can be estimated using (30).

4. SIMULATION EXAMPLE

In this simulation example 500 measurements y
were generated using a randomly chosen system.
This system can be written in the form (1)-(2),
with:

—0.1821 —0.3703 0.2848 —0.2656
—0.5478 —0.0379 —0.4672 —0.2570

A=1_0.2200 —0.2308 0.0153 0.0206
—0.1037 —0.3984 0.3201 0.6234

B=[1121" Cc=[1000]

Q=1I, R=1, §=[0000]".

The goal of the simulation example is to test,
assuming that the matrices A, B, C, are known,
and the set of test measurements y is available,
if it possible to construct a Kalman filter using
the procedure outlined in the previous sections.
The accuracy of the filter designed using this
procedure will be compared with the accuracy of
the optimal filter, that can be constructed since
in the simulations the true values of ), R and S
are also available.

The first step in constructing an approximate
Kalman filter is to estimate the auto-covariance
function of the stochastic part of the measure-
ments. After subtracting the deterministic part of
the system using (18), the last 250 measurements
in the sequence ys; were used to estimate the
autocovariance function of the stochastic part of
measurements, ]%y (k) using an AR(10) model.

After estimating the auto-covariance function
R,.(k), the estimated matrix M can be con-
structed using (19). Finally the approximate
Kalman filter can be designed by substituting the
estimated values R, (0) and M for R,_(0) and M
in (14) as was described in section 2.2.

In order the evaluate the performance of the ap-
proximate Kalman filter design method, the ac-



Table 1. Mean squared one-step-ahead
prediction errors £ of both the optimal
Kalman filter and approximations ob-
tained using methods outlined in sec-
tions 2 and 3. Results were averaged
over 30 runs. Values in brackets denotes
the standard deviation over the 30 runs.

Filter &
Optimal filter 5.49 (0.030)
Direct approx. filter (sect. 2) | 561 (906)
Improved filter [ =1 (sect. 3) | 5.60 (0.24)
Improved filter [ = 2 (sect. 3) | 5.56 (0.20)
Improved filter [ = 3 (sect. 3) | 6.09 (0.89)

curacy of the resulting filters are compared with
the optimal Kalman filter. The comparison was
conducted by using the true system to generate
additional series of 1000 measurements. The er-
ror measure that is used to compare the per-
formance is the averaged one-step-ahead predic-
tion error, which will be denoted by £ : & =

¥ Lo (x(k) = 2(k))*.

The entire simulation procedure (data genera-
tion, filter design, performance evaluation) was
repeated 30 times, the averaged errors can be
found in Table 1.

As can be seen in Table 1, the average accuracy
of the resulting approximate filter is poor, and
the standard deviation of the prediction error is
very large, indicating that the accuracy strongly
varies. This effect of varying accuracy may be
explained by the theory of section 3 if O has small
singular values. To verify this the singular values
were computed. The singular values for O is this
example are:

o1 = 1.22 09 = 0.77 03 = 0.26 04 = 0.0047
The poor results of the approximate Kalman filter
are likely caused by the smallest value, as illus-
trated in (21).

After the direct method of section 2.2, the im-
proved filter of section 3 was also tested. In order
to apply the results of section 3, we first need
to apply the similarity transform #(k) = VTz(k)
and the choose the number of elements in & (k)
and Zo(k). Normally a single partition would be
chosen using the computed singular values but in
this example we chose to try all options. We shall
denote the number of elements in & (k) as {. The
results using the improved estimator can also be
found in Table 1.

Results in Table 1 show a vast improvement if the
improved filter of section 3 is used (using I = 3)
instead of the direct approximation of section 2.2.
Apparently the error in M-—M corresponding to
the smallest singular value was the main reason for
the severe prediction error of the filter of section
2.2. This large error is avoided is avoided in the
improved estimator.

Using | = 2 instead of [ = 3 again increases the
accuracy of the resulting filter. This indicates that

the prediction error caused by the error in M — M
corresponding to the small value of o3 was larger
than the decrease in possibly obtainable accuracy
due to the suboptimal estimate for Z2(k).
Finally using | = 1 the error increases slightly
compared to the filter designed using [ = 2. This
was to be expected since oy is not that small,
which means that we ignore information contained
in M that we could have used to improve the
prediction accuracy of the state.

5. CONCLUSIONS

Designing a state filter for first principles models
is difficult since first principles modelling often
does not provide the required information on the
noise covariances. This paper introduces a method
for constructing a Kalman filter without resorting
to manual tuning or nonlinear optimization. The
approximate Kalman filter is constructed using
the estimated autocovariance of the outputs y(k).
The sensitivity of the design method to estimation
errors in the estimated autocovariance function
is also discussed and methods to reduce this
sensitivity are given. The proposed method was
illustrated in a simulation example.
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